请使用支持JavaScript的浏览器! ROMER/SH-RUR Soya Standards//Number of wells/10001456 (7100002)_蚂蚁淘,【正品极速】生物医学科研用品轻松购|ebiomall 蚂蚁淘商城
商品信息
联系客服
ROMER/SH-RUR Soya Standards//Number of wells/10001456 (7100002)
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
ROMER/SH-RUR Soya Standards//Number of wells/10001456 (7100002)
品牌 / 
ROMER
货号 / 
10001456(7100002)
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616
Description & Properties

Description

The RUR Soya Standards are required for: AgraQuant® RUR Soya Grain - GMOChek

Properties

Properties
Item nameSH-RUR Soya Standards
Storage temperature15°C - 25°C
Reviews
Write Your Own Review
Only registered users can write reviews. Please Sign in or create an account
蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
广州市锐博生物科技有限公司在发布的基因3'UTR(质粒)载体构建服务供应信息,浏览与基因3'UTR(质粒)载体构建服务相关的产品或在搜索更多与基因3'UTR(质粒)载体构建服务相关的内容。 查看更多>
本章将会讨论昆虫来源的杆状病毒展示载体的设计及其潜在的用途。建立展示库的一般步骤和这些基因递送载体的特性也将会在本章中进行阐述。作者:T.弗里德曼等,译者:殷勤伟等,本实验来自「基因转移」 查看更多>
质粒载体 即,在由限制性核酸内切酶修饰过的质粒DNA序列中插入外源的目的基因,以质粒为载体,将目的基因通过转化或转导的方法导进宿主细胞,进行重组、筛选、扩增的过程。... 查看更多>
上海惠研生物科技有限公司在发布的载体构建供应信息,浏览与载体构建相关的产品或在搜索更多与载体构建相关的内容。 查看更多>
我付钱,你买单!pRSETB-mCherry载体,大肠系列质粒,pRSETB-mKO2载体,pRSETB-SFGFP载体,pRSETB-EGFP载体,PQE-70载体,pMal-c4X载体,pT7-6×His-MCS载体,pET-44c载体,pCDNA3.1(-)载体,pCDNA3.1(+)载体,pCDNA3.1-3×Myc载体,pCDNA4-Myc-HisB载体,pECMV-3×FLAG-MCS-IRES-Puro载体,pCAGGS... 查看更多>
产品名称: 人腺相关病毒载体(AAV)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 产品简介: 人腺相关病毒载体(AAV)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 人腺相关病毒载体(AAV)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 进口试剂 查看更多>
α病毒强烈的嗜神经元特性,使其在神经生物学研究中特别有用。但不幸的是, α病毒对宿主细胞强烈的细胞毒性作用、相对短期的瞬时表士模式'以及相当高的病毒产物消耗,都是其缺点。然而,新的突变α病毒显示出了低毒性及长期表达的优点。尤其是高产量的膜蛋白(通常在重组系统中很难有较高水平的表达)有益于在结构生物学上的应用。《病毒也可以用于疫苗开发和基因治疗。作者:T.弗里德曼等,译者:殷勤伟等,本实验来自「基因转移」 查看更多>
