
- SynonymKITLG,FPH2,KL-1,Kitl,MGF,SCF,SF,SHEP7,KL
- SourceBiotinylated Human SCF, Avitag,His Tag (SCF-H82E1) is expressed from human 293 cells (HEK293). It contains AA Glu 26 - Ala 190 (Accession # AAH69797).Predicted N-terminus: Glu 26Request for sequence
- Molecular Characterization
This protein carries an Avi tag (Avitag™) at the C-terminus, followed by a polyhistidine tag.
The protein has a calculated MW of 21.7 kDa. The protein migrates as 26-38 kDa under reducing (R) condition (SDS-PAGE) due to different glycosylation.
- BiotinylationBiotinylation of this product is performed using Avitag™ technology. Briefly, the single lysine residue in the Avitag is enzymatically labeled with biotin.
- Biotin:Protein RatioThe biotin to protein ratio is 0.5-1 as determined by the HABA assay.
- EndotoxinLess than 1.0 EU per μg by the LAL method.
- Purity
>95% as determined by SDS-PAGE.
- Formulation
Lyophilized from 0.22 μm filtered solution in PBS, pH7.4. Normally trehalose is added as protectant before lyophilization.
Contact us for customized product form or formulation.
- Reconstitution
Please see Certificate of Analysis for specific instructions.
For best performance, we strongly recommend you to follow the reconstitution protocol provided in the CoA.
- Storage
For long term storage, the product should be stored at lyophilized state at -20°C or lower.
Please avoid repeated freeze-thaw cycles.
This product is stable after storage at:
- -20°C to -70°C for 12 months in lyophilized state;
- -70°C for 3 months under sterile conditions after reconstitution.

Biotinylated Human SCF, Avitag,His Tag on SDS-PAGE under reducing (R) condition. The gel was stained overnight with Coomassie Blue. The purity of the protein is greater than 95%.

Immobilized Human CD117, Fc Tag (Cat. No. CD7-H5255) at 2 μg/mL (100 μL/well) can bind Biotinylated Human SCF, Avitag,His Tag (Cat. No. SCF-H82E1) with a linear range of 0.1-3 ng/mL (QC tested).
- BackgroundKit ligand (KITLG) is also known as stem cell factor (SCF), mast cell growth factor (MGF), steel factor (SF), which belongs to the SCF family, and is a widely expressed 28 - 40 kDa type I transmembrane glycoprotein. KITLG is the ligand for the receptor-type protein-tyrosine kinase KIT. SCF / MGF plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. KITLG / SCF binding can activate several signaling pathways. KITLG / SF Promotes phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, and subsequent activation of the kinase AKT1. KITLG / SCF and KIT also transmit signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. KITLG / SCF and KIT promote activation of STAT family members STAT1, STAT3 and STAT5. KITLG / SCF and KIT promote activation of PLCG1, leading to the production of the cellular signaling molecules diacylglycerol and inositol 1, 4, 5 - trisphosphate. KITLG / SCF acts synergistically with other cytokines, probably interleukins.
- References
- (1)Anderson DM, et al., 1991, Cell Growth Differ. 2 (8): 373–8.
- (2)Broudy VC, 1997, Blood 90 (4): 1345–64.
- (3)Blouin R, Bernstein A, 1993, In Freedman MH, Feig SA.Boca Raton: CRC Press.
- (4)Kent D, et al., 2008, Clin. Cancer Res. 14 (7): 1926–30.
