请使用支持JavaScript的浏览器! Mechanical properties and deformation mechanisms of gradient...-蚂蚁淘商城
新闻动态

Mechanical properties and deformation mechanisms of gradient...

  
  2025-07-19
  
AbstractInspired by the gradient structures of biological materials, researchers have explored compositional and structural gradients for about 40 years as an approach to enhance the properties of engineering materials, including metals and metallic alloys. The synthesis of various gradient nanostructured materials, such as gradient nanograined, nanolaminated nd nanotwinned metals and alloys, has provided new opportunities to understand gradient-related mechanical behaviour. These emerging gradient materials often exhibit unprecedented mechanical properties, such as strength鈥揹uctility synergy, extraordinary strain hardening, enhanced fracture and fatigue resistance, and remarkable resistance to wear and corrosion, which are not found in materials with homogeneous or random microstructures. This Review critically assesses the state of the art in the field of gradient nanostructured metallic materials, covering topics ranging from the fabrication and characterization of mechanical properties to underlying deformation mechanisms. We discuss various deformation behaviours induced by structural gradients, including stress and strain gradients, the accumulation and interaction of new dislocation structures, and unique interfacial behaviour, as well as providing insight into future directions for the development of gradient structured materials. Subscribe to JournalGet full journal access for 1 year55,14 鈧?/p>only 4,60 鈧?per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices. Fig. 1: Types of structural and chemical gradients in typical gradient materials.Fig. 2: Surface mechanical treatment methods.Fig. 3: Microstructure of gradient nanograined, gradient nanolaminated and gradient nanotwinned metals.Fig. 4: Comparison of the mechanical properties of gradient nanostructured and homogeneous metals and alloys.Fig. 5: Comparison of fatigue and friction behaviour in gradient nanostructured and homogeneous metals and alloys.Fig. 6: Deformation mechanisms in gradient nanostructured metals and alloys.Fig. 7: Open issues and challenges for gradient nanostructured metals and alloys. References1.Liu, Z., Meyers, M. A., Zhang, Z. Ritchie, R. O. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog. Mater. Sci. 88, 467鈥?98 (2017).CAS聽Google Scholar聽 2.Suresh, S. Graded materials for resistance to contact deformation and damage. Science 292, 2447鈥?451 (2001).CAS聽Google Scholar聽 3.Fang, T., Tao, N. Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587鈥?590 (2011). An early experimental report on gradient nanograined metals with extraordinary mechanical properties.CAS聽Google Scholar聽 4.Wei, Y. et al. Evading the strength鈥揹uctility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 5, 3580 (2014). Google Scholar聽 5.Wu, X., Jiang, P., Chen, L., Yuan, F. Zhu, Y. T. Extraordinary strain hardening by gradient structure. Proc. Natl Acad. Sci. USA 111, 7197鈥?201 (2014).CAS聽Google Scholar聽 6.Thevamaran, R. et al. Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes. Science 354, 312鈥?16 (2016).CAS聽Google Scholar聽 7.Cheng, Z., Zhou, H., Lu, Q., Gao, H. Lu, L. Extra strengthening and work hardening in gradient nanotwinned metals. Science 362, eaau1925 (2018). An early experimental report on gradient nanotwinned metals with extraordinary mechanical properties. Google Scholar聽 8.Zhao, S. et al. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization. Proc. Natl Acad. Sci. USA 114, 9791鈥?796 (2017).CAS聽Google Scholar聽 9.Ma, X. et al. Mechanical properties of copper/bronze laminates: role of interfaces. Acta Mater. 