请使用支持JavaScript的浏览器! 金洋娱乐手机网页版福布斯最新体育团队价值榜出炉!尼克斯 ..._蚂蚁淘,【正品极速】生物医学科研用品轻松购|ebiomall -蚂蚁淘商城
当前位置: > 首页 > 技术文章 >
金洋娱乐手机网页版福布斯最新体育团队价值榜出炉!尼克斯 ...
来自 : mayitao
货号:NAN201003Magnetherm
MagneTherm™磁流体热疗测试系统
MagneTherm™磁流体热疗分析系统是Nanotherics公司的一种高精度磁流体热疗测试系统该系统通过控制表面功能化的磁性纳米颗粒产热用于热疗治疗。
MagneTherm™磁流体热疗分析系统使用交变磁场(AMF)和磁纳米颗粒(MNPs)作为肿瘤和其他细胞的加热方法,通过施加一定强度的交变磁场,磁性微粒在交变磁场作用下能吸收电磁波能量转化为热能,系统控制热能局限于肿瘤组织,可导致细胞的凋亡及坏死,从而实现对肿瘤的热疗和相关研究。该系统还能控制纳米磁流体运动的组织靶向性和细胞特异靶向性,进行细胞外和细胞内多重磁流体热疗分析。
 
 系统原理 
通过控制纳米尺度的磁性颗粒定位于肿瘤组织,然后施加一外部交变磁场,使材料因产生磁滞、驰豫或感应涡流而被加热,这些热量再传递到材料周边的肿瘤组织中,使肿瘤组织温度超过42℃并导致细胞的凋亡及坏死,从而实现对肿瘤的治疗。
MagneTherm™磁流体热疗测试系统杀伤肿瘤细胞的主要原理有:
(1)高温使瘤细胞线粒体膜的流动性改变,破坏DNA合成所需的酶系导致瘤细胞死亡;受热后肿瘤组织的pH值降低,增加了对瘤细胞的杀伤作用;
(2)肿瘤血管不规则,散热能力低,增加了高温作用于肿瘤组织的选择性,增加了NK细胞的活性,NK细胞无须经肿瘤抗原激活就有杀伤肿瘤细胞活性,其杀伤作用主要通过其表面的肿瘤细胞受体与肿瘤细胞相结合,释放溶细胞素。
(3)促进树突状细胞(DC)的成熟,未成熟的树突状细胞是成熟树突状细胞的前体,具有强大的抗原摄取能力。但因其表面表达低水平的MHCⅠ、Ⅱ及共刺激分子,因而不能有效地将抗原提呈给T淋巴细胞,对T细胞的刺激能力降低。成熟的树突状细胞能够显著刺激初始树突状细胞细胞进行增值,因此树突状细胞是机体免疫应答的始动者。
(4)磁流体热疗还能增加肿瘤细胞表面MHCⅠ表达,从而激活了T细胞介导的抗肿瘤免疫反应。

上图为不同浓度的磁流体(Fe3O4)在交流磁场中的加热性能对比
产品优势:
该magneTherm™有超过安全和可耐受的磁场剂量,而且具有很大的灵活性,方便研究者根据要求改变频率和场强来应用不同的细胞和组织体系。可以对细胞(贴壁或悬浮液)和三维细胞培养体系进行磁流体热疗分析。
  1. 10种不同的标准频率,频率范围从50千赫兹至1兆赫兹
包括110kHz,168kHz,176kHz,262kHz,335kHz,474kHz,523kHz,633kHz,739kHz,987kHz。
  1. 拥有高达25毫特斯拉(mT)的磁场强度,且磁场强度可变
  2. 优良的保温隔热
  3. 运行PCR小瓶或小管(容量从1毫升到50毫升)
  4. 可运行35毫米培养皿(培养生物膜/细胞/三维组织)
  5. 台式装置,占用较小的工作面积
  6. 低温制冷系统轻便,没有笨重的附属设施

4、应用领域 
肿瘤治疗研究 
热疗正成为继手术、放疗、化疗和免疫疗法后出现的第五种癌症治疗手段。目前已在临床上得到应用,但是由于其加热受到部位和组织的限制,而且对肿瘤的加热也不均匀,严重影响了热疗的效果。已有的研究表明,磁热疗可以起到很好的组织内靶向热疗作用,而且也不受肿瘤体积和部位的影响,特别是近年来还发现磁热疗具有“热旁观者”效应,从而引起人们的广泛关注,热疗用的不同磁性材料更成为国内外的研究热点。