英文名:Molecular Dessert,隶属于分子美食料理其中的一个新兴分子派别,利用分子技术所产生的化学或物理反应,对水果、果汁、糖分、牛奶、巧克力等食材加以研发重组,成为创新型的甜品系列,以科学的手法、新颖的卖相、独特的口感去乔装甜品。分子甜品的出现改变了人们一直以来对甜品(特别... 查看更多>
      基因载体作为基因导入细胞/动物的工具,应用范围几乎涉及所有的生物医药领域。在分离纯化限制性内切酶、合成PCR引物已成产品化的今天,很多实验室仍亲自构建载体,却往往耗费大量的时间、精力与财力。     为了加速推进载体产品化,帮助科研工作者节省时间与精力,赛业生物结合IT与生物信息学的传统强项,于2011年开始筹备载体设计线上化计划,并在2014年成功搭建了第一个互联网+基因载体的智慧生产平台VectorBuilder,把... 查看更多>
Universal primers for gene knock-out using dominant drug markers: Kan, Clonat, and Hygromisin-B. Forward primer: 5’ TCAGGGGCATGATGTGACT 3’Reverse primer: 5’ AG 查看更多>
上海宾智生物科技有限公司在发布的AKR-517 pCMV-GFP-Grin1 Expression Vector pCMV-GFP-GRIN1表达载体供应信息,浏览与AKR-517 pCMV-GFP-Grin1 Expression Vector pCMV-GFP-GRIN1表达载体相关的产品或在搜索更多与AKR-517 pCMV-GFP-Grin1 Expression Vector pCMV-GFP-GRIN1表达载体相关的内容。 查看更多>
上海杰美基因医药科技有限公司在发布的人体RUNX3基因重组表达载体(pGEFP-RUNX3)感受态菌DH-5α供应信息,浏览与人体RUNX3基因重组表达载体(pGEFP-RUNX3)感受态菌DH-5α相关的产品或在搜索更多与人体RUNX3基因重组表达载体(pGEFP-RUNX3)感受态菌DH-5α相关的内容。 查看更多>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
基因工程习题集123
孤独患者°賷濿2017-10-01
原因主要有:
①动物病毒含有能够被真核细胞识别的有效的启动子.
②有许多种动物病毒,在其感染周期中都能够持续地复制,使其基因组拷贝数达到相当高的水平.
③有些动物病毒具有控制自己复制的顺式元件和反式作用因子.
④有些动物病毒,在它们的复制过程中能高效稳定地整合到寄主核基因组上.
⑤病毒的外壳蛋白质能够识别细胞接受器(acceptor).用病毒外壳蛋白质包装重组质粒DNA形成的假病毒颗粒(pseudovirions),即构成了一种高效的转化体系.
近期刚接触有关黄色短杆菌(G+)的代谢途径修饰,根据相关文献及实验室已有资料,选择pk18mobsacB这一穿梭型的自杀载体进行敲除。
目标基因全长1800bp,通过重叠延伸的方式获得的自杀敲除组件,左右同源序列均为500bp左右,构建自杀载体(确认载体没有问题),期望进行目标基因的失活处理,但将近1个月的时间,不见任何目的克隆,故在此请各位战友指点。
采用电转的方式将自杀载体(约6700bp)导入黄色短杆菌,感受态的细胞制备采用相关文献方式,甘氨酸和吐温-30的方式进行摇菌并制备电转感受态,1800v电转(电压进行过梯度,1200、1500、1800、2200、2500。1800v效果相对较好,故选之),但电转效率仍是较低,复苏2h,浓缩涂板LBG+kan(kan浓度20ug/ml),平板克隆很少,几次都只有20个左右的克隆。
1)克隆很少,原因可能跟菌株的电转效率有关,不知战友有没有谷氨酸棒杆菌或黄色短杆菌相关较好的电转经验,还请指教?
2)抗性平板克隆很少,还可能和重组效率有关,但根据pk18mobsacB质粒的特性,既然能在抗性平板生长,理论上应该是已经进行了一次重组了,但结果是不管我用pk18载体本身的Kan序列引物还是最终诱导进行PCR验证,均未证实到一次重组的发生,更不要说获得敲除失活的目的菌株了。问题是这个带有抗性的克隆到底是携带了什么使其同样具有抗性(显微检验不是杂菌)?如何有效提高或促进自杀载体在宿主内的重组效率呢?或是更有效的准确的检测验证手段??