116, 43鈥?2 (2016).CAS聽Google Scholar聽 10.Wu, X. et al. Synergetic strengthening by gradient structure. Mater. Res. Lett. 2, 185鈥?91 (2014).CAS聽Google Scholar聽 11.Ma, E. Zhu, T. Towards strength鈥揹uctility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 20, 323鈥?31 (2017).CAS聽Google Scholar聽 12.Yang, M., Pan, Y., Yuan, F., Zhu, Y. T. Wu, X. Back stress strengthening and strain hardening in gradient structure. Mater. Res. Lett. 4, 145鈥?51 (2016).CAS聽Google Scholar聽 13.Lin, Y., Pan, J., Zhou, H., Gao, H. Li, Y. Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Mater. 153, 279鈥?89 (2018).CAS聽Google Scholar聽 14.Roland, T., Retraint, D., Lu, K. Lu, J. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr. Mater. 54, 1949鈥?954 (2006). An early experimental study on enhancing fatigue properties of steel with a gradient nanograined surface layer.CAS聽Google Scholar聽 15.Huang, H. W., Wang, Z. B., Lu, J. Lu, K. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 87, 150鈥?60 (2015).CAS聽Google Scholar聽 16.Yang, L., Tao, N., Lu, K. Lu, L. Enhanced fatigue resistance of Cu with a gradient nanograined surface layer. Scr. Mater. 68, 801鈥?04 (2013).CAS聽Google Scholar聽 17.Ma, Z. et al. Strength gradient enhances fatigue resistance of steels. Sci. Rep. 6, 22156 (2016).CAS聽Google Scholar聽 18.Long, L. et al. Improved fatigue resistance of gradient nanograined Cu. Acta Mater. 166, 56鈥?6 (2019). A recent experimental study on enhancing fatigue properties of gradient nanograined Cu.CAS聽Google Scholar聽 19.Jing, L., Pan, Q., Long, J., Tao, N. Lu, L. Effect of volume fraction of gradient nanograined layer on high-cycle fatigue behavior of Cu. Scr. Mater. 161, 74鈥?7 (2019).CAS聽Google Scholar聽 20.Chen, X., Han, Z., Li, X. Lu, K. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures. Sci. Adv. 2, e1601942 (2016). An experimental study on lowering the coefficient of friction in Cu alloys with a gradient nanograined surface layer. Google Scholar聽 21.Zeng, Z. et al. Gradient plasticity in gradient nano-grained metals. Extreme Mech. Lett. 8, 213鈥?19 (2016). Google Scholar聽 22.Chen, W., You, Z., Tao, N., Jin, Z. Lu, L. Mechanically-induced grain coarsening in gradient nano-grained copper. Acta Mater. 125, 255鈥?64 (2017).CAS聽Google Scholar聽 23.Long, J., Pan, Q., Tao, N. Lu, L. Abnormal grain coarsening in cyclically deformed gradient nanograined Cu. Scr. Mater. 145, 99鈥?03 (2018).CAS聽Google Scholar聽 24.Li, J., Weng, G., Chen, S. Wu, X. On strain hardening mechanism in gradient nanostructures. Int. J. Plast. 88, 89鈥?07 (2017).CAS聽Google Scholar聽 25.Lu, K. Lu, J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. J. Mater. Sci. Technol. 15, 193鈥?97 (1999).CAS聽Google Scholar聽 26.Wu, X. et al. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP. Acta Mater. 50, 2075鈥?084 (2002).CAS聽Google Scholar聽 27.Lu, K. Lu, J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 375, 38鈥?5 (2004). Google Scholar聽 28.Zhu, K. Y., Vassel, A., Brisset, F., Lu, K. Lu, J. Nanostructure formation mechanism of 伪-titanium using SMAT. Acta Mater. 52, 4101鈥?110 (2005). Google Scholar聽 29.Roland, T., Retraint, D., Lu, K. Lu, J. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability. Mater. Sci. Eng. A 445, 281鈥?88 (2007). Google Scholar聽 30.Chen, A. Y. et al. The influence of strain rate on the microstructure transition of 304 stainless steel. Acta Mater. 59, 3697鈥?709 (2011).CAS聽Google Scholar聽 31.Yang, D. K., Cizek, P., Fabijanic, D., Wang, J. T. Hodgson, P. D. Work hardening in ultrafine-grained titanium: multilayering and grading. Acta Mater. 61, 2840鈥?852 (2013).CAS聽Google Scholar聽 32.Hassani-Gangaraj, S. M., Cho, K. S., Voigt, H. J. L., Guagliano, M. Schuh, C. A. Experimental assessment and simulation of surface nanocrystallization by severe shot peening. Acta Mater. 97, 105鈥?15 (2015).CAS聽Google Scholar聽 33.Meng, X. C. et al. The deformation behavior of AZ31 Mg alloy with surface mechanical attrition treatment. Mater. Sci. Eng. A 707, 636鈥?46 (2017).CAS聽Google Scholar聽 34.Li, W. L., Tao, N. R. Lu, K. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scr. Mater. 59, 546鈥?49 (2008).CAS聽Google Scholar聽 35.Liu, X. C., Zhang, H. W. Lu, K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342, 337鈥?40 (2013).CAS聽Google Scholar聽 36.Wang, H. T., Tao, N. R. Lu, K. Architectured surface layer with a gradient nanotwinned structure in a Fe鈥揗n austenitic steel. Scr. Mater. 68, 22鈥?7 (2013).CAS聽Google Scholar聽 37.Liu, X. C., Zhang, H. W. Lu, K. Formation of nanolaminated structure in an interstitial-free steel. Scr. Mater. 95, 54鈥?7 (2015).CAS聽Google Scholar聽 38.Liu, X. C., Zhang, H. W. Lu, K. Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment. Acta Mater. 96, 24鈥?6 (2015).CAS聽Google Scholar聽 39.Xu, W., Liu, X. C. Lu, K. Strain-induced microstructure refinement in pure Al below 100 nm in size. Acta Mater. 152, 138鈥?47 (2018).CAS聽Google Scholar聽 40.Ma, X. L. et al. Strain hardening and ductility in a coarse-grain/nanostructure laminate material. Scr. Mater. 103, 57鈥?0 (2015).CAS聽Google Scholar聽 41.Zhang, L. et al. Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and lamella structure. Scr. Mater. 141, 111鈥?14 (2017).CAS聽Google Scholar聽 42.Nalla, R. K. et al. On the influence of mechanical surface treatments 鈥?deep rolling and laser shock peening 鈥?on the fatigue behavior of Ti鈥?Al鈥?V at ambient and elevated temperatures. Mater. Sci. Eng. A 355, 216鈥?30 (2003). Google Scholar聽 43.Ye, C., Liao, Y. L., Suslov, S., Lin, D. Cheng, G. J. Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility. Mater. Sci. Eng. A 609, 195鈥?03 (2014).CAS聽Google Scholar聽 44.Luo, S. H. et al. Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing. Mater. Des. 104, 320鈥?26 (2016). Google Scholar聽 45.Ren, X. D. et al. Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing. Appl. Surf. Sci. 363, 44鈥?9 (2016).CAS聽Google Scholar聽 46.Laine, S. J., Knowles, K. M., Doorbar, P. J., Cutts, R. D. Rugg, D. Microstructural characterisation of metallic shot peened and laser shock peened Ti-6Al-4V. Acta Mater. 123, 350鈥?61 (2017).CAS聽Google Scholar聽 47.Li, J. J. et al. Eliminating deformation incompatibility in composites by gradient nanolayer architectures. Sci. Rep. 8, 16216 (2018). Google Scholar聽 48.Hofmann, D. C. et al. Developing gradient metal alloys through radial deposition additive manufacturing. Sci. Rep. 4, 5357 (2014).CAS聽Google Scholar聽 49.Tan, X. P. et al. Graded microstructure and mechanical properties of additive manufactured Ti鈥?Al鈥?V via electron beam melting. Acta Mater. 97, 1鈥?6 (2015).CAS聽Google Scholar聽 50.Estrin, Y. Vinogradov, A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61, 782鈥?17 (2013).CAS聽Google Scholar聽 51.Wang, K., Tao, N. R., Liu, G., Lu, J. Lu, K. Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater. 54, 5281鈥?291 (2006).CAS聽Google Scholar聽 52.Tao, N. R. Lu, K. Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scr. Mater. 60, 1039鈥?043 (2009).CAS聽Google Scholar聽 53.Lu, K. Making strong nanomaterials ductile with gradients. Science 345, 1455鈥?456 (2014).CAS聽Google Scholar聽 54.Wu, X. L. et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl Acad. Sci. USA 112, 14501鈥?4505 (2015).CAS聽Google Scholar聽 55.Chen, A. Y., Liu, J. B., Wang, H. T., Lu, J. Wang, Y. M. Gradient twinned 304 stainless steels for high strength and high ductility. Mater. Sci. Eng. A 667, 179鈥?88 (2016).CAS聽Google Scholar聽 56.Liu, Y. Wei, Y. J. Gradient driven anomalous reversible plasticity in conventional magnesium alloys. Extreme Mech. Lett. 9, 158鈥?64 (2016). Google Scholar聽 57.Moering, J. et al. Synergetic strengthening far beyond rule of mixtures in gradient structured aluminum rod. Scr. Mater. 122, 106鈥?09 (2016).CAS聽Google Scholar聽 58.Wu, X. L., Yang, M. X., Yuan, F. P., Chen, L. Zhu, Y. T. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility. Acta Mater. 