TheconversionsofATPtoADPandGTPtoGDParemediatedbyawiderangeofenzymes.Theseincludemotorproteinssuchasmyosins,helicases,andkinesins,alongwithproteinsfromsignalingpathways,suchaskinasesandG-proteins.Withrespecttomanymotorproteins,theenergyfromtheATPhydrolysisiscoupledtochangesinproteinconformation,and/orprotein–trackinteractions,enablingfunctionssuchasmusclecontraction,DNAunwinding,andmodulationofprotein–proteininteractions.
Fluorescencenucleotidesarewidelyappliedtoinvestigatesolutionkineticsofsuchtriphosphatasesandkinases.Forexample,theyareusedtomeasurethekineticsofindividualstepsintheenzymicreaction(binding,hydrolysis,productrelease,andassociatedstructuralchanges)andtounderstandfullyhowsuchactivitiesarecoupledtotheproteinfunction.Insuchmeasurements,achangeinthefluorescencepropertiesisrequiredtogiveasignalassociatedwiththeprocessofinterest.Mostoften,thischangeisinintensity,butotherpropertiessuchasanisotropyarealsoused.Importantly,significantfluorescencechangesaremoreimportantinthistypeofusethanoverallfluorophorebrightness.Inaddition,fluorophorephotobleachingisusuallynotamajorproblem,aslightsourcescanbeoflowerintensitythanthoseforsingle-moleculevisualization,describedbelow.
Theuseoffluorescentnucleotidesinsingle-moleculeassayshasincreasedoverthepast15years,andthishasbeenespeciallydrivenbythestudyofmotorproteins,inwhichthereisapreciserelationshipbetweenmovementandnucleotidehydrolysis.Totalinternalreflectionfluorescencemicroscopy(TIRFM)isreADIlyusedtovisualizeindividualfluorescentATPandADPmoleculesallowingthemeasurementsofATPturnoversbysinglemyosinmolecules(1–4).Forsuchmeasurements,abright,photostable,fluorophoreisamajorfactor:thelightsourcesmustbeintensetogetsufficientphotonsemittedfromsinglecomplexes.Morerecently,single-moleculefluorescencemeasurementshavebeencombinedwithtranslocationmeasurementstoshowthecouplingbetweenATPaseactivityandtranslocationalongactin(4).TIRFMselectivelyexcitesmoleculeswithin100–200nmofthesurface,dramaticallyreducingthebackgroundfluorescencefromunboundfluorophoresinthebulksolution.Thisimprovementinthesignal-to-noiseratioallowsdetectionofindividualfluorescentATPmolecules,whenboundtosurface-attachedproteins.However,thepossibilityoffurtherimprovementinthesignal-to-noiseratio,throughafluorescenceintensityincreaseonproteinbinding,couldimproveeitherthespatialortemporal,resolutionofmeasurements.Thischapterconsidersonlytheuseoffluorescenceintensitymeasurementsofasinglefluorophoreonthenucleotide.However,developmentssuchasspFRET(single-particleFörsterResonanceEnergyTransfer)(5)hasclearpotentialtoextendtheapplicationsoffluorescentnucleotides.
Fluorescentadenineandguaninenucleotideshavebeenwidelyusedtoreportuponbinding,proteinreleaseandstructuralchanges(6–11).Fluorophoresaresensitiveprobes,easilyusedatsubmicromolarconcentrations,andcanhavepropertiesthatreportrapidly,evenonsmallperturbationsintheregionofthefluorophore.Thus,ATPandanalogshavebeenmodifiedwithfluorophoresatseverallocationsinthemolecularstructureandtherangeofmodificationshasbeenreviewed(12,13).Thechoiceofattachmentsiteisimportant,bothtogetafluorophoreinapositiontoreportbutalsotomodifytheparentnucleotidewithoutsignificantperturbationofthebiochemicalproperties.First,thepurinebasecanbemadefluorescenteitherbymodificationorbyusingafluorescentanalogofthenaturalbase,asinthecaseofformycintriphosphate(FTP)(8).However,suchmodificationsmaydisrupttheprotein–nucleotideinteractions,asthereisoftenhighselectivityinthebasebindingsiteofproteins(13).Thephosphatechaincanalsobemodified,aswithγ-AMNS-ATPforinvestigationsofEscherichiacoliRNApolymerase(14),butthesemodificationsfrequentlydisruptthecleavagestepbypreventingcorrectbindingofthephosphatesorbyblockingaccesstotheγ-phosphate.Ribosemodificationsareoftenthemostsuccessful,wherebytheanalogcloselymimicstheactivityofATP.InmanyenzymesthatbindGTPorATP,the2′-and/or3′-hydroxylgroupsoftheribosearepartlyexposedtotheproteinsurface,whilethebaseandphosphatesarewellburied.Thisallowsariboselabeltositattheentrancetothebindingsiteandpotentiallyreportonchangesinthatregion,withonlyasmalleffectonthebindingandcatalyticproperties.