热休克蛋白研究 
热疗联合化疗药物能提高机体的免疫功能,避免放、化疗的毒副作用。热休克蛋白(heatshockprotein,HSP),主要参与肿瘤抗原的加工呈递,可作为抗原呈递分子直接将肿瘤的抗原肽呈递给T细胞,激发T细胞介导的细胞免疫,其中HSP70最为引人关注。机体免疫能力和肿瘤之间的作用是相互的,一方面机体免疫影响肿瘤的发展,另一方面肿瘤也能改变机体的免疫功能。对于恶性肿瘤的治疗,除外科手术外,化疗和放疗也是目前最主要的治疗方法。但化、放疗除耐药性及剂量受限外,它们在杀伤肿瘤的同时,正常组织和细胞也受到损伤,甚至引起致死性并发症。
药物释放控制研究 
控制药物释放的技术可以保证药物缓慢长期的效用,保持最优血液中药物浓度,从而达到最佳的治疗效果。其优点在于利于药物吸收和新陈代谢,优化疗法的效果。通过控制独特的纳米微粒携带药物输送技术,可以更有效的药物控制释放,将药物渗透到实体肿瘤,通过利用磁性纳米粒药系统结合磁流体热疗分析可以控制药物释放使得药物在定点区域杀伤靶标癌细胞。

SophieLaurent,etal.Magnetic?uidhyperthermia:Focusonsuperparamagneticironoxidenanoparticles.AdvancesinColloidandInterfaceScience166(2011)8–23
磁性纳米颗粒介导的生物膜处理 
细菌群落附着到表面上,通过分泌细胞外聚合物基质形成生物膜。生物膜的形成提供了病原性细菌对抗生素的抗性,还会促进微生物慢性感染的发展。超顺磁性氧化铁纳米颗粒(SPIONs)的应用可以显著降低治疗的生物材料介导的感染几率。SPIONs的磁性靶向性,可允许它们渗透到生物膜内部,通过使用交流磁场加热降低细菌群落的生存能力。这种处理是非常有效的,特别是对抗生素耐药菌株和抗生素抗性生物膜的治疗中已经显示出其应用前景。
已应用的磁流体纳米颗粒类型包括
  1. 表面官能化的磁铁矿(Fe3O4)
  2. 涂覆有银磁赤铁矿(氧化铁)
  3. 磁铁矿(Fe3O4)
  4. 钴掺杂磁铁矿
  5. 铁核心/铁氧化物壳纳米颗粒
  6. 涂有金的磁赤铁矿(氧化铁)
  7. 氧化铁纳米晶体(IONCs)
  8. 胶体Greigite(Fe3S4)纳米片
  9. 系统组成部分 

  10. 包括直流电源供应系统,函数信号发生器,示波器等 
    直流电源供应系统:24cm(W)x32cm(D)x13cm(H)???重量:6kg 
    函数信号发生器:22cm(W)x29cm(D)x10cm(H)???重量:2.8kg 
    示波器:35cm(W)x44cm(D)x17cm(H)???重量:8kg
    主要配件 
    17匝线圈
    9匝线圈
    带有万用表功能的热电偶适配器
    示波器
    函数信号发生器
    温度探头(T型热电偶)
    直流稳压电源
    聚苯乙烯试管样品
    管线和垫片
    冷却水连接管
    连接电缆
    系统所能提供的频率和磁场强度