112, 337鈥?46 (2016).CAS聽Google Scholar聽 59.Chen, L., Yuan, F. P., Jiang, P., Xie, J. J. Wu, X. L. Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation. Mater. Sci. Eng. A 694, 98鈥?09 (2017).CAS聽Google Scholar聽 60.Wang, Y. et al. Optimal stress and deformation partition in gradient materials for better strength and tensile ductility: a numerical investigation. Sci. Rep. 7, 10954 (2017). Google Scholar聽 61.Fu, Z. Q. et al. Engineering heterostructured grains to enhance strength in a single-phase high-entropy alloy with maintained ductility. Mater. Res. Lett. 6, 634鈥?40 (2018).CAS聽Google Scholar聽 62.Han, Z. H., Liang, S., Yang, J., Wei, R. Zhang, C. J. A superior combination of strength-ductility in CoCrFeNiMn high-entropy alloy induced by asymmetric rolling and subsequent annealing treatment. Mater. Charact. 145, 619鈥?26 (2018).CAS聽Google Scholar聽 63.Huang, C. X. et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater. Today 21, 713鈥?19 (2018).CAS聽Google Scholar聽 64.Ma, Z. W. et al. Cryogenic temperature toughening and strengthening due to gradient phase structure. Mater. Sci. Eng. A 712, 358鈥?64 (2018).CAS聽Google Scholar聽 65.Wang, Y. F., Huang, C. X., Wang, M. S., Li, Y. S. Zhu, Y. T. Quantifying the synergetic strengthening in gradient material. Scr. Mater. 150, 22鈥?5 (2018).CAS聽Google Scholar聽 66.Yuan, F. P. et al. Ductility by shear band delocalization in the nano-layer of gradient structure. Mater. Res. Lett. 7, 12鈥?7 (2018). Google Scholar聽 67.Niu, G., Wu, H. B., Zhang, D., Gong, N. Tang, D. Heterogeneous nano/ultrafine-grained medium Mn austenitic stainless steel with high strength and ductility. Mater. Sci. Eng. A 725, 187鈥?95 (2018).CAS聽Google Scholar聽 68.Cheng, Z. Lu, L. The effect of gradient order on mechanical behaviors of gradient nanotwinned Cu. Scr. Mater. 164, 130鈥?34 (2019).CAS聽Google Scholar聽 69.Lee, H. H., Yoon, J. I., Park, H. K. Kim, H. S. Unique microstructure and simultaneous enhancements of strength and ductility in gradient-microstructured Cu sheet produced by single-roll angular-rolling. Acta Mater. 166, 638鈥?49 (2019).CAS聽Google Scholar聽 70.Wu, S. W. et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure. Acta Mater. 165, 444鈥?58 (2019).CAS聽Google Scholar聽 71.Zhu, L. L. et al. Static and dynamic mechanical behaviors of gradient-nanotwinned stainless steel with a composite structure: experiments and modeling. Int. J. Plast. 114, 272鈥?88 (2019).CAS聽Google Scholar聽 72.Long, Q. Y., Lu, J. X. Fang, T. H. Microstructure and mechanical properties of AISI 316L steel with an inverse gradient nanostructure fabricated by electro-magnetic induction heating. Mater. Sci. Eng. A 751, 42鈥?0 (2019).CAS聽Google Scholar聽 73.Wu, X. L. Zhu, Y. T. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 5, 527鈥?32 (2017).CAS聽Google Scholar聽 74.Ding, J. et al. Mechanical behavior of structurally gradient nickel alloy. Acta Mater. 149, 57鈥?7 (2018).CAS聽Google Scholar聽 75.Zhou, X., Li, X. Y. Lu, K. Strain hardening in gradient nano-grained Cu at 77K. Scr. Mater. 153, 6鈥? (2018).CAS聽Google Scholar聽 76.Bian, X. D., Yuan, F. P., Zhu, Y. T. Wu, X. L. Gradient structure produces superior dynamic shear properties. Mater. Res. Lett. 5, 501鈥?07 (2017).CAS聽Google Scholar聽 77.Shao, C. W. et al. Simultaneous improvement of strength and plasticity: additional work-hardening from gradient microstructure. Acta Mater. 145, 413鈥?28 (2018).CAS聽Google Scholar聽 78.Zhang, P. Lindemann, J. Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scr. Mater. 