请使用支持JavaScript的浏览器! 微电影《好人徐林收》_腾讯视频_蚂蚁淘,【正品极速】生物医学科研用品轻松购|ebiomall -蚂蚁淘商城
当前位置: > 首页 > 技术文章 >
微电影《好人徐林收》_腾讯视频
来自 : 蚂蚁淘

一、流式细胞术发展简史

  流式细胞术(FlowCytometry,FCM)是一种可以对细胞或亚细胞结构进行快速测量的新型分析技术和分选技术。其特点是:①测量速度快,最快可在1秒种内计测数万个细胞;②可进行多参数测量,可以对同一个细胞做有关物理、化学特性的多参数测量,并具有明显的统计学意义;③是一门综合性的高科技方法,它综合了激光技术、计算机技术、流体力学、细胞化学、图像技术等从多领域的知识和成果;④既是细胞分析技术,又是精确的分选技术。

  概要说来,流式细胞术主要包括了样品的液流技术、细胞的分选和计数技术,以及数据的采集和分析技术等。FCM目前发展的水平凝聚了半个世纪以来人们在这方面的心血和成果。

  1934年,Moldavan1首次提出了使悬浮的单个血红细胞等流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置计测的设想,在此之前,人们还习惯于测量静止的细胞,因为要使单个细胞顺次流过狭窄管道容易造成较大的细胞和细胞团块的淤阻。1953年Crosland–Taylor根据雷诺对牛顿流体在圆形管中流动规律的研究认识到:管中轴线流过的鞘液流速越快,载物通过的能力越强,并具有较强的流体动力聚集作用。于是设计了一个流动室,使待分析的细胞悬浮液都集聚在圆管轴线附近流过,外层包围着鞘液;细胞悬浮液和鞘液都在作层液。这就奠定了现代流式细胞术中的液流技术基础。

  1956年,Coulter在多年研究的基础上利用Coulter效应生产了Coulter计数器。其基本原理是:使细胞通过一个小孔,只在细胞与悬浮的介质之间存在着导电性上的差异,便会影响小孔道的电阻特性,从而形成电脉冲信号,测量电脉冲的强度和个数则可获得有关细胞大小和数目方面的信息。1967年Holm等设计了通过汞弧光灯激发荧光染色的细胞,再由光电检测设备计数的装置。1973年Steinkamp设计了一种利用激光激发双色荧光色素标记的细胞,既能分析计数,又能进行细胞分选的装置。这样就基本完成了现代FCM计数技术的主要历程。

  现代的FCM数据采集和分析技术是从组织化学发源的,其开拓者是Kamentsky。1965年,Kamentsky在组织化学的基础上提出了两个新设想:(1)细胞的组分是可以用光光度学来定量测定的,即分光光度术可以定量地获得有关细胞组织化学的重要信息。(2)细胞的不同组分可以同时进行多参数测量,从而可以对细胞进行分类。换句话说,对同一细胞可以同时获得有关不同组分的多方面信息,用作鉴别细胞的依据。Kamentsky不仅思路敏捷,而且能身体力行。他是第一个把计算机接口接到仪器上并记录分析了多参数数据的人,也是第一个采用了二维直方图来显示和分析多参数的人。

  流式细胞术在细胞化学中的应用的先驱者是VanDilla和美国的LosAlamos小组。他们在1967年研制出流液束、照明光轴、检测系统光轴三者相互正交的流式细胞计的基础上,首次用荧光Feulgen反应对DNA染色显示出DNA的活性与荧光之间存在着线性关系,并在DNA的直方图上清楚地显示出细胞周期的各个时相。Gohde和Dittrich接着把这项技术推向实用,他们用流式细胞术测定细胞周期借以研究细胞药代动力学问题。FCM用于免疫组织化学中的关键是对细胞进行免疫荧光染色,其它和在细胞化学的应用并没有多大差异。

  近20年来,国内外在FCM上都做了不少的研究和应用工作,也取得了不少成果。特别是随着仪器和方法和日臻完善,人们越来越致力于样品制备、细胞标记、软件开发等方面的工作以扩大FCM的应用领域和使用效果。FCM在免疫组织化学中的应用也大致差不多,并注重了在临床应用的推广。

  二、流式细胞计的基本结构和工作原理

  流式细胞计是对细胞进行自动分析和分选的装置。它可以快速测量、存贮、显示悬浮在液体中的分散细胞的一系列重要的生物物理、生物化学方面的特征参量,并可以根据预选的参量范围把指定的细胞亚群从中分选出来。多数流式细胞计是一种零分辨率的仪器,它只能测量一个细胞的诸如总核酸量,总蛋白量等指标,而不能鉴别和测出某一特定部位的核酸或蛋白的多少。也就是说,它的细节 分辨率为零。国外又把流式细胞计称作荧光激活细胞分选器(Flu-orescenceActivatedCellSorter,FACS)。美国Becton—Dickinson公司生产的流式细胞计系列均冠以FACS字头。目前我国国内使用的仪器多为美国、西欧及日本等国的产品,国内有些单位也已研制成功,但尚无定型产品面市。

  1.流式细胞计的基本结构流式细胞计主要由四部分组成。它们是:流动室和液流系统;激光源和光学系统;光电管和检测系统;计算机和分析系统。图10-1为其结构示意图。

图10-1流式细胞计结构示意图

  (1)流动室和液流系统:流动室由样品管、鞘液管和喷嘴等组成,常用光学玻璃、石英等透明、稳定的材料制作。设计和制作均很精细,是液流系统的心脏。样品管贮放样品,单个细胞悬液在液流压力作用下从样品管射出;鞘液由鞘液管从四周流向喷孔,包围在样品外周后从喷嘴射出。为了保证液流是稳液,一般限制液流速度υ<10m/s。由于鞘液的作用,被检测细胞被限制在液流的轴线上。流动室上装有压电晶体,受到振荡信号可发生振动。

  (2)激光源和光学系统:经特异荧光染色的细胞需要合适的光源照射激发才能发出荧光供收集检测。常用的光源有弧光灯和激光;激光器又以氩离子激光器为普遍,也有配和氪离子激光器或染料激光器。光源的选择主要根据被激发物质的激发光谱而定。汞灯是最常用的弧光灯,其发射光谱大部分集中于300~400nm,很适合需要用紫外光激发的场合。氩离子激光器的发射光谱中,绿光514nm和蓝光488nm的谱线最强,约占总光强的80%;氪离子激光器光谱多集中在可见光部分,以647nm较强。免疫学上使用的一些荧光染料激发光波长在550nm以上,可使用染料激光器。将有机染料做为激光器泵浦的一种成份,可使原激光器的光谱发生改变以适应需要即构成染料激光器。例如用氩离子激光器的绿光泵浦含有Rhodamine6G水溶液的染料激光器,则可得到550~650nm连续可调的激光,尤在590nm处转换效率最高,约可占到一半。为使细胞得到均匀照射,并提高分辨率,照射到细胞上的激光光斑直径应和细胞直径相近。因此需将激光光束经透镜会聚。光斑直径d可由下式确定:d=4λf/πD。λ为激光波长;f为透镜焦距;D为激光束直径。色散棱镜用来选择激光的波长,调整反射镜的角度使调谐到所需要的波长λ。为了进一步使检测的发射荧光更强,并提高荧光讯号的信噪比,在光路中还使用了多种滤片。带阻或带通滤片是有选择性地使某一滤长区段的光线滤除或通过。例如使用525nm带通滤片只允许FITC(Fluoresceinisothiocyanate,异硫氰荧光素)发射的525nm绿光通过。长波通过二向色性反射镜只允许某一波长以上的光线通过而将此波长以下的另一特定波长的光线反射。在免疫分析中常要同时探测两种以上的波长的荧光信号,就采用二向色性反射镜,或二向色性分光器,来有效地将各种荧光分开。

  (3)光电管和检测系统:经荧光染色的细胞受合适的光激发后所产生的荧光是通过光电转换器转变成电信号而进行测量的。光电倍增管(PMT)最为常用。PMT的响应时间短,仅为ns数量级;光谱响应特性好,在200~900nm的光谱区,光量子产额都比较高。光电倍增管的增益从103到108可连续调节 ,因此对弱光测量十分有利。光电管运行时特别要注意稳定性问题,工作电压要十分稳定,工作电流及功率不能太大。一般功耗低于0.5W;最大阳极电流在几个毫安。此外要注意对光电管进行暗适应处理,并注意良好的磁屏蔽。在使用中还要注意安装位置不同的PMT,因为光谱响应特性不同,不宜互换。也有用硅光电二极管的,它在强光下稳定性比PMT好。

  从PMT输出的电信号仍然较弱,需要经过放大后才能输入分析仪器。流式细胞计中一般备有两类放大器。一类是输出信号辐度与输入信号成线性关系,称为线性放大器。线性放大器适用于在较小范围内变化的信号以及代表生物学线性过程的信号,例DNA测量等。另一类是对数放大器,输出信号和输入信号之间成常用对数关系。在免疫学测量中常使用对数放大器。因为在免疫分析时常要同时显示阴性、阳性和强阳性三个亚群,它们的荧光强度相差1~2个数量级;而且在多色免疫荧光测量中,用对数放大器采集数据易于解释。此外还有调节 便利、细胞群体分布形状不易受外界工作条件影响等优点。