Whenfluorescentanalogsaretobeusedformicroscopy,themaincriteriaforchoicesoffluorophorearehighfluorescenceintensity(highextinctioncoefficientandfluorescencequantumyield),excitationandemissionmaximabestsuitedtotheexcitationsource,withoutinterferencefromothercomponentsinthesystem,andstABIlityagainstphotobleaching.Withsomefluorophores,theextinctioncoefficientandparticularlythequantumyieldcanchangesignificantlywiththechemicalenvironmentofthefluorophore.Suchchangescanbeproblematicinchoosingasuitablefluorophore,butiftheintensitychangesaremonitored,thenchangesinintensitycanbeharnessed,asdescribedbelowforadiethylaminocoumarin.Long-wavelengthfluorophores,suchasthecyaninedyes(e.g.,Cy3),havegoodpropertiesforfluorescencemicroscopyandhavebeenusedfordetectingfluorescencefromsinglemolecules.Typically,fluorophoresthatexciteatlongerwavelengthsarerelativelylargemoietieswithmultiringstructuresandmayhavesignificantlyhydrophobicregions.Thismayleadtononspecificbindingtoproteinsandsurfaces.Therearenowmanycommerciallyavailablefluorophore-labelingreagentsthatgivevariationsonquantumyield,photostability,andwavelengths.Adiscussionofthisvarietyisoutsidethescopeofthischapter.ForadditionalinformationandforcommercialsourcesofsuchlabelsaswellasATPanalogssee:http://www.Invitrogen.com,http://www.sigmaaldrich.com,http://www.Roche-applied-science.comandhttp://www.jenabioscience.com.Quantumdotshavesignificantpotentialforfutureuse,buttheirlargesizerelativetonucleosidetriphosphatesislikelytomakethemdifficulttoapplygenerallyhere.
Asdescribedabove,labelingattheribosehydroxylgroupshasbeenusefulbecausethismodificationmaynotleadtolargeperturbationsofthebiochemicalproperties.However,suchlabelingofthehydroxylgroupsleadstotheformationofamixtureof2′-and3′-isomers,whosebiochemicalandfluorescentpropertiesmaydifferwhenbound(13).Thisproblemcanbecircumventedbyusingaparentnucleotide,inwhichonlyonehydroxylisavailableformodification,forexamplethecommerciallyavailable2′-deoxyATP,orthesynthetic3′-amino-3′-deoxyATP(15).Alternatively,theisomersofsomelabelednucleotidesinterconvertonlyveryslowlyandcanbesuccessfullyseparatedbychromatographyandstoredassingleisomers(3,16).
Asmentionedintheabovesection,fluorophoresforfluorescencemicroscopyarerelativelylargeandsomaydisruptthebiochemicalcycle.Toamelioratethisproblem,severallinkersareavailabletospacethefluorophoresfurtherawayfromthecatalyticsite.Essentially,azero-lengthlinkerisachievedbydirectlabelingoftheaminegroupontheriboseringof3′-amino-3′-deoxyATP.Longerchemicallinkerscanusedifferentlengthsofdiamino-n-alkanes,suchas2′(3′)-O-[N-(2-aminoethyl)-carbamoyl]ATP(edaATP(17))and2′(3′)-O-[N-(3-aminopropyl)carbamoyl]ATP(pdaATP(15)).Insomecases,includingCy3,thecommerciallyavailablelabelsincludeaspacerchainbetweenthefluorophoreandthereactivegroupusedforattachment.Inthesecases,thefluorophorewillbepositionedfurtherawayfromtheproteinand,therefore,shouldnotinterferesignificantlywiththenucleotideassociationandcatalysis.However,movingthefluorophorefurtherawayfromtheproteinmayreduceanychangestofluorescentpropertiesonbinding.Allmodificationsmaybedeleterioustotheenzymicactivity,andtherefore,itisimportanttoassesstheimpactofthesechanges.Methodstoassesstheseeffectsaredescribedlater.