3)利用自杀载体的方式进行黄色短杆菌(或谷氨酸棒杆菌)的基因敲除缺失比较不易,不知有没有正在做这方面相关研究的战友,希望能够多多交流和学习。。。
不知道我的疑惑讲清楚了没有,若哪里不清楚还请指出,我再细说。。。期望xdjm们的帮助啊。。。先谢过了。。
上次听讲座说基因敲除小鼠模型的载体构建时不能加抗性基因,不懂为什么,而我看了很多相关书籍都有用抗性筛选,不懂为什么,请指教?
正常情况是要mRNA表达量下降的,但是如果你这个小RNA设计的不好,那有可能下降的水平有限,再通过定量PCR检测时候几个循环的误差就可以弥补回来下降那些的量了,所以尽量不要用太多的循环跑定量。厚百生物祝您选择适用的培养基,实验顺利!
基因捕获载体在基因组中也有“hot”和“cold”插入位点。但是计算机模拟显示,按照单个克隆被捕获的百分比,如果以多种类型的载体进行足够多次的突变实验所获得的突变克隆就可以覆盖整个ES细胞基因组中全部基因位点 。因此,新型捕获策略和载体不断被设计应用。
早期基因捕获载体的特点是当报告基因与内源基因的读码框一致时,产生由内源蛋白的N 末端与报告基因蛋白融合的活性蛋白质 。近来对这一类载体所做的改进是在报告基因与SA 序列间插入一来源于脑、心肌炎病毒的IRES ,这样即使报告基因与捕获基因不发生融合也可产生报告基因翻译产物。尽管ES 细胞中大量基因具转录活性,为了获得全基因组突变克隆必须使用不依赖于捕获基因表达的筛选策略。
表达载体四部分:目的基因、启动子、终止子、标记基因
常用细菌质粒进行构建,构建过程中运用限制性核酸内切酶切割出与目的基因相合的末端(多为黏性末端,也有平末端),采用DNA连接酶连接,导入生物体实现表达。标记基因可帮助识别质粒并检测是否成功整合到染色体DNA中。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),使目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
想做稳定克隆用,有没有这样的载体啊?
使用计算机预测植物miRNA靶基因比较简单,因为在植物中miRNA与靶基因几乎还是以完全互补配对的方式结合,预测不需要复杂的算法。而预测动物miRNA靶基因则存在一定的困难,主要是目前已知的miRNA靶基因及其确切靶点不多,在算法编写时没有足够的已知样本可供参考。但是,miRNA与靶基因间的相互作用仍然具有一定的规律性。目前常规的算法主要遵循以下几个常用原则:(a)miRNA与靶基因的互补性;(b)miRNA靶位点在不同物种之间的保守性;(c)miRNA-mRNA双链之间的热稳定性;(d)miRNA靶位点不会有复杂的二级结构;(e)miRNA 5’端于靶基因的结合能力强于3’端。除了这些基本原则以外,不同的预测方法还会根据各自总结的规律对算法进行限制和优化。
①组成型启动子(constitutive promoter)是指在该类启动子控制下,结构基因的表达大体恒定在一定水平上,在不同组织、部位表达水平没有明显差异。目前使用最广泛的组成型启动子是花椰菜花叶病毒(CaMV)35S 启动子、来自根癌农杆菌Ti 质粒T-DNA 区域的胭脂碱合成酶基因nos 启动子,后者虽来自细菌,但具有植物启动子的特性。
  在组成型启动子调控下,不同组织器官和发育阶段的基因表达没有明显差异,因而称之组成型启动子,双子叶植 物中最常使用的组成型启动子是花椰菜花叶病毒(CaMV)35S启动子,它具多种顺式作用元件。其转录起始位点上游-343~-46bp是转录增强区 ,-343~-208和-208~-90bp是转录激活区,-90~-46bp是进一步增强转录活性的区域,在了解CaMV 35S启动子各种顺式作用元件的基础上,人 们利用它的核心序列构建人工启动子,以得到转录活性更高的启动子,Mitsuhara等利用CaMv 35s核心启动子与CaMV 35S启动子的5‘端不同区段 和烟草花叶病毒的5’非转录区(omega序列)相连,发现把两个CaMV 35S启动子-419~-90(E12)序列与omega序列串联,在转基因烟草中GUS有 最大的表达活性,把7个CaMV35S启动子的-290~-90(E7)序列与omega序列串联,非常适合驱动外源基因在水稻中的表达。用这两种结构驱动 GUS基因表达,在转基因烟草和水稻中GUS活性比单用CaMV 35S启动子高20~70倍。