  (4)计算机和分析系统:经放大后的电信号被送往计算机分析器。多道的道数是和电信号的脉冲高度相对应的,也是和光信号的强弱相关的。对应道数年纵坐标通常代表发出该信号的细胞相对数目。多道分析器出来的信号再经模-数转换器输往微机处理器编成数据文件,或存贮于计算机的硬盘和软盘上,或存于仪器内以备调用。计算机的存贮容量较大,可存贮同一细胞的6~8个参数。存贮于计算机内的数据可以在实测后脱机重现,进行数据处理和分析,最后给出结果。除上述四个主要部分外,还备有电源及压缩气体等附加装置。

  2.流式细胞计的工作原理下面分别简要介绍流式细胞计有关的参数测量、样品分选及数据处理等工作原理。

  (1)参数测量原理:流式细胞计可同时进行多参数测量,信息主要来自特异性荧光信号及非荧光散射信号。测量是在测量区进行的,所谓测量区就是照射激光束和喷出喷孔的液流束垂直相交点。液流中央的单个细胞通过测量区时,受到激光照射会向立体角为2π的整个空间散射光线,散射光的波长和入射光的波长相同。散射光的强度及其空间分布与细胞的大小、形态、质膜和细胞内部结构密切相关,因为这些生物学参数又和细胞对光线的反射、折射等光学特性有关。未遭受任何损坏的细胞对光线都具有特征性的散射,因此可利用不同的散射光信号对不经染色活细胞进行分析和分选。经过固定的和染色处理的细胞由于光学性质的改变,其散射光信号当然不同于活细胞。散射光不仅与作为散射中心的细胞的参数相关,还跟散射角、及收集散射光线的立体角等非生物因素有关。

  在流式细胞术测量中,常用的是两种散射方向的散射光测量:①前向角(即0角)散射(FSC);②侧向散射(SSC),又称90角散射。这时所说的角度指的是激光束照射方向与收集散射光信号的光电倍增管轴向方向之间大致所成的角度。一般说来,前向角散射光的强度与细胞的大小有关,对同种细胞群体随着细胞截面积的增大而增大;对球形活细胞经实验表明在小立体角范围内基本上和截面积大小成线性关系;对于形状复杂具有取向性的细胞则可能差异很大,尤其需要注意。侧向散射光的测量主要用来获取有关细胞内部精细结构的颗粒性质的有关信息。侧向散射光虽然也与细胞的形状和大小有关,但它对细胞膜、胞质、核膜的折射率更为敏感,也能对细胞质内较大颗粒给出灵敏反映。

  在实际使用中,仪器首先要对光散射信号进行测量。当光散射分析与荧光探针联合使用时,可鉴别出样品中被染色和未被染色细胞。光散射测量最有效的用途是从非均一的群体中鉴别出某些亚群。

  荧光信号主要包括两部分:①自发荧光,即不经荧光染色细胞内部的荧光分子经光照射后所发出的荧光;②特征荧光,即由细胞经染色结合上的荧光染料受光照而发出的荧光,其荧光强度较弱,波长也与照射激光不同。自发荧光信号为噪声信号,在多数情况下会干扰对特异荧光信号的分辨和测量。在免疫细胞化学等测量中,对于结合水平不高的荧光抗体来说,如何提高信噪比是个关键。一般说来,细胞成分中能够产生的自发荧光的分子(例核黄素、细胞色素等)的含量越高,自发荧光越强;培养细胞中死细胞/活细胞比例越高,自发荧光越强;细胞样品中所含亮细胞的比例越高,自发荧光越强。

  减少自发荧光干扰、提高信噪比的主要措施是:①尽量选用较亮的荧光染料;②选用适宜的激光和滤片光学系统;③采用电子补偿电路,将自发荧光的本底贡献予以补偿。

  (2)样品分选原理:流式细胞计的分选功能是由细胞分选器来完成的。总的过程是:由喷嘴射出的液柱被分割成一连串的小水滴,根据选定的某个参数由逻辑电路判明是否将被分选,而后由充电电路对选定细胞液滴充电,带电液滴携带细胞通过静电场而发生偏转,落入收集器中;其它液体被当作废液抽吸掉,某些类型的仪器也有采用捕获管来进行分选的。

  稳定的小液滴是由流动室上的压电晶体在几十KHz的电信号作用下发生振动而迫使液流均匀断裂而形成的。一般液滴间距约距约数百μm。实验经验公式f=v/4.5d给出形成稳定水滴的振荡信号频率。其中v是液流速度,d为喷孔直径。由此可知使用不同孔径的喷孔及改变液流速度,可能会改变分选效果。使分选的含细胞液滴在静电场中的偏转是由充电电路和偏转板共同完成的。充电电压一般选+150V,或-150V;偏转板间的电位差为数千伏。充电电路中的充电脉冲发生器是由逻辑电路控制的,因此从参数测定经逻辑选择再到脉冲充电需要一段延迟时间,一般为数十ms。精确测定延迟时间是决定分选质量的关键,仪器多采用移位寄存器数字电路来产生延迟。可根据具体要求予以适当调整。

  (50)数据处理原理:FCM的数据处理主要包括数据的显示和分析,至于对仪器给出的结果如何解释则随所要解决的具体问题而定。

  ①数据显示:FCM的数据显示方式包括单参数直方图(histogram)、二维点图(dotplot)、二维等高图(contour)、假三维图(pseudo3D)和列表模式(listmode)等。

  直方图是一维数据用昨最多的图形显示形式,既可用于定性分析,又可用于定量分析,形同一般X—Y平面描图仪给出的曲线。根据选择放大器类型不同,横座标可以是线性标度或对数标度,用“道数”(ChannelNo.)来表示,实质上是所测的荧光或散射光的强度。纵座标一般表示的是细胞的相对数。图10-2给出的是直方图形式。只能显示一个参数与细胞之间的关系是它的局限性。

  二维点图能够显示两个独立参数与细胞相对数之间的关系。横座标和纵座标分别为与细胞有关的两个独立参数,平面上每一个点表示同时具有相应座标植的细胞存在(图10-3)。可以由二维点图得到两个一维直方图,但是由于兼并现象存在,二维点图的信息量要大于二个一维直方图的信息量。所谓兼并就是说多个细胞具有相同的二维座标在图上只表现为一个点,这样对细胞点密集的地方就难于显示它的精细结构。

图10-2 直方图

图10-3 二维点图

  二维等高图类似于地图上的等高线表示法。它是为了克服二维点图的不足而设置的显示方法。等高图上每一条连续曲线上具有相同的细胞相对或绝对数,即“等高”。曲线层次越高所代表的细胞数愈多。一般层次所表示的细胞数间隔是相等的,因此等高线越密集则表示变化率越大,等高线越疏则表示变化平衡。图10-4给出了二维等高图的样式。

  假三维图是利用计算机技术对二维等高图的一种视觉直观的表现方法。它把原二维图中的隐座标—细胞数同时显现,但参数维图可以通过旋转、倾斜等操作,以便多方位的观察“山峰”和“谷地”的结构和细节 ,这无疑是有助于对数据进行分析的。图10-5为假三维图的示意图。

图10-4 二维等高图

图10-5 假三维图

  列表模式其实只是多参数数据文件的一种计算机存贮方式,三个以上的参数数据显示是用多个直方图、二维图和假三维图来完成的。可用ListMode中的特殊技术,开窗或用游标调出相关部分再改变维数进行显示。例如,“一调二”就是在一维图上调出二维图来;“二调一”就是从二维图中调出一维图来。图10-6给出了从二维图等高图中调出相应窗口的直方图的示意图。

图10-6 从二维图设窗调出直方图示意

  上面简要地介绍了几种数据显示形式,在实际应用中,可根据需要选择匹配,以便了解和获得尽可能多的有用信息。

  ②数据分析:数据分析的方法总的可分为参数方法和非参数方法两大类。当被检测的生物学系统能够用某种数学模型技术时则多使用参数方法。数学模型可以是一个方程或方程组,方程的参数产生所需要的信息来自所测的数据。例如在测定老鼠精子的DNA含量时,可以获取细胞频数的尖锐波形分布。如果采用正态分布函数来描述这些数据,则参数即为面积、平均值和标准偏差。方程的数据拟合则通常使用最小二乘法。而非参数分析法对测量得到的分布形状不需要做任何假设,即采用无设定参数分析法。分析程序可以很简单,只需要直观观测频数分布;也可能很复杂,要对两个或多个直方图逐道地进行比较。

  逐点描图(或用手工,或用描图仪、计算机系统)是大家常用的数据分析的重要手段。我们常可以用来了解数据的特性、寻找那些不曾预料的特异征兆、选择统计分析的模型、显示最终结果等。事实上,不经过先对数据进行直观观察分析就决不应该对这批数据进行数值分析。从这一点来看,非参数分析是参数分析的基础。

  逐道比较工作量较大,但用直观法很容易发现明显的差异,特别是对照组和测试组。考虑到FCM的可靠性,要注意到对每组测量,都要有对照组,对照组可以是空白对照组、阴性对照组、或零时刻对照组等,具体设置应根据整体实验要求而定。对照组和测试组的逐道比较往往可以减少许多不必要的误差和错误解释。顺便指出,进行比较时对曲线的总细胞数进行归一化处理,甚至对两条曲线逐道相减而得到“差结果曲线”往往是适宜的。

  因为数据分析往往和结果解释关系十分密切,也就是说和生物学背景相关,因此具体的分析法和原理将在后面结合实例再介绍。

  3.流式细胞计的技术参数 为了表征仪器性能,往往根据使用目的和要求而提出几个技术参数或指标来定量说明。对于流式细胞计常用的技术指标有荧光分辨率、荧光灵敏度、适用样品浓度、分选纯度、可分析测量参数等。

  (1)荧光分辨率:强度一定的荧光在测量时是在一定道址上的一个正态分布的峰,荧光分辨率是指两相邻的峰可分辨的最小间隔。通常用变异系数(C.V值)来表示。C.V的定义式为:

  C.V=σ/μ

  式中,σ为标准偏差,μ是平均值。

  在实际应用中,我们使用挖关系式σ=0.423FWHM;其中FWHM为峰在峰高一半处的峰宽值。目前仪器的荧光分辨率均优于2.0%。

  (2)荧光灵敏度:反映仪器所能探测的最小荧光光强的大小。一般用荧光微球上所标可测出的FITC(fluoresceinisothiocyanate异硫氰基荧光素)的最少分子数来表示。目前仪器均可达到1000左右。

  (3)分析速度/分选速度:仪器每秒种可分析/分选的数目。一般分析速度为5000~10000;分选速度掌握在1000以下。

  (4)样品浓度:主要给出仪器工作时样品浓度的适用范围。一般在105~107细胞/ml的数量级。

  其它技术参数尚多,不再一一介绍。

[NextPage]

  4.流式细胞计的调试和使用 古语说:“工欲善其事,必先利其器”。要想很好地应用流式细胞分析和分选技术,必需先对仪器进行调试,使其处于良好的工作状态,并能正确使用仪器。下面简要介绍细胞计的调试项目及要点、使用的程序等等。

  (1)调试和校准:流式细胞计在使用前,甚至在使用过程中都要精心进行调试,以保证工作的可靠性和最佳性。调试的项目主要是激光强度、液流速度和测量区的光路等。

  激光强度:除调整反射镜的角度以调整到所需波长的激光出光外,还要结合显示屏上的光谱曲线使激光的强度输出为最大。

  液流速度:可通过操作台数字显示监督,调节 气体压力大小以获得稳定的液流速度。

  测量区光路调节 :这是调试工作的关键。需要保证在测量区的液流、激光束、90散射测量光电系统垂直正交,而且交点较小。一般可在用标准荧光微球等校准中完成。

  流式细胞术中所测得的量是相对值,因此需要在使用前或使用中对系统进行校准或标定,这样才能通过相对测量获得绝对的意义。因而FCM中的校准具有双重功能:仪器的准直调整和定量标度。标准样品应该稳定,有形成份形状应是大小比较一致球形,样品分散性能良好,且经济、容易获得。常用标准荧光微球作为非生物学标准样品,鸡血红细胞做为生物学标准样品。微球用树脂材料制作,或标有荧光素,或不标记荧光素。FlowCytometryStands公司可提供荧光强度药盒,在免疫实验中可用来作为定量荧光标准来测定每个细胞所标记的抗原位点数目。所用的鸡血红细胞标准样品制作过程昭下:取3.8%枸橼酸或肝素抗凝的鸡血(抗凝剂:鸡血=1:4),经PBS清洗3次,再用5~10ml的1.0%戊二醛与清洗后的鸡红细胞混合,室温下振荡醛化24h,最后经PBS再清洗,贮4℃冰箱中备用。需要指出的是因为未经荧光染色,所测光信号为鸡血红蛋白的自发荧光。

  (2)仪器的操作和使用:

  ①打开电源,对系统进行预热;

  ②打开气体阈,调节 压力,获得适宜的液流速度;开启光源冷却系统;

  ③在样品管中加入去离子水,冲洗液流的喷嘴系统;

  ④利用校准标准样品,调整仪器,使在激光功率、光电倍增管电压、放大器电路增益调定的基础上,0和90散射的荧光强度最强,并要求变异系数为最小;

  ⑤选定流速、测量细胞数、测量参数等,在同样的工作条件下测量样品和对照样品;同时选择计算机屏上数据的显示方式,从而能直观掌握测量进程;

  ⑥样品测量完毕后,再用去离子水冲洗液流系统;

  ⑦因为实验数据已存入计算机硬盘(有的机器还备有光盘系统,存贮量更大),因此可关闭气体、测量装置,而单独使用计算机进行数据处理;

  ⑧将所需结果打印出来。

  在操作和使用中一定要注意如下事项: 

  1)光电倍增管要求稳定的工作条件,暴露的较强的光线下以后,需要较长时间的“暗适应”以消除或降低部分暗电流本底才能工作;另外还要注意磁屏蔽;

  2)光源不得在短时间内(一般要1h左右)关上又打开;使用光源必须预热并注意冷却系统工作是否正常;

  3)液流系统必需随时保持液流畅通,避免气泡栓塞,所使用的鞘流液使用前要经过过滤、消毒;

  4)注意根据测量对象的变换选用合适的滤片系统、放大器的类型等;

  5)特别强度每次测量都需要对照组。

  本节 着重介绍了流式细胞计的基本结构和工作原理、技术指标及使用操作中的基本问题。由于实际使用的仪器厂家、型号差别很大,不能一一介绍,可参照仪器使用说明书使用。至于流式细胞术在生物医学工程和免疫组织化学应用中的一些具体技术途径则在下节 详细介绍。

第二节 FCM在生物医学工程学方面的应用

  流式细胞术在细胞生物学、分子遗传学、微生物学、免疫学、分子生物学以及临床肿瘤学、临床血液学等诸多领域都有广泛应用。本节 概要介绍它们的技术途径及主要原理,大家可以从中看出它们是和细胞化学密切相关的。

  一、FCM应用的技术途径

  FCM是通过测量细胞的多种参量来获取信息的。细胞参数分为结构参量和功能参量两大类。结构参量主要用于描述细胞的化学组分和形态特征;功能参量主要是描述细胞整体的理化和生物特性。这些参量有的需要经荧光标记方可测定,有的并不需要荧光标记。DNA以及RNA的含量,蛋白总含量、胞内pH值和细胞大小等为结构参数;细胞周期动力学、特殊配体的鉴定、特殊细胞的生物活性等则为功能参数。

  1.DNA和RNA的测量和分析DNA和RNA的含量可以用多种荧光探针标记后测出。对细胞内DNA含量的测定可用于细胞生物学方面的研究和临床肿瘤学的诊断;测量RNA的含量可用于血液中的网织红细胞的检测和计数;DNA和RNA含量的测定可以用于区别细胞周期中的G0和G1期。常用的荧光探针有吖啶橙(AO,Acridine·orange)、派洛宁Y(PY,PyronineY)、HO(Hoechst)系列和色霉素A3(CA3)等。利用HO/CA3双染色还可分析DNA的碱基组成。还可以结合Brdu(Bromodeoxyuridine,溴脱氧尿嘧啶核苷)单克隆抗体免疫荧光来测定细胞内DNA合成

  2.蛋白质总量测定用FCM可以测定细胞中蛋白的总含量,以检测一个细胞群体生长和代谢的状态,或区别具有不同蛋白含量的细胞亚群,如血液中的白细胞的分类。检测总蛋白的常用荧光探针为异硫氰基荧光素(FITC,Fluoresceinisothiocyanate),FITC以共价键方式与蛋白上带正电的残基结合。

  3.特殊配体的测定配体是与不同的细胞结构特异结合很强的各种大分子和小分子,通过对特异性的荧光标记的配体的测定可以获得不少有关结构参量和功能参量的信息。例如用标记的外源凝集素可检测细胞表面糖;用标记抗体可测表面抗原;用标记多聚阳离子可检测细胞表面电荷;用标记的激素、生长因子、神经递质和病毒等可检测细胞受体;用标记的大分子、微生物等可检测细胞的内吞性;用荧光素标记的亲和素以及带有DUTP的生物素衍生物的DNA探针跟靶细胞的DNA杂交能够检测原位的特殊基因等。这方面的应用范围广、有前途,已经成为研究细胞和组织中的抗原、基因和各种生化过程的强有力的新技术。用于这方面工作的荧光探针主要有FITC、若丹明系列(如四甲基异硫氰基若丹明TRITC、异硫氰基若丹明X-RITc和美国德州红等)、藻胆蛋白系列等。由于各种荧光探针具有不同的光谱特性,在使用中要注意正确地使用激光光源和滤片。

  4.生物活性的测定就生物流行性来说,主要包括两方面工作:①细胞本身的死活;②活细胞生物功能发挥的强弱。前项工作单一,后项工作要复杂得多。FCM用来判断细胞死活的常用荧光探针有二大类:一类是能透过活的细胞膜进入细胞内而发出荧光的物质;例如下醋酸酯荧光素(FDA,flouresceinDiacetate)它可被活细胞持留而发出黄绿色荧光;若细胞有损伤则会从细胞中流失,观察不到荧光。另一类是不能透过活细胞膜,但能对固定的细胞及膜有破损的细胞的核进行染色,例如碘化丙啶(PI,Propidiumiodide)和溴化乙锭(EB,Ethidiumbromide)就是常用的第二类荧光探针。

  用FCM来测定活细胞生物功能发挥方面和性能的指标很多。例如可用来测细胞膜电位、细胞内pH值和细胞内钙等,这些都和细胞的激活密切相关。FCM也可用来测膜结构的流动性或微粘度等。有报告可以用FCM代替51Cr的放射免疫分析来测定天然杀伤细胞(NK,Natu-ralkillercells)对靶细胞毒理学活性的大小。

  二、FCM的典型应用简介

  下面简单介绍FCM在各个领域中应用的典型实例,以求对FCM应用的全面了解,并能深入了解FCM在免疫细胞化学中应用的背景。

  1.在细胞生物学方面的应用细胞生物学是FCM应用最广泛也是最基本的领域,细胞周期分析是其基本分析内容之一,而实施的技术途径是通过测定细胞周期各时相的DNA含量来达到的。