TherequirementsforthesynthesisofATPanalogsvarywidely.Thosedescribedherearerelativelysimplelabelingreactions,performedunderaqueousconditions,sopotentiallyhighyieldscanbeobtainedusingconditionsandequipmentavailableinmostlaboratories.Thesuccessofthelabelingdependsbothonthechemicalreactionsperseandonthepropertiesofthefluorophore.Forexample,veryhydrophobicgroupsmayimpairthesuccessofareactionthatoccursperfectlywellwithsimplerlabels.Thepurificationoftheproductalsomaydependonthephysicalpropertiesofthefluorescentlabel.TwospecificexamplesaredescribedforthelabelingnucleotidesattheriboseringwithCy3anddiethylaminocoumarin(Fig.1).
Thevisualizationofthebindingoffluorescentnucleotidestoproteinsbylightmicroscopehasbeenlimitedbytechnicalproblemssuchasthenonspecificbindingofthefluorescentnucleotidetothecoverslip.Thishaslimitedthemaximumnucleotideconcentrationthatcouldbeusedwithanalogssuchas2′(3′)-(Cy3-O-[N-(2-aminoethyl)carbamoyl])ATP(Cy3-edaATP,Fig.1b(3))to<100nM.Fluorescentgroupsmayalsobindtomacromoleculessuchasproteins,independentlyofthenucleotideanditsbindingsite,andparticularlyifusedathighconcentration.Acontrol,suchasdisplacingthelabeledwithunlabelednucleotide,willtestifsuchnonspecificbindingoccurs.
ThefluorescentATPanalog,(3′-(7-diethylaminocoumarin-3-carbonylamino)-3′-deoxyadenosine-5′-triphosphate(deac-aminoATP))(Fig.1a)hasalowquantumyieldwheninsolution,butthisincreasesdramaticallywhenboundtosomeproteins.Thisgenerateslargefluorescencechanges,suchasthe20-foldincreasewhenboundtomyosinVa(18).Thisenablesadistinctionbetweencoverslipbound“background”moleculesandthoseboundbyproteins(4),whichmaycompensatefortherelativelylowoptimalexcitationwavelengthandphotostability.
1. | 2′,3′-O-(2-Aminoethyl-carbamoyl)-adenosine-5′-triphosphate(edaATP)(JenaBiosciences)(seeNote1). |
2. | 3′-Amino-3′-deoxyATPtriethylammoniumsalt(aminoATP)(15). |
3. | Cy3N-hydroxysuccinimideester(NHS-ester)(GEHealthcare). |
4. | 7-Diethylaminocoumarin-3-carboxylicacid(Invitrogen). |
5. | 20mMSodiumbicarbonate,pH8.4. |
6. | Dimethylformamide(DMF). |
7. | Tributylamine. |
8. | Isobutylchloroformate. |
9. | HPLCsystem,preferablywithbothabsorbanceandfluorescencedetectors. |
10. | Stronganionexchange(SAX)Partispherecolumn(0.4 × 10cm)(Whatman). |
11. | 0.4M(NH4)2HPO4adjustedtopH4.0withconcentratedHCl. |
12. | HPLC-gradeMethanol. |
13. | HPLC-gradeAcetonitrile. |
1. | DEAEcellulosecolumn(2 × 30cm). |
2. | Triethylamine(technicalgrade). |
3. | Glassdistillationapparatussuitableforupto500mlandhavinggroundglassjoint. |
4. | Boilingchips. |
5. | Dryice. |
6. | 2-LBuchnerflask,withbungandplastictubingonthesidearm,connectedtoaglass-scintergasbubbler. |
7. | Chromatographysystem(fractioncollector,gradientmaker,pump,etc.)at4°Cwithabsorbanceandfluorescencedetector,ifpossIBLe. |