52, 485鈥?90 (2005).CAS聽Google Scholar聽 79.Liu, W. C. et al. Improvement of fatigue properties by shot peening for Mg鈥?0Gd鈥?Y alloys under different conditions. Mater. Sci. Eng. A 528, 5935鈥?944 (2011).CAS聽Google Scholar聽 80.Nazari, A. Modeling fracture toughness of ferritic and austenitic functionally graded steel based on the strain gradient plasticity theory. Comp. Mater. Sci. 50, 3238鈥?244 (2011).CAS聽Google Scholar聽 81.Nielsen, K. L., Niordson, C. F. Hutchinson, J. W. Strain gradient effects on steady state crack growth in rate-sensitive materials. Eng. Fract. Mech. 96, 61鈥?1 (2012). Google Scholar聽 82.Trudel, A., L茅vesque, M. Brochu, M. Microstructural effects on the fatigue crack growth resistance of a stainless steel CA6NM weld. Eng. Fract. Mech. 115, 60鈥?2 (2014). Google Scholar聽 83.Zhang, K., Wang, Z. B. Lu, K. Enhanced fatigue property by suppressing surface cracking in a gradient nanostructured bearing steel. Mater. Res. Lett. 5, 258鈥?66 (2016). Google Scholar聽 84.Pandey, V., Chattopadhyay, K., Santhi Srinivas, N. C. Singh, V. Role of ultrasonic shot peening on low cycle fatigue behavior of 7075 aluminium alloy. Int. J. Fatigue 103, 426鈥?35 (2017).CAS聽Google Scholar聽 85.Zhang, S. J. et al. Fatigue crack growth behavior in gradient microstructure of hardened surface layer for an axle steel. Mater. Sci. Eng. A 700, 66鈥?4 (2017).CAS聽Google Scholar聽 86.Zhou, J., Sun, Z., Kanout茅, P. Retraint, D. Effect of surface mechanical attrition treatment on low cycle fatigue properties of an austenitic stainless steel. Int. J. Fatigue 103, 309鈥?17 (2017).CAS聽Google Scholar聽 87.Giang, N. A., Seupel, A., Kuna, M. H眉tter, G. Dislocation pile-up and cleavage: effects of strain gradient plasticity on micro-crack initiation in ferritic steel. Int. J. Fract. 214, 1鈥?5 (2018).CAS聽Google Scholar聽 88.Mart铆nez-Pa帽eda, E., Deshpande, V. S., Niordson, C. F. Fleck, N. A. The role of plastic strain gradients in the crack growth resistance of metals. J. Mech. Phys. Solids 126, 136鈥?50 (2019). Google Scholar聽 89.Wang, Y. et al. The influence of combined gradient structure with residual stress on crack-growth behavior in medium carbon steel. Eng. Fract. Mech. 209, 369鈥?81 (2019). Google Scholar聽 90.Long, J. Z., Pan, Q. S., Tao, N. R. Lu, L. Residual stress induced tension-compression asymmetry of gradient nanograined copper. Mater. Res. Lett. 6, 456鈥?61 (2018).CAS聽Google Scholar聽 91.Lei, Y. B., Wang, Z. B., Xu, J. L. Lu, K. Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure. Acta Mater. 168, 133鈥?42 (2019).CAS聽Google Scholar聽 92.Zhang, Y. S., Han, Z., Wang, K. Lu, K. Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260, 942鈥?48 (2006).CAS聽Google Scholar聽 93.Prakash, N. A., Gnanamoorthy, R. Kamaraj, M. Friction and wear behavior of surface nanocrystallized aluminium alloy under dry sliding condition. Mater. Sci. Eng. B 168, 176鈥?81 (2010).CAS聽Google Scholar聽 94.Amanov, A., Lee, S. W. Pyun, Y. S. Low friction and high strength of 316L stainless steel tubing for biomedical applications. Mater. Sci. Eng. C. 71, 176鈥?85 (2017).CAS聽Google Scholar聽 95.Bernoulli, D., Cao, S. C., Lu, J. Dao, M. Enhanced repeated frictional sliding properties in 304 stainless steel with a gradient nanostructured surface. Surf. Coat. Technol. 339, 14鈥?9 (2018).CAS聽Google Scholar聽 96.Ge, M. Z. et al. Wear behavior of Mg-3Al-1Zn alloy subjected to laser shock peening. Surf. Coat. Technol. 337, 501鈥?09 (2018).CAS聽Google Scholar聽 97.Balusamy, T. et al. Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel. Corros. Sci. 74, 332鈥?44 (2013).CAS聽Google Scholar聽 98.Hao, Y., Deng, B., Zhong, C., Jiang, Y. Li, J. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel. J. Iron Steel Res. Int. 16, 68鈥?2 (2009).CAS聽Google Scholar聽 99.Li, N. N., Shi, S. Q., Luo, J. L., Lu, J. Wang, N. Effects of surface nanocrystallization on the corrosion behaviors of 316L and alloy 690. Surf. Coat. Technol. 309, 227鈥?31 (2017).CAS聽Google Scholar聽 100.Meyers, M. A., Mishra, A. Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427鈥?56 (2006).CAS聽Google Scholar聽 101.Lu, L., Shen, Y., Chen, X., Qian, L. Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422鈥?26 (2004).CAS聽Google Scholar聽 102.Lu, L., Chen, X., Huang, X. Lu, K. Revealing the maximum strength in nano-twinned copper. Science 323, 607鈥?10 (2009).CAS聽Google Scholar聽 103.Anderoglu, O. et al. Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93, 083108 (2008). Google Scholar聽 104.Bufford, D., Wang, H. Zhang, X. High strength, epitaxial nanotwinned Ag films. Acta Mater. 59, 93鈥?01 (2011).CAS聽Google Scholar聽 105.Idrissi, H., Wang, B., Colla, M. S. Raskin, J. P. Ultrahigh strain hardening in thin palladium films with nanoscale twins. Adv. Mater. 23, 2119鈥?122 (2011).CAS聽Google Scholar聽 106.Wang, Y. M. et al. Defective twin boundaries in nanotwinned metals. Nat. Mater. 12, 697鈥?02 (2013).CAS聽Google Scholar聽 107.Li, Q. et al. High-strength nanotwinned Al alloys with 9R phase. Adv. Mater. 30, 1704629 (2018). Google Scholar聽 108.Jang, D., Li, X., Gao, H. Greer, J. R. Deformation mechanisms in nanotwinned metal nanopillars. Nat. Nanotechnol. 7, 594鈥?01 (2012).CAS聽Google Scholar聽 109.Zhu, T., Li, J., Samanta, A., Kim, H. G. Suresh, S. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl Acad. Sci. USA 104, 3031鈥?036 (2007).CAS聽Google Scholar聽 110.Li, X., Wei, Y., Lu, L., Lu, K. Gao, H. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877鈥?80 (2010).CAS聽Google Scholar聽 111.You, Z. et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 61, 217鈥?27 (2013).CAS聽Google Scholar聽 112.Pan, Q., Zhou, H., Lu, Q., Gao, H. Lu, L. History-independent cyclic response of nanotwinned metals. Nature 551, 214鈥?17 (2017).CAS聽Google Scholar聽 113.Zhou, H., Li, X., Qu, S., Yang, W. Gao, H. A jogged dislocation governed strengthening mechanism in nanotwinned metals. Nano Lett. 14, 5075鈥?080 (2014).CAS聽Google Scholar聽 114.Zhou, H., Qu, S. Yang, W. Toughening by nano-scaled twin boundaries in nanocrystals. Model. Simul. Mater. Sci. Eng. 18, 065002 (2010). Google Scholar聽 115.Sansoz, F., Lu, K., Zhu, T. Misra, A. Strengthening and plasticity in nanotwinned metals. MRS Bull. 41, 292鈥?97 (2016).CAS聽Google Scholar聽 116.Sun, L., He, X. Lu, J. Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts. npj Comp. Mater. 4, 6 (2018). Google Scholar聽 117.Qu, S. et al. Microstructural evolution and mechanical properties of Cu鈥揂l alloys subjected to equal channel angular pressing. Acta Mater. 57, 1586鈥?601 (2009).CAS聽Google Scholar聽 118.Zhang, Z. et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium entropy alloy. Nat. Commun. 8, 14390 (2017).CAS聽Google Scholar聽 119.Kou, H. N., Lu, J. Li, Y. High-strength and high-ductility nanostructured and amorphous metallic materials. Adv. Mater. 26, 5518鈥?524 (2014).CAS聽Google Scholar聽 120.Yuan, F. P. Wu, X. L. Size effects of primary/secondary twins on the atomistic deformation mechanisms in hierarchically nanotwinned metals. J. Appl. Phys. 113, 203516 (2013). Google Scholar聽 121.Yuan, F. P. Wu, X. L. Atomistic scale fracture behaviours in hierarchically nanotwinned metals. Philos. Mag. 93, 3248鈥?259 (2013).CAS聽Google Scholar聽 122.Yuan, F. P., Chen, L., Jiang, P. Wu, X. L. Twin boundary spacing effects on shock response and spall behaviors of hierarchically nanotwinned fcc metals. J. Appl. Phys. 115, 063509 (2014). Google Scholar聽 123.Hart, E. W. Theory of the tensile test. Acta Metall. 15, 351鈥?55 (1967).CAS聽Google Scholar聽 124.Hutchinson, J. W. Neale, K. W. Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metall. 25, 839鈥?46 (1977).CAS聽Google Scholar聽 125.Yasnikov, I. S., Vinogradov, A. Estrin, Y. Revisiting the Consid猫re criterion from the viewpoint of dislocation theory fundamentals. Scr. Mater. 76, 37鈥?0 (2014).CAS聽Google Scholar聽 126.Gupta, R. K. Birbilis, N. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: a review. Corros. Sci. 92, 1鈥?5 (2015).CAS聽Google Scholar聽 127.Lu, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 1, 16019 (2016).CAS聽Google Scholar聽 128.Zhao, J. et al. Multiple mechanism based constitutive modeling of gradient nanograined material. Inter. J. Plast. 