  众所周知,细胞周期由G1期、S期、G2期和M期所构成的。各期细胞的DNA含量如下:G1期为2C,G2期和M期为4C,S期则在2C到4C之间。所以在FCM的DNA直方图上形成的谱线则为峰分布,而且G1峰的道数恰好是G2和M峰道数的一半(图10-7)。研究表明:对于正常细胞群,各周期时相的细胞数的比例是同一的;对于恶性病变的细胞群则是非均一的(图10-8)。

图10-7 细胞周期的DNA直方图

图10-8 细胞周期中的细胞数目与肿瘤的关系

  临床肿瘤病学已经注意到细胞动力学的重要性。研究工作表明:肿瘤细胞对化疗和放疗的敏感程度与细胞的增生率高低密切相关;采取细胞同步化(CellSynchronization)措施可以提高疗效。例如可以使用雌激素这种外源性药物让雌激素受体阳性的乳腺癌细胞同步化。

  临床微生物学可以用FCM对大量细菌的DNA和RNA含量进行测量,进行微生物鉴定、医学常规中的细菌抗生素敏感试验和传染活性的测定。

  FCM优良的分析和分选功能在分子遗传学领域也能充分发挥。例如流式细胞核型分析技术就是用FCM对染色体进行分类、纯化,检测或定量测量细胞表面或内部由特异基本所编码的成份。这方面的成果已用在畜类性别的预选择,以及对人类计划生育等方面的工作。

  2.在免疫学方面的应用 FCM以它的快速、灵活及定量的特点被广泛地应用于免疫学的基础研究和临床应用的各个方面,尤其是结合单克隆抗体技术,在免疫分型、分选、肿瘤细胞的免疫监测、机体免疫状态的监测、免疫细胞的系统发生及特性研究等方面更能起到重要作用,成为现代免疫技术的重要组成部分。基于免疫技术是免疫细胞化学分析技术的基础,我们着重介绍FCM在免疫应用中的技术问题。

  (1)免疫应用的激发光源和滤片系统:适用于免疫技术的FCM的激发光是氪离子气体激光器,光谱中波长为531nm和856nm的谱线最强。为了扩大仪器对双标记或三标记染色的荧光信号的分辨范围可使用双激光光源。

  为了减少细胞由于激光束造成的散射光对光电倍增管的影响,要使用贴有干涉膜的滤片系统。为了同时测定两种波长以上的荧光信号,光路中还要使用二向性分光元件。

  为了测定伴随细胞转化过程所产生的早期免疫及生化性质的改变,例如膜的流行性,DNA构象变化等,可以使用偏振片。

  总之,应用于免疫学时要充分考虑有关光源及光学滤片系统的正确使用。

  (2)免疫应用的荧光染料及染色:免疫应用中的荧光染料主要有FITC(488nm)、TRITC(515nm)、PE(藻红蛋白,575nm)及其组合。在进行多种标记时特别要注意结合抗体的每种色素都不干扰抗体反应的特异性,也不相互干扰。

  免疫荧光染色有直接法和间接法二类:

  ①直接染色法

  1)取约106的细胞置于尖底离心管内,管内液体要少些。加荧光标记抗体,在4℃温度下静置15~30min。若作双标记染色也可直接加入。

  2)用冷的10%的小牛血清、0.1%的叠氮钠溶液,1/15mol/L的PBS(pH4.4)离心清洗细胞2次。1000rpm离心5min或4000rpm离心1min。

  3)加入适量缓冲液待测。

  ②间接染色法:

  1)取106细胞加特异的第一抗体,4温度下静置15~30min。

  2)加缓冲液离心清洗2次后,吸尽残留液体,弹散沉淀,加入荧光标记的第二抗体,4静置30 min。

  3)缓冲液离心清洗2次后加入适量缓冲液待测。为减少无关因素干扰,操作尽量在水浴中进行。

  染色中应注意的事项:①细胞标本在整个过程中要尽量保持新鲜,采用有效措施防止表面抗原消失和细胞死亡;②荧光标记物用前应用滤膜或高速离心去除颗粒或沉渣以减少非特异性干扰;③细胞标本染色前应除死细胞;④为提高灵敏度可用三步间接染色法。

  (3)免疫荧光标本的特殊处理:

  ①死细胞及碎片去除:样品中不可避免地存在着死细胞及碎片,影响分析结果。对于血细胞可用FCM通过0散射的差异不经染色而将死细胞分出弃除;对于培养细胞,由于其大小分布不均,可在样品内加少量PI染色后将死细胞去掉。一般情况下即可用仪器直接去除碎片,也可用血清沉降法去除大碎片,用离法去除小碎片。

  ②标本的保存和固定:实验中大多数样品在染色或分析前需要保存一定的时间,有时甚至需要进行固定。

  未染色的新鲜标本贮存方法如下:10%二甲基亚砜,90%小牛血清,5×106~1×107细胞在-70过夜,然后置液氮中可长期保存。

  免疫染色未经固定的标本在4可保存48h。若需存放时间较长、或标本具有传染性,应该用固定剂固定。常用的固定剂配方是:1%~4%的多聚甲醛和PBS或0.8%的生理盐水配成pH7.2的固定液;或用0.37%~1.5%甲醛和PBS配成pH7.4的固定液。固定方法是:将经免疫荧光染色的细胞离心沉淀,再加入固定液混匀,放在4温度保存。一般来说,经固定处理的标本保存1周至2个月,多数样品的阳性细胞群体比例及荧光强度增色能保持在正常范围之内。

  (4)主要检测的免疫指标:

  ①细胞毒试验:细胞毒是机体的一种免疫监督机制,细胞毒实验是一项重要的免疫指标。例如天然杀伤细胞NK(Naturalkiller)是一种引起免疫媒介的效应物,在抗肿瘤及感染因子的免疫监督系统中起着重要作用。研究表明,对NK细胞的测量可以做为免疫治疗监测的重要参数和有效的预后征状的指标。所使用的荧光探针为CFDA(Caboxy-fluoresceindiacetate)。

  ②吞噬功能实验:单核吞噬细胞系统是机体的主要防御系统之一。FCM可以快速、定量地检查吞噬细胞的吞噬能力和速度。

  ③I型变变态反应的IgE受体细胞、IgE结合因子的检查。

  ④胞浆Ig及血清Ig分析,血小板表面的IgG测定,等等。

  3.在临床方面的应用FCM在临床诊断、疗效评价和预后预测等方面都发挥了一定的作用。工作做得较多的主要在肿瘤学、血液病学等。这些都和FCM在荧光细胞化学中的直接应用有关。

  (1)癌前病变的检测和预后评价:有效地发现癌前病变而给予阻断治疗,无疑是肿瘤防治的重要环节 。FCM的探测对象主要是癌前细胞,即那些处于正常细胞向癌细胞转化的量变阶段、尚未达到质变的细胞。研究表明,除心肌、肝组织及精子细胞外,人类正常的体细胞都具有恒定的DNA二倍体含量,而那些癌前细胞和癌细胞则在其发生发展过程中伴有DNA含量变化异常。另在资料表明:癌前病变向癌变的转化发生率与细胞的不典型增生程度有关,而细胞的不典型增生程度又与DNA含量的异常改变呈平行关系。利用FCM可以定量地测出癌前细胞的DNA含量并根据DNA分布直方图直观地反映出细胞的周期分布状态,从而了解到癌前细胞增殖能力变化的动态过程,这样便可以获得一些从组织形态学中难以得到的信息。

  表10-1是以胃粘膜为例比较正常细胞和胃癌细胞在DNA含量及细胞周期分布方面的差异。

表10-1 正常与胃癌的胃粘膜细胞DNA含量方面的差异

二倍体DNA含量(%)细胞周期分布(x±s)
非整倍体G0/G1S期G2/M期 
正常细胞100088.9±1.25.0±0.63.4±0.7
胃癌患者细胞010077.3±1.810.9±1.17.4±0.7

  从表中看出差异是显著的。我国一些学者也提出有关FCM诊断癌肿细胞的细胞标准,并已付之临床应用。

  目前,对于癌症病人预后评估的主要依据是病理组织学分级和临床分期等指标,不少人已认识到用FCM来检测DNA是对肿瘤预后评价的一个较为客观有效的指标。总的倾向是:异倍体的出现是恶性肿瘤的一个标志;异倍体肿瘤的恶性程度高、复发率高、转移率高及死亡率高;二倍体及近二倍体肿瘤预后较好。

  在临床血液学方面的应用目前也以血液系统的肿瘤诊断、分型和预后关系等方面的应用为主;其主要技术途径也是基于对DNA倍体分析和细胞增殖周期的分析。限于篇幅不再多叙。有关的技术细节 将在下节 以FCM在外周血白细胞的免疫组织化学分析方面的应用为例详加介绍。

  (2)DNA指数:由于DNA的非整倍体细胞是肿瘤的特异性标志已经得到肿瘤学界的公认,在些学者提出建议采用流式细胞术DNA分级指数(FlowcytometryDNACrADIngIndex,简称DNA指数或DI)表示DNA含量的异常程度。根据1984年国际分析细胞学会名词审定委员会的规定:

  一般样品应采用同种或同个体的正常细胞为标准二倍体细胞。在血液学研究中通常以正常人外周血淋巴细胞作为标准二倍体细胞。需要指出的是,在报告DNA的测定结果时必需包括G0/G1峰的变异和系数,即C.V值,若有多个DNA干系则要给出各个G0/G1峰的C.V值。用于肿瘤临床诊断的总体依据是:a.正常二倍体的DI=1.0,判断为阴性;b.出现二个或多个可以分辨的G0/G1峰则可判断为阳性;c.虽无明显的G0/G1峰的分化现象,但峰的C.V值较大,则可根据DI数个及其它有鉴别意义的征状给出参考性的诊断。