1. | Rotaryevaporator,equippedwithacoldfingercondenserandhigh-vacuumoilpump. |
2. | Methanol(highestgradeavailable). |
3. | Isopropanol(technicalgrade). |
4. | Dryice. |
1. | Spectrophotometer. |
2. | HPLCsystem,preferablywithbothabsorbanceandfluorescencedetectors. |
3. | Stronganionexchange(SAX)Partispherecolumn(0.4 × 10cm)(Whatman). |
4. | 0.4M(NH4)2HPO4,pH4withconcentratedHCl. |
5. | HPLC-grademethanol. |
6. | HPLC-gradeacetonitrile. |
7. | Fluorescencespectrophotometer. |
1. | MDCC-PBP(19).Phosphatebindingprotein(A197C)fromE.coli,labeledwith(N-[2-(1-maleimidyl)ethyl]-7-diethylaminocoumarin-3-carboxamide)(Invitrogen)(seeNote2). |
2. | Rhodamine-PBP(20).Phosphatebindingprotein(A17C,A197C)fromE.coli,labeledwith6-iodoacetamidotetramethylrhodamine(seeNote2). |
3. | Fluorescencespectrophotometer. |
4. | Inorganicphosphatestandardsolution. |
ThismethodisbasedonthatdescribedbyOiwaetal.(3)andgivesmixed(2′,3′)isomers(Fig.1b).
3.1.1Labeling
1. | Mix4μmolCy3NHS-esterwith20μmoledaATPin20mMsodiumbicarbonate,pH8.4,for1hatroomtemperature(seeNote3). |
2. | AnalyzethereactionmixtureusingHPLCtoconfirmtheformationofCy3-edaATP.EquilibrateaPartisphereSAXcolumnwith0.4M(NH4)2HPO4with20%(v/v)methanol:flowrateof1ml/minatroomtemperature(seeNotes4and5). |
3. | Addanaliquotofthereactionmixture(1–10nmol)to100μLoftherunningbuffer. |
4. | Injectthesolutionontothecolumn. |
5. | Followtheabsorbanceat254nmandfluorescencewithexcitationof550nmandemissionof570nm.ThechromatogramwillshowtheelutionofCy3NHS-ester,edaATP,andCy3-edaATP,respectively(seeNote6). |
6. | InjectknownstandardsofCy3NHS-esterandedaATPatthesameconcentrationasthereactionmixturetoidentifypeaks. |
3.1.2PreparationofTriethylammoniumBicarbonateSolution
1. | Distiltriethylamine(500ml),discardingthefirstandlast10%ofthedistillate.Usethemiddle80%ofthedistillate(seeNote7). |
2. | Addcold(4°C),distilled,deionizedwaterto139.4mldistilledtriethylaminetogive1Lofa1Msolution(seeNote8). |
3. | Inafumehood,putdryiceintheBuchnerflask,andwiththesolutioninice,bubbleCO2throughthesolutionuntilthepHis7.5–7.6(approximately2h)usingthescinteredglassbubbler.KeeptheBuchnerflask,containingthedryice,raisedabovethesolutiontoreducetheriskofsuckingback. |
4. | Storetriethylammoniumbicarbonate(TEAB)at4°Cinawell-stopperedcontainer.Itlastsapproximately1–2months,butthepHgraduallyriseswithtime.Inthiscase,rebubbleCO2throughit. |
3.1.3PurificationofNucleotide
1. | PreequilibratetheDEAE-cellulosecolumnwith10mMTEAB,pH7.6at1ml/minat4°C. |
2. | AlterthepHofthereactionmixtureto7.6usingacidorbase,reducetheconductivitybydilutioninwatersoitisclosetothatof10mMTEABandloadontothecolumn. |