  另一种高效的组成型启动子CsVMV是从木薯叶脉花叶病毒(cassava vein mosaic virus )中分离的。该启动子 -222~-173bp负责驱动基因在植物绿色组织和根尖中表达,其中-219/-203是TGACG重复基序,即as1 (activating sequence 1),-183/-180为 GATA(又称为as2),这两个元件的互作对控制基因在绿色组织中表达至关重要。该启动子-178~-63bp包含负责调控基因在维管组织中表达的 元件。CsVMV启动子在转基因葡萄中驱动外源基因的转录能力与使用两个串联的CaMV35S启动子相当,两个串联的CsVMV启动子转录活性更强。 Rance等利用CoYMV(commelina yellow mosaic virus),CsVMV启动子区和CaMV 35S启动子的激活序列(as1,as2)人工构建高效融合启动子,瞬 时表达实验表明该启动子可驱动报告基因在双子叶植物烟草中高效表达,在单子叶植物玉米中其驱动能力比通常使用的γ玉米蛋白启动子高6倍。因此用这种人工构建的高效 启动子驱动抗病基因或目的蛋白基因,在双子叶和单子叶植物中均可达到较理想的效果。
  人们高度重视从植物本身克隆组成型启动子,并初见成效,例如肌动蛋白(actin)和泛素(ubiquitin)等基因的启动子已被克隆。用这些启动子代替CaMV 35S启动子,可以更有效地在单子叶植物中驱动外源基因的转录。Naomi等分别从拟南芥的色氨酸合酶β 亚基基因和植物光敏色素基因中克隆了相应启动子,用其代替CaMV 35S启动子,在转基因烟草中也取得了很好的表达效果。
  由于组成型启动子驱动的基因在植物各组织中均有不同程度表达,应用中逐渐暴露出一些问题。例如外源基因在 整株植物中表达,产生大量异源蛋白质或代谢产物在植物体内积累,打破了植物原有的代谢平衡,有些产物对植物并非必需甚至有毒,因而阻 碍了植物的正常生长,甚至导致死亡。另外,重复使用同一种启动子驱动两个或两个以上的外源基因可能引起基因沉默或共抑制现象。因此, 人们寻找更为有效的组织、器官特异性启动子代替组成型启动子,以更好地调控植物基因表达。
  ②组织特异启动子(tissue-specific promoter)又称器官特异性启动子。在这类启动子调控下,基因往往只在某些特定的器官或组织部位表达,并表现出发育调节的特性。例如烟草的花粉绒毡层细胞中特异表达基因启动子TA29,豌豆的豆清蛋白(leguimin)基因启动子可在转化植物种子中特异性表达,马铃薯块茎储藏蛋白(patatin)基因启动子在块茎中优势表达。
  2.1根特异启动子
  根的发生和发育是植物发育过程中的重要问题,研究根中特异表达基因及其启动子无疑是重要的。拟南芥根中特异表达的黑芥子酶(myrosinase)是由Pyk10基因编码的。Pyk10启动子中存在若干器官特异性表达和 植物激素应答的特异元件,如ACGT-核心序列、CANNTG-motifs、GATA-motifs、诱导物(elicitor)应答元件W-box((T)TGAC(C))、植物激素应答 元件(如as-1元件、生长素和脱落酸应答元件、Myb元件)和细胞特异表达元件等。其中ACGT,CANNTG,GATA等顺式作用元件是决定组织器官特异 表达的转录因子结合位点,Myb元件在控制植物次生代谢、调节细胞形态建成及信号传导通路中起作用。
  根特异表达系统可用于研究转基因植物的高渗胁迫耐受、植物修复和根际分泌等问题。BoriSjuk等用根特异启动 子mas2‘,GFP和烟草钙网蛋白(calreticulin)基因构建融合表达载体,水培转基因烟草结果表明,根细胞不仅能够高效生产GFP,而且可将目的 蛋白质分泌到液体培养基中。因此利用该启动子与其他有用的能编码蛋白质的基因融合,不仅可大量生产目的蛋白质,且更便于回收产物。
  2.2 茎特异启动子
  Trindade等利用cDNA-AFLP技术从马铃薯中分离了一个与乙醇脱氢酶非常相似的TDF511(transcript derived fragment),其基因Stgan可能参与植物体内影响赤霉素水平的复合物的合成。在NCBI数据库中,比较Stgan启动子与马铃薯的patatin Ⅰ和Ⅱ、 蛋白酶抑制子、nodulin 22K和23K等编码蛋白质基因的启动子,发现它们包含一些可能与蔗糖应答反应有关的共有序列;该启动子还包含植物 中几个保守的转录因子(如Dof1,Dof2,Dof3和PBF)的结合位点。构建Stgan启动子-GUS融合表达载体转化烟草,GUS组织化学染色显示该启动子 驱动基因在茎结节处特异表达,可能参与块茎形成过程。