  以上我们主要从FCM在生物医学工程学领域应用的基本原理和技术途径介绍了和组织化学有关的内容,至于一些技术细节 则在下节 做较为详细的说明。

[NextPage]

第三节 FCM对外周白细胞的免疫荧光分析

  外周血是临床检验中的重要标本。FCM分析外周白细胞的主要目的是了解各种白细胞的数目与分群情况。这些数字的变化与临床的某些疾病有一定的关系。近年来,由于多种识别白细胞膜表面抗原的单克隆抗体的发现,以及对这些单克隆抗体的直接或间接荧光标记物的出现,使得利用FCM的荧光组织化学分析获得被测细胞的多指标的更多、更准确的信息,这无疑对警觉临床和科研有很大帮助。本节 主要讨论有关外周血的白细胞的免疫荧光标记技术、数据分析及临床应用等方面的问题。

  一、白细胞的免疫荧光标记技术

  1.白细胞抗原下面给出世界卫生组织对白细胞抗原的统一命名,以及它们的分子量、对应的单克隆抗体及反应阳性的细胞(见表10-2)。

表10-2 WHO对白细胞分化抗原的命名

抗原分子量单克隆抗体反应阳性细胞
CD1P45/12Leu6,T6,OKT6胸腺细胞、朗格罕细胞
CD2P50Leu5B,T11,OKT11E玫瑰花受体、T和NK细胞
CD3P19-29Leu4,T3,OKT8T细胞
CD4P55Leu3,T4,OKT4协助—诱导T细胞,单核细胞
CD5P67Leu1,T1,T101T细胞、B细胞亚群,慢粒(淋巴性)
CD6P120T12T细胞
CD7P41Leu9.3AT,T—ALLa和NK细胞
CD8P32-33Leu2,T6,OKT8抑制-细胞毒T细胞、NK细胞
CD9P24BA-2淋巴细胞白血病相关抗原
CD10P100CALLA,J5粒细胞、前B白血病细胞
CD11P170/95CR3/Leu15,OKM1单核细胞、粒细胞、NK细胞
  MO1T细胞亚群(C3bi受体)
CD15LNFP-ILeuM1单核细胞、粒细胞、激活的T细胞
CD16P50~70Leu11NK细胞、粒细胞(IgGFc受体)
CD19P95Leu12,B4B、CLLb前B-ALL细胞
CD20P35Leu16,B1B细胞
CD21P140CR2,B7B细胞、C3a受体细胞
CD22P135Leu41B、CLL、和毛细胞白血病细胞
CD23P45Blast2
CD24P45,P55BA-1B、CLL和前B-ALL细胞
CD25P65IL-2受体数分裂因子激活的T细胞HTLV-I、II、感染细胞

  a:急性淋巴细胞性白血病;b:慢性淋巴细胞性白血病。

  2.样品的制备供FCM分析的样品是单细胞悬液,而且大部分样品都需经荧光染色。样品的制备方法大致有三种:①用荧光单克隆抗体染全血,随后溶解红细胞;②红细胞溶解后染色;③通过梯度离心法分离出单个淋巴细胞和单核细胞,再将之制成细胞悬液染色。

  (1)全血染色后溶解红细胞:由于不少血液标本具有生物危害性,用此方法可以将染色、溶解、固定、分析几个步骤都在一个试管内进行,这样减少转换过程中的污染。而且此法比用梯度离心分离出单个核细胞更节 省时间。由于此法未将粒细胞去除,故在用FCM分析时,要注意排除粒细胞的干扰。

  具体操作步骤如下:

  ①全血100~150μl,放入5ml试管,并用50~100μlPBS稀释,总体积为200μl。]

  ②荧光标记的单克隆抗体染色30min,4(或放于冰上)。单克隆抗体的浓度因不同来源差异很大,但为了使用方便,可按其说明书配成每次实验使用10μl。注意蔽光。

  ③用3~4μl冷BPS清洗。离心250×g(约每分钟1500转),5min,洗3次。注意每次用吸管将上清吸出,决不能倾倒去液!

  ④用2ml氯化铵液(配法见下)在室温下溶解红血球,约10min。若红细胞完全被溶解,溶液由混浊变到透明。注意溶解程度的掌握十分重要:若溶解过分,则导致白细胞上抗原被破坏,或者某些敏感的细胞死亡而导致比例的改变。若溶解不彻底,大量红细胞会影响对淋巴细胞的分析。这是因为淋巴细胞在分析图像上与红细胞群接近,在框出淋巴细胞群时,会把部分红细胞框定于淋巴细胞内。而红细胞溶解不足或过度在很大程度上影响着分析结果。

  【氯化铵液的配制】

  Tris—氯化铵1×氯化铵

  0.16mol/L NH4Cl  0.38g/100ml  90ml  0.16mol/L  NH4Cl

  0.17mol/L Tris  2.06g/100ml  10ml  0.17mol/l  Tris

  pH值7.56                pH值7.2

  ⑤红细胞被彻底溶解,加入1mlPBS稀释的0.5%甲醛,立即离心,洗3次,条件同步骤③。加入甲醛的目的是尽早固定细胞和细胞上的抗原,避免有生物危害的标本到处污染。

  ⑥将染色完成的细胞悬浮于0.5~1ml的0.1%甲醛溶液内。置4,蔽光,等待分析。经固定后的细胞在冰箱内可保存一周,这样对工作的安排会带来方便。

  (2)红细胞被溶解后再对白细胞染色:此方法的优点是可以了解被染白细胞的数量以及存活率。但由于有时有些标本比较敏感,溶解红细胞后,还要经过多个染色步骤,这样容易造成抗原的丧失。此法具体步骤如下:

  ①室温下放入14ml氯化铵在15ml的试管里。

  ②加入0.5~1ml全血,混合3~5min。

  ③立即离心100~150×g,并用PBS洗2次。

  ④白细胞计数,注意存活率应在90%以上。做成每毫升含5×106白细胞悬浮液。将细胞分配到5ml的试管,每试管0.2ml,即1×106个细胞。

  ⑤荧光标记的单克隆抗体染色30min,4,避光。抗体浓度配制如前所述。

  ⑥PBS洗3次后,用0.5%甲醛固定。方法如前。

  (3)用Ficoll—Hypaque梯度离心法分离出单个核细胞:用此法可以分离骨髓细胞、淋巴结、扁桃体捣碎后的单细胞悬液等。血液标本应有抗凝剂。取血到分离不能超过6h。

  ①抗凝全血4~20ml,用等量PBS或Hanks液稀释。

  ②稀释血8或40ml置于15或50ml离心管内,4或10mlFicoll—Hypaque(或者等量的其它分离液,比重为1.007)从离心管底部轻轻加入到血的下面。这种方法对血的扰动较小,比将全血加到Ficoll上面为好。加完后,可以清楚看到Ficoll与全血之间有一明显的分界线。注意在Ficoll快加完时应特别小心,否则有可能加入气泡搅混血样,使血与分离液混合,达不到分离的目的。

  ③离心350~400g,30min。红细胞、粒细胞以及死细胞将位于离心管底部,中间层的单个核细胞为淋巴细胞、单核细胞和一些血小板。

  ④取出中间层中所有细胞,若在Ficoll中还有细胞也要取出,这也是单个核细胞(PBMC)。

  ⑤用PBS洗3次,第1次清洗时,可用较快速400×g离心10min。因为有可能中间层中混有一些ficoll,比重增加而细胞不易沉降。

  ⑥PBMC计数,注意存活率应高于90%。配成5×106个/ml的细胞悬浮液。

  ⑦取出0.2ml的悬浮液加入到5ml试管(内含1×106细胞),用荧光标记的单克隆抗体染色,方法如前。洗3次后固定。注意必须先染色后固定,固定后的细胞膜通透性改变,会导致荧光标记的抗体进入细胞中去,而在显微镜下观察的染色效果则和死细胞一样。当用FCM分析时,则均为阳性而达不到检验目的。这也是用FCM分析的细胞存活率应高于90%的原因。

  (4)荧光标记抗体的细胞染色:如前所述,FCM分析被荧光标记的抗体染色的细胞,在选择荧光染料时必须注意这些荧光染料所需要的激发光波长是否与所使用的FCM的激发光谱相匹配。一般各个公司所采用的绿色荧光染料为FITC,而选用的红色荧光染料却不尽相同,有的用TRITC,有的用藻红蛋白(PE),所需要的激发光谱就不一样,因而若因匹配不当则会招致荧光抗体所染的细胞分析不出来,这是应该注意的。

  这里的标本染色方法和免疫荧光法相同。下面仅说明一些具体的注意事项:

  ①在用间接法染色时,染色步骤依次为第一抗体→清洗→第二抗体→清洗→红细胞溶解。为了实验的方便,将第二抗体也配成每次实验用10μl。

  ②双色法:双色法多用于直接染色法。将分别用FITC和PE标记的抗体各10μl置入同一个含有约1×106/0.2ml的试管内,30min,4℃避光。然后清洗、固定。

  目前不少制备单克隆抗体的公司已将比值有意义的两种抗体,分别用红、绿荧光染料标记后,制成一种试剂。如CD2—FITC/CD20—PE;CD4-FITC/CD8-PE等。可按说明使用,具体用量为每次实验10μl。