3. | Washthecolumnwith10mMTEAB,pH7.6ataflowrateof1ml/minuntilnomorepinkmaterialiseluted. |
4. | Elutethenucleotidewithalineargradientof10–800mMTEAB(totalvolume600ml).Followtheabsorbanceat254nm.UnreactededaATPiselutedfirstfollowedbyCy3-edaATP(seeNote9). |
5. | IdentifythefractionscontainingCy3-edaATPbymeasuringtheabsorbanceat550nmand260nm. |
3.1.4Concentration
1. | PoolfractionscontainingCy3-edaATPandremoveTEABbyrotaryevaporation.Useaflaskwithacapacityatleastfourtimesthevolumeofthesolution. |
2. | Fillthecondenserwithdryice–isopropanol. |
3. | Addthepooledfractionstotheflask,rotate,andslowlyapplythevacuumtobeginevaporation.Warmtheflaskinawaterbathat30°C.Reducethevolumeto∼5ml.Whenthesolutionvolumeisreducedto10–20%,frothingmaybegin(seeNote10). |
4. | Addmethanol(∼10%ofinitialsolutionvolume)andrepeattheevaporation. |
5. | Repeatmethanoladditionsandevaporationthreetimes:duringthisitshouldbepossibletoremoveessentiallyallthesolventbeforeaddingmoremethanol.Atthefinalstage,evaporateallofthemethanol.TheCy3-edaATPwillremainasagum. |
6. | Dissolvein<3mlmethanolandtransfertoapearflask(10ml)andreconcentrate,withverycarefulapplicationofthevacuumtoavoidfrothing.Finally,dissolveinwaterorbufferandadjusttopH ∼ 6–7beforestoringat−80°C(seeNote11). |
3.1.5Characterization
1. | MeasuretheabsorbancespectraofCy3-edaATPin50mMTris–HCl,pH7.5between220and700nm.TakingtheextinctioncoefficientfortheCy3tobe150,000M−1cm−1at552nm(21)andtheextinctioncoefficientforadenosinetobe15,200M−1cm−1at260nm,calculatetheconcentrationofthenucleotide(seeNote12). |
2. | CharacterizeCy3-edaATPbyHPLCusingthesamemethodasabove.ThemajorpeakshouldbeCy3-edaATP.CheckforthepresenceofCy3-edaADP,edaATP,andedaADP.DeterminethepuritybyintegratingtheCy3-edaATPpeakwithanyotherpeaks(seeNote13). |
3. | MeasurethefluorescenceexcitationandemissionspectrumofCy3-edaATPin50mMTris–HCl(pH7.5).Typically,1μMinasolutionof60μlwillbeused.Usethepeakwavelengthfromtheabsorbancemeasurementastheexcitationwavelengthtomeasuretheemission.Then,usethepeakintheemissionspectrumfortheexcitationspectrum.Addanexcessoftheproteinofinteresttothesample(e.g.,10-fold)andrepeatthemeasurement(seeNotes14and15).Comparethetwospectratodeterminethechangeinfluorescencewhenboundtoprotein. |
3.1.6GeneratingCy3-edaADP
1. | Cy3-edaADPcanbeobtainedbyhydrolysisofCy3-edaATP.AddthedesiredconcentrationofCy3-edaATP(e.g.,100μM)torabbitskeletalmusclemyosin(1mg/ml)in1mMMgCl2,0.2mMdithiothreitol(DTT),and10mMTris–HCl,pH7.0.4°Cfor2h(seeNote16). |
2. | Centrifugethesampleat235,000 ´ gat4°Ctoremovethemyosin. |
3. | AnalyzetheproductusingHPLC,asdescribedabove. |
4. | Storethesupernatantat−80°C. |
ThismethodisbasedonthatdescribedbyWebbetal.(15)andgivesasingleproductasreactionoccursonlyatthe3′-amine(Fig.1a).