  研究在茎中特异表达基因的启动子,不仅可从分子水平了解茎的发生、分化过程,更重要的是利用这些启动子调 节植物代谢可满足人类需求,如人们对木质素生物合成及其调控的研究。木质素是植物体内仅次于纤维素的一种含量丰富而重要的有机大分子 物质,它的存在对于增加植物机械强度、远距离水分运输和抵抗外界不良环境的侵袭都是非常有益的。然而,木质素的存在也有一定的负面作 用。因此,人们希望通过调节木质素的合成以降低其含量。目前多使用CaMV35S启动子驱动目的基因,近年来已分离一些木质素生物合成途径中 关键酶基因的启动子,如4CL,F5H等基因的启动子,人们正在尝试利用这些特异性启动子来调节木质素的生物合成。Bell-Lelong等已从拟南芥 中分离了肉桂酸羟-4-基化酶(cinnamate-4-hydroxylase,C4H)基因的启动子,本实验室首次从毛白杨中分离了C4H启动子,并对该启动子的功 能进行了初步鉴定。GUS组织化学染色和GUS荧光测定结果表明。G4H启动子驱动外源基因在烟草茎的维管组织中丰富表达,有望将来利用该启动 子驱动功能基因调控木质素的生物合成过程。
  2.3 叶特异启动子
  Marraccini等从咖啡(coffea arabica)中克隆了1,5-二磷酸核酮糖羧化酶/加氧酶(rubisco)小亚基基因RBCS1, 该基因在一年生植物咖啡的叶中特异表达。研究发现RBCS1启动子上游GTGGTTAAT序列与豌豆RBCS3A启动子的BoxⅡ核心序列相同;在其启动子G -box(GCCACGTGGC)两侧分别有一个类I-box(核心序列为GATAAG),形成I-G-I结构,推测G-box十个碱基的回文结构可能结合某个转录因子;其AT-1 box(AGAATTTTTATT) 与其他RBCS和CAB基因的AT-1 box(AATATTTTTATT)相比只有两个碱基不同;类L-box(AAAATTAACCAA)与马铃薯RBCS1和RBCS3A启动子的相同。由此 可见,植物叶特异表达顺式元件具高度保守性。
  有趣的是Taniguchi等在玉米中发现了一个双元启动子系统(dual promoter system)。PPDK(pyruvate, orthophosphate dikinase)是C4植物光合反应中的一个叶绿体酶,该酶基因Pdk具有一个双元启动子系统(C4Pdk启动子和细胞质Pdk启动子)。这 两个启动子的区别在于起始密码子和拼接方式的差异,C4Pdk启动子驱动Pdk转录成较长的mRNA。基因产物定位在叶绿体中;细胞质Pdk启动子在 Pdk基因的第一个内含子中,驱动Pdk转录成较短的mRNA,它所编码的蛋白质定位于细胞质中,又称为细胞质Pdk启动子。C4Pdk启动子是受光诱 导的强启动子,驱动基因在玉米叶肉细胞中特异表达;而细胞质Pdk启动子是个弱启动子,且不具有组织特异性。大多数C4植物的光合作用相关 基因的表达具有细胞特异性,且主要在转录水平调节基因表达活性,因此,可利用该启动子在C4植物叶肉细胞中高效表达外源基因。
这个问题有点笼统,粗略地说,质粒有很多种,比如说克隆载体,表达载体,还有用于RNA干扰的载体等等,表达载体还能分开原核表达的,酵母表达的,昆虫细胞表达的,哺乳动物细胞表达的等等。最基本的是需要复制起点,筛选抗性基因和多克隆位点。还有些含有lacZ之类的报告基因,表达载体还需要有启动子,增强子,蛋白纯化用的tag等等。
引物延伸 123
美食的俘虏3452021-08-26
先看表达载体有哪些合适的酶切位点,比如NdeI,NcoI这样识别序列有ATG起始密码子的,再看看目的基因含不含有这些位点,含有就不好连接了,挑好位点,计算下读码框是否正确,保证核糖体结合位点后的第一个ATG与目的基因是间隔3的倍数个碱基。下游的位点更好选,如果有6xHis标签,想融合表达的话,就注意下要是同一读码框,同时利用载体的终止密码子,如果没有这样的需要,就利用目的基因本身的终止密码子好了。基本是这样,具体还是看看书吧。向左转|向右转
rnai