  ③对照组:众所周知,免疫组化的染色过程中,阴性和阳性对照是必不可少的。在准备用FCM分析的细胞时,对照标本的制备显得格外重要。因为一次用FCM分析的样品可能会很多,甚至多达上百个试管。对同一病人也可能会用到20~30个不同的单克隆抗体。每一个病人都要有相应的阴性对照。阴性对照主要用于仪器分析细胞之前,设立阴性和阳性的分界线。阳性对照主要用于检查染色方法。阳性对照细胞选自那些已知的细胞和已知的单克隆抗体中的阳性反应最明显者。阴性对照细胞有以下几种:

  1)非染色细胞:直接染色法时,用10μlPBS代替与荧光结合的单克隆抗体,其它步骤相同。间接染色法时,分别用10μl的PBS代替第一抗体和荧光第二抗体,其它步骤相同。

  2)使用非特异性的抗小鼠膜表面免疫球蛋白(MsIg),代替特异性的单克隆抗体。这是由于所使用的单克隆抗体来自小鼠,可能造成非特异性的假性反应,因此使用MsIg作为对照。同时还需要注意选择与实验用单克隆抗体亚类一致的MsIg。如大部分单克隆抗体为IgG1,也有部分抗体为IgM,所以用MsIg作对照组时,往往使用MsIgG和MsIgM两种。直接染色法时,用10μl与荧光结合的MsIg,代替荧光单克隆抗体。间接染色时,用10μl无荧光的MsIg代替第一抗体。其它步骤与实验组相同。

  3)双染色对照:将各10μl的分别与红荧光染料和绿荧光染料结合的MsIgg或MsIgM,加入到同一个试管,代替荧光的特异性单克隆抗体,其它步骤相同。

  4)间接法对照:用10μl的PBS代替第一抗体。荧光第二抗体的浓度和使用量均与其它实验相同,其它实验步骤也和实验组相同。

  二、白细胞免疫荧光分析的数据分析

  在仪器调试和校准及标本制备完毕之后,就要做测试和数据分析工作。这里先讨论一下有关数据测量和分析的技术问题,而一些医学应用的具体参数的测量和分析后面做介绍。

  1.0散射和90散射的双指标的二维图像分析  可以把0和90散射分别选作二维图像的X轴和Y轴指标。通过图中数据点分布把全血分为淋巴细胞、单核细胞和粒细胞几个亚群(图10-9)。

图10-9 人的外周血白细胞分群的二维点图

  图中,A、B图的淋巴细胞数大约有6000~9000个;C、D图约有2000~4000个。分群编号依次表示:①红细胞、死细胞和渣滓;②淋巴细胞群;③大颗粒淋巴细胞;④单核细胞;⑤粒细胞。数据是对1000个细胞分析得到的。

  若用单指标直方图,对PBMC而言,可以把淋巴细胞和单核细胞分开。见图10-10中的A、B图。但对红细胞溶解后的全血,单指标图分辨率则不够了(图10-10的C、D图),图A、B给出的是经ficoll后的PBMC;图C、D给出的是人外周血白细胞。图中数字编号所代表的组分和图10-9相同。

  由上可见,在分析红细胞溶解后的全血时,必须先采用双指标二维点图。从图上也可清楚地看出,粒细胞、未被溶解的红细胞和一些渣滓,由于不同的体积和致密度,明显地区别于淋巴细胞和单核细胞从而能把它们分开。看到清楚的细胞分群以后,可以在计算机的显示屏上将所要分析的细胞画线框出,并通过指令送入存贮器,以后就可只对框出部分做各种数据分析和深入考查。图10-11就是对双指标点图上的淋巴细胞群框定的示意图。数字所表示的意思和图10-9相同。

图10-10 外周血白细胞及PBMC的单指标直方图

图10-11 双指标点图上细胞的框定

  2.单维直方图上阴性分界游标设置前面已经强调,在用FCM分析时,阴性对照是必不可少的。首先用非染色细胞,根据前面介绍的双指标二维点图的办法,将某一细胞群框定;然后分别选用绿色荧光(GFL)和红色荧光(RFL)单指标直方图。在直方图上所出现的细胞均为阳性。可用改变GFL和RFL增益的办法,将细胞恰好调节 到左侧并设立游标(图10-12)。

然后再测试MsIg染色的阴性对照。某些细胞,由于膜上的Fc受体可以与对照抗体鼠Ig非特异性结合,因而有一定的背景染色,不过这种阳性百分率不应超过5%。所以MsIg与非染色细胞的分界游标确立后,以后所测试的标本以此为标准,游标位置基本不变。

图10-12 阴阳性细胞分界游标的设置

  MsIg的红、绿荧光阴阳性分界游标确立以后,可以测试实验标本。首先检查细胞分群情况,然后检查淋巴细胞群是否落在已输入计算机的淋巴细胞框定的范围里。若染色及FCM的工作性能都正常,则框定的位置不会改变。然后转换成荧光直方图。若为FITC标记的细胞,则GFL为X轴;若为PE标记的细胞,则用RFL为X轴。由于阴阳性分界游标记已确立,细胞阳性率及图像均显示于计算机荧光屏上;同时也可选用其它指标和图像、打印所需的资料等。

  3.双染色分析游标设立和荧光校正

  (1)游标的设立:游标设立的原理和单染并无不同,但具体要用二维点图和二维等高图来完成。分别选用GFL和RFL为X和Y轴。先用不染色细胞测试,将阴性细胞集中在左下角(图10-13)。分别为X、Y轴设立游标,再用MsIg的阴性对照测试。可将X、Y轴游标略为移动,使位于窗“3”内的细胞(阴性)在95%以上。

  (2)红、绿荧光的校正:由于红色荧光探测器在最佳测试状态时,会让部分绿色荧光进入红色荧光探测器。这是因为一部分细胞发出的绿色荧光波长较长。若用阻断或滤色的办法消除进入红荧光探测器的这部分GRL,就会大大地降低RFL探测器的灵敏度。因而只好在操作时,通过电子计算机预先进入荧光校正,在RFL中适当扣除GRL的影响。

  通常红色荧光进入绿色荧光探测器的情况比较光见,图10-14给出CD11-PE(T细胞、RFL)及CD8-FITC(T抑制细胞,GFL)双染细胞在二维等高图上进行荧光校正的示意图。X轴为GFL,Y轴为RFL,由X轴Y轴游标划分的四个窗的阴阳性和图10-13相同。各窗给出的百分数为该细胞群所占百分比。图A表示未经校正时的情形。窗“2”内31.46%表示双阳性细胞,即在T细胞中31.46%为抑制细胞毒细胞。经过适当校正,可见有两群阳性双标记细胞出现(B图)。高强度部分为真正的CD8、CD11双标记阳性细胞;低强度部分属于CD8绿色阳性细胞(NK细胞)。此时“2”窗中细胞份额减为7.59%。需要指出的是校正过度则会使各区的阳性细胞都减少(图C)。

图10-13 双染色二维点图上游标的设置

1区:红色荧光阳性;2区 :红、绿荧光均为阳性;3区:阴性细胞:4区:绿色荧光阳性细胞

图10-14双染色在二维等高图上荧光校正

  双染色的荧光校正是用电子补偿电路来完成的。补偿时先测定一种染料的荧光,此时除了应该接收该荧光的光电倍增管PMT1有信号输出外,另一光电倍增管PMT2也常会有微弱输出。调节 补偿器使PMT2的输出为0;然后再测另一种波长的荧光染料,调PMT的补偿器使之输出也为0;然后再测另一种波长的荧光的染料,调PMT1的补偿器使之输出也为0:如此反复调节 ,使两种荧光的探测器都获得补偿。实际调节 时用的是一种标准荧光微球,微球上标有已知数量的荧光分子。利用不同的微球可调整、补偿不同荧光的测量通道。需要指出的是:当PMT高压有所改变、激光和滤片系统有所变动时,都要对荧光校正做重新补偿调节 。

  三、淋巴细胞亚群的测定及其在临床医学中的实用意义

  淋巴细胞由于表面特异性抗原的差异可分为四大类(表10-3),这些不同抗原表现型的亚群执行不同的机能。而且某些疾病会选择性地损伤某些亚群而造成亚群之间的比例失调。根据FCM双荧光分析的结果,现将不同的抗原和不同的机能的淋巴细胞亚群列于表10-4。

表10-13主要淋巴细胞亚群的表面抗原

细胞表面抗原的类型抗原表现的细胞
T协助、诱导细胞T抑制、T细胞毒细胞NK细胞B细胞
独特的    
CD3(Leu4
CD4(Leu3
CD8(Leu2-/+
CD16(Leu11
CD19(Leu12
限制性的    
Leu7-/+-/++/-
Leu8+/-+/--/++/-
CD7(Leu9+/-+/-
CD11(Leu15CR3-/+-/+

  +:表现的抗原;-:未表现的抗原;+/-:主要亚群有表现的抗原;-/+:抗原仅表现于少数亚群。

表10-14 淋巴细胞机能性亚群

细胞群细胞机能测试的单克隆抗体
T细胞协助细胞Leu3+8-
 抑制细胞—诱导细胞Leu3+8+
 细胞毒细胞Leu2+15-
 抑制细胞Leu2+15-
 抑制作用 
 抑制—诱导细胞Leu3+8+
 抑制--增强细胞Leu2+8-
 抑制—增强细胞(激活)Leu2+8-DR+
 抑制—效应细胞Leu2+8+15+
 组织相容限制的细胞毒性细胞 
 第一类限制性Leu2+15-DR-(7+?)
 第二类限制性Leu3+
 第二类反应性Leu2+
 非组织相容性限制的细胞毒细胞 
 NK亚群Leu7+11+15+
  Leu7-11+15+
  Leu7-11+DR+
B细胞 Leu12+14+16+DR+
  CR2+k+或λ+
 亚群Leu12+1+
  Leu12+1-