3.2.1Labeling
1. | Activate7-diethylaminocoumarin-3-carboxylicacid(16.4mg,62.8μmol)bydissolvingindryDMF(1ml),coolingitonice,andaddingtributylamine(25μl,103μmol)andisobutylchloroformate(10μl,77μmol). |
2. | Leavethereactionmixtureonicefor50min. |
3. | Add3′-amino-3′-deoxyATP(40μmol,triethylammoniumsalt)inwater(300μl)totheactivatedcoumarinandstiratroomtemperaturefor2h. |
4. | AnalyzethereactionmixtureusingHPLCtoconfirmtheformationofdeac-aminoATP.EquilibrateaPartisphereSAXcolumnwith0.4M(NH4)2HPO4with5%(v/v)acetonitrileataflowrateof1.5ml/minatroomtemperature. |
5. | Addanaliquotofthereactionmixture(1–10nmol)to100μloftherunningbuffer. |
6. | Injectthesolutionontothecolumn. |
7. | Followtheabsorbanceat254nmandfluorescencewithexcitation435nmandemission465nm.Elutiontimesareapproximately1.6minfor7-diethylaminocoumarin-3-carboxylicacid,3.5minfor3′-amino-3′-deoxyATP,and13minfordeac-aminoATP(seeNote6). |
3.2.2Purification
1. | ThereactionmixturewaspurifiedonaDEAE-cellulosecolumn.Equilibratethecolumnwith10mMTEAB,pH7.6at1ml/minat4°C. |
2. | AlterthepHofthereactionmixtureto7.6usingacidorbase,reducetheconductivitybydilutioninwatersoitisclosetothatof10mMTEABandloadontothecolumn. |
3. | Washthecolumnwith10mMTEAB,pH7.6ataflowrateof1ml/minfortwocolumnvolumes. |
4. | Elutethenucleotidewithalineargradientof10–600mMTEAB(totalvolume1L).Followtheabsorbanceat254nm(seeNote17).UnreactedaminoATPiselutedfirstfollowedbydeac-aminoATP. |
3.2.3Concentration
Theproductdeac-aminoATPisconcentratedasdescribedforCy3-edaATPandstoredat−80°C.
3.2.4Characterization
1. | Measuretheabsorbancespectraofdeac-aminoATPin50mMTris–HCl,pH7.5between220and700nm.Takingtheextinctioncoefficientforthecoumarintobe46,800M−1cm−1at429nmandforadenosinetobe15,200M−1cm−1at260nm,calculatetheconcentrationsofthenucleotide(seeNote12). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2. | Characterizedeac-aminoATPbyHPLCusingthesamemethodasabove.Themajorpeakshouldbedeac-aminoATP.Determinethepuritybyintegratingthedeac-aminoATPpeakwithanyotherpeaks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3. | MeasurethefluorescencespectraasdescribedforCy3-edaATP,butusingthecorrespondingexcitationandemissionpeaksforthecoumarin(Fig.2). Fig.2.Fluorescencechangeuponbindingofdeac-aminoADPtomyosinS1.ExcessmyosinS1wasaddedtobindallnucleotides.Deac-aminoADP(0.3μM)wasexcitedat435nmand10μMS1wasadded.InsertshowsthetitrationofmyosinS1intoasolutionofdeac-aminoADP.Thishighlightstheneedtosaturatethenucleotidetodeterminethemaximumfluorescencechange.MyosinS1wasaddedtoasolutionof0.1μMnucleotide,andthefluorescencewasmonitoredat480nm,withexcitationat435nm. 4. | FollowthesameproceduredescribedfortheCy3-edaATPtogeneratethediphosphate. 3.3AssesstheEffectsofModifications ThemethoddescribeshereisforanATPaseorGTPase.ThisspecificexampleusesaDNAhelicaseBacillusstearoThermophilusPcrA.TheeasiestmethodtoprovideanoverallassessmentoftheeffectofanATPmodificationistomeasureasteady-stateATPaseassay.Shouldtherebeachangeinthesteady-stateparameters(greaterthan20%),thentheindividualstepsoftheATPcyclecouldbeinvestigated.Itiscommonforthediphosphateaffinitytoincreasewithmodificationstotheribosering(9,18,22,23). Itisalsohighlyrecommendedthatafunctionalactivityassayisperformed,suchasmeasuringDNAunwindingbyaDNAhelicaseoraninvitromotilityassaywithmyosin.Thisisanalternateassessmentofthemodificationeffect:thelabelmayinterferewithonecriterionwhichmaynotbenoticeableintheother.
4Notes
AcknowledgmentsWewouldliketothankthevariouscoworkers,whohavebeeninvolvedinsynthesisanduseoffluorescentnucleotidesandarecoauthorsofpublicationscitedhere.WethanktheMedicalResearchCouncil,UK(C.P.T.andM.R.W.)andEuropeanMolecularBiologyOrganization(C.P.T)forfinancialsupport.
相关酶学实验更多热门职位
![]() 免责声明:本站发布的所有产品仅限于科研使用,不可用于临床的诊断和治疗。如有违反,与本站无关
关闭 |