RNAi (RNA interference) 即RNA干涉,是近年来发现的在生物体内普遍存在的一种古老的生物学现象,是由双链RNA(dsRNA)介导的、由特定酶参与的特异性基因沉默现象,它在转录水平、转录后水平和翻译水平上阻断基因的表达。

RNAi的定义

目前对RNAi (RNA interference)的定义有很多种,不同的资料对其定义的侧重点也不尽相同,如果将RNAi看作一种生物学现象,可以有以下定义:① RNAi是由dsRNA介导的由特定酶参与的特异性基因沉默现象,它在转录水平、转录后水平和翻译水平上阻断基因的表达。② RNAi是有dsRNA参与指导的,以外源和内源mRNA为降解目标的转基因沉默现象。具有核苷酸序列特异性的自我防御机制,是一种当外源基因导入或病毒入侵后,细胞中与转基因或入侵病毒RNA同源的基因发生共同基因沉默的现象。
如果将其作为一门生物技术,则定义为:① RNAi 是指通过反义RNA与正链RNA 形成双链RNA 特异性地抑制靶基因的现象,它通过人为地引入与内源靶基因具有相同序列的双链RNA(有义RNA 和反义RNA) ,从而诱导内源靶基因的mRNA 降解,达到阻止基因表达的目的。② RNAi是指体外人工合成的或体内的双链RNA(dsRNA)在细胞内特异性的将与之同源的 mRNA降解成21nt~23nt 的小片段,使相应的基因沉默。③ RNAi是将与靶基因的mRNA 同源互补的双链RNA(dsRNA ) 导入细胞,能特异性地降解该mRNA ,从而产生相应的功能表型缺失, 属于转录后水平的基因沉默(post - transcriptional gene silence , PTGS)。
各种不同定义虽然说法不同,但所描述事实是大体相同的,简单地可以说,RNAi就是指由RNA介导的基因沉默现象。

原理
最近由于RNA干扰(RNA interference,RNAi)的发现使反义领域的研究增多。这种自然发生的现象最早是在秀丽线虫中发现的(1),是序列特异性地使转录后的基因沉默的有力机制。由于最近两年在RNAi领域取得的进步,已经有许多这方面的综述发表(2-4)。RNA干扰是由长的双链RNA分子发动的,该分子可以被Dicer enzyme加工成长度为21-23个核苷酸的RNA(见图)。RNaseIII蛋白被认为是作为一个二聚体发挥作用,它对双链RNA的两个链都进行切割,酶切的产物3'末端互相重叠。然后这种小的干扰RNA分子(small interfering RNAs,siRNAs)掺入RNA诱导的沉默复合物(RNA-induced silencing complex,RISC),引导核酸酶降解靶RNA。

这种保守的生化机制可用于研究多种模式生物的基因功能,但是它在哺乳动物细胞中的应用受到阻碍,因为长的双链RNA分子会引起干扰素应答。因此Tuschi及其同事表明长度为21nt的siRNA可以特异性的抑制哺乳动物细胞基因表达是一个革命性的突破(5)。这个发现激发了大量利用RNAi技术对哺乳动物细胞的研究,因为与传统的反义技术比,RNAi的性能明显较高。

有趣的是,除了短双链RNA,短发夹RNA(short hairpin RNA,shRNA),比如茎环结构在细胞内经过加工后也可以变成siRNA,从而产生RNA干扰(6、7)。这使得构建表达干扰RNA的载体,从而使哺乳动物细胞内基因表达长期沉默成为可能(4、8)。shRNA可以利用RNA聚核酶III启动子转录,在正常情况下,该启动子是控制小核RNA(small nuclear RNA,snRNA)U6(6、7、9、10)或者RNaseP的组分H1 RNA(11)转录的。另外一种办法是两段短RNA分子分别用U6启动子转录出来(6、12、13)。载体介导的siRNA表达使对功能缺失(loss-of-function)表型进行长期分析成为可能。在稳定转染的细胞内,两个月后仍可观察到沉默现象(11)。

另外一种延长siRNA抑制基因表达时间的方法是对化学合成的RNA进行核苷酸修饰。尽管未经修饰的短双链RNA在细胞培养物或者体内的稳定性出乎意料的高,然而有些情况下,需要对siRNA的稳定性进行进一步提高。因此,可以在两条链的末端都引入经过修饰的核苷(14)。一个5'端为两个2'-O-甲基RNA、3'端为4个甲基化核苷的siRNA与序列相同但是未经修饰的siRNA比活性相同,但是在细胞培养物中引起的基因沉默现象的时间延长。然而,增多siRNA中的甲基化核苷,或者在核苷中引入体积较大的烯丙基将导致siRNA活性下降。