  外周血白细胞的机能,特别是淋巴细胞的机能状态在一定程度上反应了机体的免疫机能。近几年来,用FCM来测定某些疾病的淋巴细胞及其亚群已成为重要的诊断和预后判断的指标,如对骨髓、器官移植,白血病、淋巴瘤的诊断和对免疫缺陷病的估价等。测定淋巴细胞亚群的主要依据是在于淋巴细胞表面不同的抗原表现型,而这些表现型又依赖于相应的单克隆抗体而被识别。所以,特异性很高的单克隆抗体结合先进的FCM,已为临床提供了不少非常有用而重要的资料,但被FCM所分析的淋巴细胞的整个临床意义尚未完全认识清楚。随着更多确定淋巴细胞表现型的试剂的应用,FCM对诊断和治疗计划的拟定以及预后的估计将会表现出更重要的实用意义。

  1.T淋巴细胞亚群的测定如前所述,在使用FCM分析时,先用0散射和90光散射双指标将白细胞分为三群:淋巴细胞、单核细胞和粒细胞。在二维点图上划出淋巴细胞群范围后,设立GFL的RFL单指标的直方图。命电子计算机仅计数所输入的淋巴细胞,即划线框出的那部分细胞。一般计数输入的细胞可设1000~5000个。直方图的分析可显示阳性细胞的百分率。应用输入细胞数、阳性细胞百分数以及白细胞分类计数,就能得到阳性细胞的绝对值,即每立方毫米血液中的绝对值。有时T淋巴细胞某亚群的绝对值比百分率更为重要,因为它可以表明T细胞某亚群的增高和减少。当然,淋巴细胞占白细胞的百分数也是一个重要数据,应当准确测出。

  CD4/CD8细胞的比值,有时也用于反映病人淋巴系统的机能状态。不少临床免疫实验室已把CD4/CD8的值作为常规血检查的项目。在国际上,淋巴细胞亚群以及CD4/CD8并未建立统一数值,各实验室均需建立自己的标准。平均值一般为1.73~2.00。

  一般而言,影响淋巴细胞亚群的因素较多,如年龄、性别、种族、以及外周围环境如季节 、药品等的影响。T细胞的绝对值在儿童略高于成人。婴儿CD4细胞的百分率较成年人高;老年人的CD8略低。正常人在一昼夜内也有周期性的波动:上午CD4略低,下午4时之后开始增加,直至次晨,平均波动为15%~20%。尽管正常情况下淋巴细胞亚群有所变动,但仍属正常范围。某些疾病,如器官移植、免疫疾病、免疫抑制和一些淋巴细胞肿瘤,其淋巴细胞亚群及其比值测量结果均可能偏离正常范围。

  有工作报道,传统的T辅助诱导细胞(CD4+)具有抑制机能,而在T抑制细胞毒细胞(CD4+)中,有些又具有协助的功能。因此,对原来设想的CD4、CD8的机能分群有所混淆。预计会有新的单克隆抗体再从CD4和CD8的细胞中分出。不过就目前看来,不少临床免疫实验室已用CD4/CD8比值结合淋巴细胞绝对值对多种疾病的诊断、治疗和预后的估计提供了不少有价值的资料。

  2.艾滋病以及HLTV—III感染艾滋病是一种由人类T淋巴细胞病毒(HLTV--III)感染而造成的疾病。这种病毒主要侵袭CD4+T细胞,而导致CD4淋巴细胞减少,CD4/CD8淋巴细胞比值下降,甚至可低到0.5以下。艾滋病多发生在同性恋性行为活跃的男性,这可能与多次重复感染HLTV-III有关。对异性性行为活跃的人来讲,对HLTV—IIi感染的机会也不容忽视。另一种感染的途径是HLTV血清阳性的献血者对受血者的感染。有部分人血液中T淋巴细胞减少,CD4/CD8比值下降,但HTLV血清反应不一定就是阳性。有些人CD4减少不明显,但CD8有所增加,也会导致CD4/CD8的的比值下降。

  对可疑为艾滋病及血清检验为阳性的人,T细胞亚群是分析了解免疫系统被病毒破坏程度的标志。初诊时,CD4细胞越少,CD4/CD8值越低者,预后越差。所以经治疗后恢复的指标则是CD4细胞数增加,CD4/CD8比值升高。用荧光标记双染色的FCM分析的结果表明,艾滋病人除CD4和CD8的改变外,同时还可以表现出OKT10阳性细胞增多(图10-15)。病人表现为CD8和OKT10同时增加时,预后比OKT10阳性细胞低的病情严重。

图10-15 健康人艾滋病人淋巴细胞表面抗原的比较

艾滋病人Leu3+、Leu8-和Leu3+、Leu8+细胞均减少,而Leu2+、Leu8-细胞相应增加,

Leu2+、Leu7+与Leu23+、Leu10+细胞明显增加

  3.白血病和淋巴瘤的表现型 近年来,为了弄清这些肿瘤的病理组织形态、影响治疗效果的原因与免疫状态的相互关系,对于不同类型的白血病和淋巴瘤作为广泛的细胞表面表现型的研究。

  在诊断方面,FCM与单克隆抗体结合,可以弄清这些肿瘤的免疫起源,特别是分清B细胞性、T细胞性或骨髓性肿瘤。同时,还可以证实一些与细胞起源相关的抗原,如普通急性淋巴细胞性白血病抗原(CALLA、CD10)。另外,可以用适当的试剂从反应免疫过程中来证实单克隆的肿瘤细胞的增殖。

  大部分淋巴系统肿瘤均起源于B细胞。而B细胞肿瘤常用抗免疫球蛋白的抗体来证实。由于前B细胞与浆细胞表面均无免疫蛋白,所以用检测免疫球蛋白的办法就只能证实B细胞发育中间时期的肿瘤。目前,已有一系列的B细胞表面抗原被发现,而可以证实B细胞个体发育的各个时期的肿瘤。

  对B细胞肿瘤最有价值的抗原是CALLA。这种抗原仅存在于B细胞正常以育期的前B细胞、早期B细胞以及80%~90%的急性淋巴细胞性白血病。因此,抗CALLA抗体可以区别淋巴细胞性和髓性白血病。用抗CALLA结合其它一些成熟B细胞的单克隆抗体,如CD19,CD20,CD24(B4,B1,BA-1)将能证实大部分B细胞来源的肿瘤。图10-16给出了B细胞分化的各个时期细胞膜的表现型。来源于B细胞的肿瘤和正常B细胞的表现型相似,也就是说,B细胞前身、成熟B细胞及最后分化为分泌B细胞—浆细胞。

图10-16 B细胞分化各时期的细胞膜表现型

  由于T淋巴细胞来源的肿瘤浸润性较强,预后较差,并需要多种治疗。T细胞肿瘤的表现型千变万化,但大部分均表现T细胞抗原CD7(Leu9,3A)或其它T细胞抗原CD2、CD5(OKT11,OKT1)。这些抗原与肿瘤的细胞成熟时间有关,因而有助于拟定治疗方案。从FCM分析的结果表明,非成熟的T细胞肿瘤常表现非成熟的T细胞抗原,如CD1和t10。而成熟的T细胞肿瘤则仅表现成熟T细胞抗原:CD2、CD3、CD5和CD7。有时也可表现CD2、CD8,但不会出现在同一个细胞上面。

  由于肿瘤细胞的多种来源,很难避免在肿瘤标本中混杂正常细胞,这给FCM的分析带来技术上的困难。如残留的红细胞在FCM分析时,落入淋巴细胞框定的范围内而造成淋巴细胞各种亚群百分率下降。所以在制备标本时,应尽量想法去除红细胞。另一种污染是正常细胞存在于肿瘤细胞之间,这是一个很头痛的问题。例如骨髓常被外周血污染,反应性的正常淋巴细胞渗入到肿瘤组织中等,因此估计污染程度对解释FCM分析的资料有一定的意义。因为在FCM分析时,正常细胞与肿瘤细胞可能由于不同的体积和密度而被分开,根据对污染的估计,仔细分析图像就能得到比较正确的结果。

  4.FCM对正常B细胞和B细胞肿瘤分析  FCM对正常B细胞和B细胞肿瘤的分析在免疫学研究和临床诊断上有着重要的实用价值,B细胞的某些特征必须使用FCM来分析,但是这在FCM技术方法中仍存在着一些需要解决的问题。

  (1)B细胞的标记:B细胞膜表现免疫球蛋白(SIg)存在于所有成熟B细胞。最早的B细胞前身,细胞质内含有免疫球蛋白M(IgM),但不存在于细胞膜表面。细胞质内IgM的证实以及同时测定细胞表面的SIg,对FCM是很困难的,当然今后可能会用双染法来解决这样的难题。大部分成熟B细胞具有SIgM和SIgD,少量具有SIgG和SIgA,当然这也可能是因为不同的亚群的缘故。但仅以Ig的重链来分类B细胞是不可靠的,因为B细胞可以从膜表面的IgM逐渐转变成IgG,因而从重链着手无法把B细胞分类。大部分B细胞肿瘤也表现出带有SIgM和SigD。随着B细胞逐渐转变成浆细胞,膜表面Ig逐渐丧失,在细胞质内又出现大量的免疫球蛋白。