125, 314鈥?30 (2019). Google Scholar聽 129.Yang, M. et al. Residual stress provides significant strengthening and ductility in gradient structured materials. Mater. Res. Lett. 7, 433鈥?38 (2019).CAS聽Google Scholar聽 130.Zhu, Y. Wu, X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett. 7, 393鈥?98 (2019). Google Scholar聽 131.Evans, A. G. Hutchinson, J. W. A critical assessment of theories of strain gradient plasticity. Acta Mater. 57, 1675鈥?688 (2009).CAS聽Google Scholar聽 132.Fleck, N. A., Muller, G. M., Ashby, M. F. Hutchinson, J. W. Strain gradient plasticity-theory and experiment. Acta Metall. Mater. 42, 475鈥?87 (1994).CAS聽Google Scholar聽 133.Nix, W. D. Gao, H. J. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411鈥?25 (1998).CAS聽Google Scholar聽 134.Ashby, M. F. The deformation of plastically non-homogeneous materials. Phil. Mag. 21, 399鈥?24 (1970).CAS聽Google Scholar聽 135.Gao, H., Huang, Y., Nix, W. D. Hutchinson, J. W. Mechanism-based strain gradient plasticity-I. Theory. J. Mech. Phys. Solids 47, 1239鈥?263 (1999). Google Scholar聽 136.Huang, Y., Gao, H., Nix, W. D. Hutchinson, J. W. Mechanism-based strain gradient plasticity-II. Analysis. J. Mech. Phys. Solids 48, 99鈥?28 (2000). Google Scholar聽 137.Cao, P. The strongest size in gradient nanograined metals. Nano Lett. 20, 1440鈥?446 (2020).CAS聽Google Scholar聽 138.Liu, Y., Bufford, D., Wang, H., Sun, C. Zhang, X. Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater. 59, 1924鈥?933 (2011).CAS聽Google Scholar聽 139.Wang, J., Beyerlein, I. J., Mara, N. A. Bhattacharyya, D. Interface-facilitated deformation twinning in copper within submicron Ag鈥揅u multilayered composites. Scr. Mater. 64, 1083鈥?386 (2011).CAS聽Google Scholar聽 140.Bufford, D., Bi, Z., Jia, Q. X., Wang, H. Zhang, X. Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101, 223112 (2012). Google Scholar聽 141.Zheng, S. et al. High strength and thermal stability due to twin-induced interfaces. Nat. Commun. 4, 1696 (2013). Google Scholar聽 142.Zheng, S. et al. Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 79, 282鈥?91 (2014).CAS聽Google Scholar聽 143.Wang, J. Misra, A. An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15, 20鈥?8 (2011).CAS聽Google Scholar聽 144.Wang, J., Zhou, Q., Shao, S. Misra, A. Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5, 1鈥?9 (2017). Google Scholar聽 145.Regueiro, R. A., Bammann, D. J., Marin, E. B. Garikipati, K. A nonlocal phenomenological anisotropic finite deformation plasticity model accounting for dislocation defects. J. Eng. Mater. Technol. 124, 380鈥?87 (2002). Google Scholar聽 146.Shizawa, K. Zbib, H. M. A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: fundamentals. Int. J. Plast. 15, 899鈥?38 (1999). Google Scholar聽 147.Yefimov, S., Groma, I. van der Giessen, E. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52, 279鈥?00 (2004). Google Scholar聽 148.Han, C. S., Gao, H., Huang, Y. Nix, W. D. Mechanism-based strain gradient crystal plasticity. I. Theory. J. Mech. Phys. Solids 53, 1188鈥?203 (2005). Google Scholar聽 149.Bayley, C. J., Brekelmans, W. A. M. Geers, M. G. D. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids Struct. 43, 7268鈥?286 (2006). Google Scholar聽 150.Winning, M., Gottstein, G. Shvindlerman, L. S. Stress induced grain boundary motion. Acta Mater. 49, 211鈥?19 (2001).CAS聽Google Scholar聽 151.Cahn, J. W., Mishin, Y. Suzuki, A. Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953鈥?975 (2006).CAS聽Google Scholar聽 152.Rupert, T. J., Gianola, D. S., Gan, Y. Hemker, K. J. Experimental observations of stress-driven grain boundary migration. Science 326, 1686鈥?690 (2009).CAS聽Google Scholar聽 153.Gottstein, G. Molodov, D. A. Grain boundary migration in metals: recent developments. Inter. Sci. 6, 7鈥?2 (1998).CAS聽Google Scholar聽 154.Zhou, X., Li, X. Lu, K. Size dependence of grain boundary migration in metals under mechanical loading. Phys. Rev. Lett. 122, 12601 (2019). Google Scholar聽 155.Pilania, G., Wang, C., Jiang, X., Rajasekaran, S. Ramprasad, R. Accelerating materials property predictions using machine learning. Sci. Rep. 3, 2810 (2013). Google Scholar聽 156.Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014). Google Scholar聽 157.Raccugli, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73鈥?6 (2016). Google Scholar聽 158.Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. Walsh, A. Machine learning for molecular and materials science. Nature 559, 547鈥?55 (2018).CAS聽Google Scholar聽 159.Wu, G. et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity. Nat. Commun. 10, 5099 (2019). Google Scholar聽 160.Wu, X. et al. Nanodomained nickel unite nanocrystal strength with coarse-grain ductility. Sci. Rep. 5, 11728 (2015). Google Scholar聽 161.Xu, Y., Fu, Y. Chen, H. Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016).CAS聽Google Scholar聽 Download referencesAcknowledgementsThe authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant no. 51420105001). H.G. has also received funding from the US National Science Foundation (grant no. DMR-1709318). L.L. thanks the National Natural Science Foundation of China (grant nos 51471172, 51931010 and U1608257), the Key Research Program of Frontier Sciences and the International Partnership Program (grant no. GJHZ2029) of the Chinese Academy of Sciences, and the LiaoNing Revitalization Talents Program (grant no. XLYC1802026). X.L. acknowledges financial support from the National Natural Science Foundation of China (grant nos 11522218 and 11720101002), the Beijing Natural Science Foundation (grant no. Z180014) and the National Science and Technology Major Project (grant no. 2017-VI-0003鈥?073).Author informationAffiliationsCenter for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, ChinaXiaoyan Li,聽Jianguo Li聽 聽Xuan ZhangShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, ChinaLei LuSchool of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore, SingaporeHuajian GaoInstitute of High Performance Computing, A*STAR, Singapore, SingaporeHuajian GaoAuthorsXiaoyan LiView author publicationsYou can also search for this author in PubMed聽Google ScholarLei LuView author publicationsYou can also search for this author in PubMed聽Google ScholarJianguo LiView author publicationsYou can also search for this author in PubMed聽Google ScholarXuan ZhangView author publicationsYou can also search for this author in PubMed聽Google ScholarHuajian GaoView author publicationsYou can also search for this author in PubMed聽Google ScholarContributionsX.L., L.L. and H.G. discussed the content. All authors contributed to the writing, reviewing and editing of the manuscript.Corresponding authorCorrespondence to Huajian Gao.Ethics declarations Competing interests The authors declare no competing interests. Additional informationPublisher鈥檚 noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissionsReprints and PermissionsAbout this articleCite this articleLi, X., Lu, L., Li, J. et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat Rev Mater 5, 706鈥?23 (2020). https://doi.org/10.1038/s41578-020-0212-2Download citationAccepted: 21 May 2020Published: 08 July 2020Issue Date: September 2020DOI: https://doi.org/10.1038/s41578-020-0212-2 J. H. Zhang, X. M. Liu, G. S. Zhang, W. K. Deng, J. Y. Hao, M. Li D. F. Guo Journal of Materials Science (2021) Sign up for the Nature Briefing newsletter 鈥?what matters in science, free to your inbox daily.

本文链接: https://www.ebiomall.cn/b871-4rtilab/info-70704.html

免责声明 本文仅代表作者个人观点,与本网无关。其创作性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
版权声明 未经蚂蚁淘授权不得转载、摘编或利用其他方式使用上述作品。已经经本网授权使用作品的,应该授权范围内使用,并注明“来源:蚂蚁淘”。违反上述声明者,本网将追究其相关法律责任。
没有了