RNA干扰在哺乳动物体内的第一个研究是利用快速注射大量生理溶液的方法将一个编码shRNA的质粒注入老鼠的尾静脉(15、16)。在大多数器官中,报道基因(编码于共转染质粒或者转基因小鼠上)的表达可以被有效地抑制。另外,Fas基因被作为肝损伤治疗相关的内源靶标进行了RNA干扰实验(17)。注射siRNA之后,小鼠肝细胞中的Fas mRNA和蛋白水平下降了10天。把Fas基因沉默可以保护小鼠免遭由注射竞争性Fas特异抗体引起的爆发性肝炎,82%用siRNA处理的小鼠活过了10天观察期,而所有的对照小鼠在3天之内死亡。

上述研究中采用的高压导入技术是一种粗暴的方法,不适于治疗用。因此,标准的基因治疗所采用的方法被用于RNA干扰。一个反转录病毒载体被用于导入siRNA,以抑制人类胰腺肿瘤细胞中的癌基因K-ras等位基因(18)。负调控癌细胞中K-ras基因的表达使得它们在注入无胸腺的裸鼠皮下之后不再具有形成肿瘤的能力。这项研究还表明siRNA的高度特异性,因为只有癌基因K-ras被沉默,而与之只有1个碱基对差异的野生型等位基因并没有被沉默。另外,当在纹状区注射表达siRNA的腺病毒之后,转基因小鼠大脑中GFP基因的表达可以被抑制(19)。β-葡萄糖醛酸苷酶(b-glucoronidase)的活性可以通过在小鼠尾静脉注射重组腺病毒抑制。有趣的是,具有CMV启动子和最小的polyA尾的RNA聚合酶II表达元件被用于这个实验,为设计组织特异性或者可诱导的siRNA载体打开了大门。

总的来说,siRNA的第一个体内实验已经进行,其他有重要意义的基因有望于很快作为靶标开展研究。至今为止的研究没有观察到任何应用siRNA引起的毒性作用,但是在治疗人类疾病的临床试验开始之前仍需小心,以排除长期使用RNA干扰引起的严重副作用。因为用siRNA使基因表达沉默与传统的反义技术相似,研究者将从十多年来反义技术研究的教训中获益,比如需要使用合适的对照以证明基因表达的敲除是特异性的,以及对免疫系统可能引起的意外影响进行详细分析。

应用

siRNA可用于研究基因的功能,可是后基因组时代的今天,研究人员已经不满足于一个一个基因沉默这样的研究节奏了,功能基因组学的研究更需要一个能站在全局高度研究多个基因之间关系的工具,因此,用作大规模RNA干扰用的shRNA/siRNA文库应运而生。 shRNA/siRNA文库联合使用高通量筛选技术和高内涵图像分析技术,使得RNAi筛选在反向基因组学、功能基因研究、药物发现等多个领域成为了一个 强大的应用工具。
北京赛诺亚生物技术有限责任公司(http://www.sirnoa.com/)是一家拥有独立自主产权的、以RNAi筛选的相关产品和技术服务为重点生物高新技术企业。公司专业从事各种高通量miRNA检测、RNA干扰筛选、药物筛选、文库筛选及相关产品的研发和销售,同时提供进行各种RNAi相关的载体构建、病毒包装 服务和细胞生物学试剂。公司致力于为从事生命科学研究和早期药物研发的科研人员提供一站式的RNA干扰相关服务。

总结
经过长期盛衰沉浮,反义技术近年来得到越来越多的注意。对能够提高靶表亲和性和生物稳定性、降低毒性的修饰核苷的研究取得了重要进展。由于大多数新的DNA类似物不能激活RNaseH,对反义寡核苷酸的设计需要考虑靶mRNA是否需要保留,例如,是改变剪接方式,还是降解靶mRNA(这种情况下应该使用gapmer技术)。可以通过有系统的修饰天然核酶或者通过体外选择技术获得具有高催化活性的稳定核酶。一些反义寡核苷酸和核酶已经进入临床试验研究,一个反义药物已经在1998年获得批准。一个重要的突破是发现短的双链RNA分子可用于哺乳动物细胞中特异性沉默基因表达。这个方法与传统的反义技术比效率明显更高,并且一些体内实验的数据已经发表。因此,反义技术有望广泛应用于对未知功能基因的研究、药物靶标的确认和治疗。