  与重链相反,B细胞的整个发生期只有一种k或者λ轻链,B细胞肿瘤克隆仅表现一种轻链,因此通过在FCM上显示的不平衡的轻链表现可以确定B细胞肿瘤。测定方法见(3)。

  用SIg的最大缺点是它的“嗜细胞性”,因为正常B细胞、自然杀伤细胞(NK)、激活T细胞以及所有巨噬细胞均有Fc段受体,因而可以不同程度地与抗SIg单克隆抗体的Fc段结合而产生非特异性的结果,因此选择抗体时,应使用已被胃蛋白酶消化过的、Fc段也被去除的、仅留下来的F(ab’)2

  (2)FCM测定B细胞的临床指证:

  ①免疫缺陷;免疫缺陷可以是先天性或获得性的。低丙种球蛋白白血症和无丙种球蛋白白血症常伴有免疫球蛋白分泌的紊乱,因此有必要分析B细胞。

  ②淋巴瘤:非何杰金氏病的淋巴病,80%来源于B细胞。因而一旦怀疑为淋巴瘤,就应仔细用FCM对B细胞的表现型进行分析,可以分析血、骨髓、以及活检淋巴结等。首先确定肿瘤细胞的来源:B细胞性(CD20+,SIg+)或T细胞性(CD3+)。也有可能某些淋巴病来源于单核细胞(CD11+)成裸细胞而表现出非T非B。一旦确立为B细胞来源后,就应更进一步分析克隆增殖的性质:单克隆、少克隆、或是多克降珠。单克隆性的增殖往往是肿瘤的标志。可以用SIg的轻链和重链分别加以测试,往往轻链比重链更有价值。在不久的将来,或许可以直接用免疫球蛋白的基本加以鉴别。

  对B细胞亚群的确定,目前并未定论,但某些B细胞被CD5(T1,OKT1)染色。正常B细胞中这些细胞较少,而多见于慢性淋巴性白血病和骨髓移植后的免疫缺陷时期。在B细胞的肿瘤病人中,10%的也可以出现CD20(B1)阴性反应,这是B细胞成熟而将分化为浆细胞的标志。在异常B细胞上,往往有一些B细胞的标记缺失或其它表现型出现,因而对异常B细胞的FCM的分析尤为重要。图10-17显示CD19—FITc(B细胞)和CD5-PE(T细胞)双染色的假三维图像分析。X轴为绿色荧光的Leu12(B细胞),Y轴为红色荧光的PE—Leu1(T细胞)。从图中可见,有较多的细胞表现出Leu12+tLeu1+,阴性区内为NK细胞和红细胞等。

图10-17 异常B细胞双染色的假三维图

  (3)k-λ测定B细胞克隆:k、λ测定法是一种从正常B细胞中测定少量B细胞克隆生长的方法。其基本原理是:若有B细胞克隆存在,将改变某一种轻链(k或λ)的荧光强度的分布。若轻链为k的B细胞生长,则抗k的抗体能测试出这种变化,而抗λ的抗体的测试没有任何改变。正常情况下,B细胞的k和λ的荧光强度分布是一致的(见图10-18)。

图10-18 k-λ克隆的测定

正常情况,B细胞轻链分布图像,一致κ和λ的波形没有区别。但在异常时,若有单克隆生长,κ链有分布则与λ不一致,在总和的曲线形态上也会产生差异。

  在实际应用中,血液、体液、组织细胞的悬浮液效果均较好,而对于骨髓,大量细胞的非特异性标记会影响测定的结果。这里面必须强调,正常B细胞中的克隆细胞生长并不意味着它们必然是肿瘤细胞,还必须结合其它指标再做结论。不过这种方法对确定肿瘤细胞的存在、细胞发育阶段、以及经治疗后病情控制的状况等,都可以提供一些有用的资料。

  以上仅限于从外周血的白细胞分析这一侧面介绍了FCM的某些疾病中的临床应用。其实,它也仅只是问题的一个部分。例如,有研究工作表明:CD34抗原在由红系、巨核系、粒系和巨噬细胞三个细胞成株单元组成的成株细胞中有所表现。CD34+细胞在人的骨髓细胞中约占1~4%,而在外周血中却探测不到。又如,NK细胞近来被认为可能和人类的某些疾病的发病机理有关,对NK细胞的测量可以作为免疫治疗的免疫监测的重要参数和有效的预后征状的指示。以前是用放射性的51Cr的释放来检测NK敏感的靶细胞的毒理学活性从而评估NK的功能的,而采用荧光探针CFDA(car-boxy—fluoresceindiacetate)标记则可用FCM技术更为安全可靠地进行测定。有报告指出,健康男人的数值为(67.1±22.7%)%,健康女人为(63.9±20.0%);患有妇科癌肿病人则为(38.5±23.1)%,明显偏低。这些工作表明,FCM的技术从免疫组织化学角度还会有所发展。在第二节 我们曾简单介绍了流式细胞分析技术在生物医学工程中应用的一些技术途径,这也可以启发我们借助于FCM来提高免疫组织化学的分析能力。可以预见,FCM一定会成为免疫组织化学的一项重要的技术工具,并将在医学科研和临床应用中发挥更大的作用。

  附【美国Becton–Dickinson公司可提供的FCM标准】荧光微球(Fluorescentbeads);鸡红细胞核(Chickenerythrocytenu-clei)和小牛胸腺细胞核(Calfthymocytenuclei),用于DNA测量的质量控制;单克隆抗体试剂;以及用于免疫表型(immunopheno-typing)和其它临床应用的药盒。

  参考文献

  1.HolmDM,etal.Animprovedflowmicrofluoremeterforrapidmeasurementofcellfluorescence.Exp.Cell.Res.,1973;80:105

  2.SteinkampJA,etal.Multiparameteranalysisandsortingofmammaliancells.Exp.CellRes.,1974;84:15~32

  3.SteenHB,etal.Differentialoflight-scatteringdetectioninarc—lamp–Illuminationflowcytometry.Cytometry,1985;6(3):273~275

  4.LokenMR,etal.Flowcytometryasananalyticaalpreparetivetoolinimmunology.J.Immunol.Methods.,1982;50(3):85~112

  5.SmartYC,etal.Flowcytometricceumerationofabsolutelymphocytenumberinperipheralbloodusingtwoparametersoflightscatter.Cy-tometry,1985;6(2):172~174

  6.DvaiesEG,etal.Lymphocytesubpopulationsinprimaryimmunodeficiencedisorders.Arch.Dis.Child.,1983;58:346~351

  7.CampbellA,etal.Lymphocytesubpopulationsinthebloodofnewborninfants.Clin.Exp.Immunol.,1974;18:469~482

  8.ShackneySE.TheuseofflowcytometryinthediagnosisandBIOLOGicalcharacterizationofthenonHodgkin’slymphomas.Ann.NY.Acad.Sci.,1986;486:171~177

  9.FoucarK,etal.Flowcytometryinlymphoma.Am.J.Surg.Pathol.,1986;10(8):584~585

  10.HoffonanRA,etal.Immunofluorescentanalysisofbloodcellsbyflowcytometry.Int.J.Immuno—Pharmacol,1981;3(3):249~254

  11.FaheyJL,etal.QuantitativechangesinT—helpperorT—suppressor/cytotoxiclymphocytesubsetsthatdistinguishacquiredimmunedefi-ciencysyndromefromotherimmunesubsetdisorders.Am.J.Med.,1984;76:95~100

  12.EichnerRD,etal.LAV/HTLV-IIIplaysadominantroleintheetiologyofAIDS.AIDSRES.,1984;1(4):237~241

  13.SmithBR,etal.CirculationmonoclonalBlymphocytesinnon—Hodgkin’slymphoma.J.Med.,1984;311:1476~81

  14.CommitteeonHumanLeukocyteDifferentiationAntigens,IUIS-WHoNomenclatureSubcommittee.DifferentiationHuman.LeukocyteAntigens:aproposednomenclature.Immunol.Today,1984;5:158~159

  15.ClearyML,etal.ImmunoglobulingenerearrangementsasadiagnositiccriterionofBcelllymphomas.Proc.Natl.Acad.Sci.USA,1984;81:593~597

  16.WeinbergDS,etal.CytofluorometricdetectionofBcellclonalexcess:anewapproachtothediagnosisofBcelllymphoma.Blood,1984;63:1080~1087

  17.GrayJW,etal.Cellcycleanalysisusingflowcytometry.Int.J.Radian.Biol.,49(2):237~255

  18.MartiGE,etal.Normalhumanblooddensitygradientlymphocytesubsetanalysis.Aninterlaboratoryflowcytometriccomparisonof85nor-maladults.Am.J.Jematol.,1985;20(1):41~52

  19.LevyEM,etal.DefectiveTcelldifferentiationinacquiredimmunedefeciencesyndrome(AIDS).J.Clin.Immunol.,1986;77(6):1756~1761

  20.SchjnitzerB,etal.AmericanadultTcellleukemja/lymphoma:aflowcytometricandmorphologicalstudy.Ann.NY.Acad.Sci.1986;486:256~267

  21.VandillaMA,etal.(eds)flowCytometry:InstrumentandDataAnalysis.London:AcademicPress,1985

  22.MelamedMR,etal,(eds)flowCytometryandsorting.2nded.NewYork:JohnWiley&Sons,1990

  23.IwaoNishiyaetal,(eds)flowcytometryandImageAnalysisforclinicalapplications,ExcerptaMedica.Netherlands,1991

  24.宋平根,等.流式细胞术的原理和应用.北京:北京师范大学出版社,1992

免责声明 本文仅代表作者个人观点,与本网无关。其创作性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
版权声明 未经蚂蚁淘授权不得转载、摘编或利用其他方式使用上述作品。已经经本网授权使用作品的,应该授权范围内使用,并注明“来源:蚂蚁淘”。违反上述声明者,本网将追究其相关法律责任。
相关文章