Please contact us via TechSupport@acrobiosystems.com if you have any question on this product.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
第一批用于细胞生物学的荧光蛋白包括藻胆蛋白(phycobiliproteins)和从蓝藻(cyanobacteria)中提取的触角光合色素(photosynthetic antenna pigments)。这些生物大分子都含有多种胆汁三烯生色基团(bilin chromophores)。这些生色基团都包裹在一种基质结构中,这样就能将它们的淬灭作用降至最小,因此这些藻胆蛋白的荧光亮度要比小分子荧光染料的亮度高出两个数量级。不过这些藻胆蛋白的“个头(分子量高达200KD)”也限制了它们在细胞内的扩散,因此,它们也只能与抗体联用,在流式细胞术试验或ELISA试验中用来检测细胞表面的蛋白质分子。
自从科学家从维多利亚发光水母(jellyfish Aequorea victoria)中发现了绿色荧光蛋白(GFP)之后,生物成像领域就发生了革命性的改变。单独表达绿色荧光蛋白或与其它蛋白融合表达就可以在细胞内发出绿色荧光了,使用这种方法除了需要氧气O2之外,不再需要任何其它的试剂参与,因为生色基团是通过自发环化作用形成的,需要对深埋在直径约2.4纳米至4纳米的β桶(beta barrel)核心里的三个氨基酸(丝氨酸-酪氨酸-氨基乙酸)进行氧化才能发出荧光。绿色荧光蛋白只是荧光蛋白大家族中的一员,这些荧光蛋白大部分都来自海洋腔肠动物,因为各自含有共价结构不同以及非共价环境不同的生色基团,所以可以发出不同颜色的荧光。在实验室中对这些荧光蛋白进行遗传修饰之后可以进一步的丰富它们的特性,比如增加亮度和折叠效率、减少寡聚体形成等。突变既可以增加荧光蛋白的光稳定性,还可以赋予荧光蛋白光操控性,比如控制荧光发射与否,或者发出哪种荧光。这种光操控性既可以是可逆的也可以是不可逆的,可以用于监测蛋白的弥散过程、运输过程和老化过程等。虽然荧光蛋白在生色基团形成的过程中会生成H2O2,但似乎没有产生太多的活性氧簇(ROS),这一点也并不奇怪,因为荧光蛋白在进化过程中都是暴露在阳光下的。不过我们也可以对荧光蛋白进行改造使其能够形成ROS。荧光蛋白发出的荧光一般对它们所处的生化环境都不太敏感,但是酸性环境或变性剂的存在可以淬灭荧光。不过现在我们已经有了经过改造的、能耐受酸性环境或者能对金属离子、卤化物离子和巯基二硫化物氧化还原剂起反应的荧光蛋白。展开
是这个文献nanomedicine 2009;5:73-82
Karmali写的
(2)荧光标记法 : 使用二乙酸荧光素(FDP)、碘化丙啶(PI)或异硫氰酸荧光素钠标记的荧光染料与细胞共孵育,用流式细胞仪检测荧光染色阳性细胞的比率。此法其实是(1)法的“荧光”版,但其在灵敏性和准确性方面明显要优于后者。
(3)硝酸镧(La)示踪法: 在正常的生物组织中镧微粒可沉积于细胞间隙,但不能穿过具有1~ 2nm 微小间隙的细胞膜性结构(包括细胞膜和细胞器膜),也不能穿过细胞间的紧密连接。在膜性结构通透性增高时, 镧微粒则可进入细胞、细胞器和紧密连接内, 并在电镜下显示, 镧盐标记技术被认为是一种有效的监测细胞膜通透性变化的标记技术。
(4)LDH释放法: 在正常情况下,细胞内大分子物质LDH 是不能通过细胞膜的, 但在细胞膜受损伤而通透性增加时,可通过受损的细胞膜释放出来。LDH 能较好地反映细胞膜损伤程度。类似的还有检测细胞外K+的漏出率等。
可以用CCR3的抗体标记其他细胞,再反推中性粒细胞所占的比例吗?肺泡灌洗液中主要有嗜酸性粒细胞,淋巴细胞,中性粒细胞和巨噬细胞。
比如你用的CD1a-FITC(如果是鼠单抗IgG1,那对照抗体就要用相同物种的非特异性IgG1-FITC)。注意浓度要相同。一般提供抗体的公司BD,santa cruz等有提供的。其他就按照说明书的推荐浓度和孵育时间。
CD11C:树突细胞,单核细胞,巨噬细胞,中性粒细胞