    频率
    FREQUENCY
    最大磁场强度(毫特斯拉)MaximumFieldStrength(mT)最大场强(奥斯特)
    MaximumFieldStrength(Oersted)
    最大磁场强度(kA/m)
    MaximumFieldStrength(kA/m)
    1102525019.9
    1681717013.5
    1762323018.3
    2622323018.3
    3351717013.5
    474111108.7
    5232020015.9
    6339907.2
    7391616012.7
    987121209.5
    注:如果需要,所有的场强均可以由操作者从最大减小到零
magneTherm PublicationsSummary
·Pankhurst,Q.A.,Connolly,J.,Jones,S.K.andDobson,J.J.,2003. Applicationsofmagnetic
nanoparticlesinbiomedicine.JournalofphysicsD:Appliedphysics,36(13),p.R167.doi:
10.1088/0022-3727/36/13/201
·Krishnan,K.M.,2010. Biomedicalnanomagnetics:aspinthroughpossibilitiesinimaging,
diagnostics,andtherapy. Magnetics,IEEETransactionson,46(7),pp.2523-2558.doi:
10.1109/TMAG.2010.2046907
·Khandhar,A.P.,Ferguson,R.M.andKrishnan,K.M.,2011. Monodispersedmagnetite
nanoparticlesoptimizedformagneticfluidhyperthermia:Implicationsinbiologicalsystems.
Journalofappliedphysics,109(7),p.07B310.doi:10.1063/1.3556948
·Paolella,A.,George,C.,Povia,M.,Zhang,Y.,Krahne,R.,Gich,M.,Genovese,A.,Falqui,A.,
Longobardi,M.,Guardia,P.andPellegrino,T.,2011. Chargetransportandelectrochemical
propertiesofcolloidalgreigite(Fe3S4)nanoplatelets. ChemistryofMaterials,23(16),pp.3762-
3768.doi:10.1021/cm201531h
·Khandhar,A.P.,Ferguson,R.M.,Simon,J.A.andKrishnan,K.M.,2012. Enhancingcancer
therapeuticsusingsize-optimizedmagneticfluidhyperthermia.Journalofappliedphysics,
111(7),p.07B306.doi:10.1063/1.3671427.
·Khandhar,A.P.,Ferguson,R.M.,Simon,J.A.andKrishnan,K.M.,2012. Tailoredmagnetic
nanoparticlesforoptimizingmagneticfluidhyperthermia. JournalofBiomedicalMaterials
ResearchPartA,100(3),pp.728-737.doi:10.1002/jbm.a.34011
·Roca,A.G.,Wiese,B.,Timmis,J.,Vallejo-Fernandez,G.andOGrady,K.,2012.Effectoffrequency
andfieldamplitudeinmagnetichyperthermia.Magnetics,IEEETransactionson,48(11),pp.4054-
4057.doi:10.1109/TMAG.2012.2201459
·Armijo,L.M.,Brandt,Y.I.,Mathew,D.,Yadav,S.,Maestas,S.,Rivera,A.C.,Cook,N.C.,Withers,N.J.,
Smolyakov,G.A.,Adolphi,N.L.,Monson,T.C.,Huber,D.L.,Smyth,H.D.andOsińskiM.,2012. Iron
oxidenanocrystalsformagnetichyperthermiaapplications. Nanomaterials,2(2),pp.134-146.
doi:10.3390/nano2020134
·Armijo,L.M.,Brandt,Y.I.,Withers,N.J.,Plumley,J.B.,Cook,N.C.,Rivera,A.C.,Yadav,S.,
Smolyakov,G.A.,Monson,T.,Huber,D.L.andSmyth,H.D.,2012. Multifunctional
superparamagneticnanocrystalsforimagingandtargeteddrugdeliverytothelung.InSPIE
BiOS(pp.82320M-82320M).InternationalSocietyforOpticsandPhotonics.doi:10.1117/12.913577
·Armijo,L.M.,Brandt,Y.I.,Rivera,A.C.,Cook,N.C.,Plumley,J.B.,Withers,N.J.,Kopciuch,M.,
Smolyakov,G.A.,Huber,D.L.,Smyth,H.D.andOsinski,M.,2012. Multifunctional
superparamagneticnanoparticlesforenhanceddrugtransportincysticfibrosis. InSPIE
NanosystemsinEngineering+Medicine(pp.85480E-85480E).InternationalSocietyforOpticsand
Photonics.doi:10.1117/12.943621
·Guardia,P.,DiCorato,R.,Lartigue,L.,Wilhelm,C.,Espinosa,A.,Garcia-Hernandez,M.,Gazeau,F.,
Manna,L.andPellegrino,T.,2012. Water-solubleironoxidenanocubeswithhighvaluesof
specificabsorptionrateforcancercellhyperthermiatreatment. ACSnano,6(4),pp.3080-3091.
doi:10.1021/jp310771p
·DelaPresa,P.,Luengo,Y.,Multigner,M.,Costo,R.,Morales,M.P.,Rivero,G.andHernando,A.,
2012. Studyofheatingefficiencyasa functionofconcentration,size,andappliedfieldin γ-
Fe2O3nanoparticles. TheJournalofPhysicalChemistryC,116(48),pp.25602-25610.doi:
10.1021/jp310771p
·Riedinger,A.,Guardia,P.,Curcio,A.,Garcia,M.A.,Cingolani,R.,Manna,L.andPellegrino,T.,2013.
Subnanometerlocaltemperatureprobingandremotelycontrolleddrugreleasebasedonazofunctionalized
ironoxidenanoparticles. Nanoletters,13(6),pp.2399-2406.doi:10.1021/nl400188q
magneTherm™publicationsPI-405-35
nanoThericsLtd,Studio3–Unit3,SilverdaleEnterpriseCentre,Staffordshire,ST56SR.UnitedKingdom.www.nanotherics.com
·Vallejo-Fernandez,G.,Whear,O.,Roca,A.G.,Hussain,S.,Timmis,J.,Patel,V.andOGrady,K.,
2013. Mechanismsofhyperthermiainmagneticnanoparticles. JournalofPhysicsD:Applied
Physics,46(31),p.312001.doi:10.1088/0022-3727/46/4/043001.
·Byrne,J.M.,Coker,V.S.,Moise,S.,Wincott,P.L.,Vaughan,D.J.,Tuna,F.,Arenholz,E.,vander
Laan,G.,Pattrick,R.A.D.,Lloyd,J.R.andTelling,N.D.,2013. Controlledcobaltdopinginbiogenic
magnetitenanoparticles. JournalofTheRoyalSocietyInterface,10(83),p.20130134.
doi:10.1098/rsif.2013.0134.
·Kim,M.,Kim,C.S.,Kim,H.J.,Yoo,K.H.andHahn,E.,2013. EffecthyperthermiainCoFe2O4@
MnFe2O4nanoparticlesstudiedbyusingfield-inducedMössbauerspectroscopy. Journalofthe
KoreanPhysicalSociety,63(11),pp.2175-2178.
·Savva,I.,Odysseos,A.D.,Evaggelou,L.,Marinica,O.,Vasile,E.,Vekas,L.,Sarigiannis,Y.and
Krasia-Christoforou,T.,2013. Fabrication,characterization,andevaluationindrugrelease
propertiesofmagnetoactivepoly(ethyleneoxide)poly(l-lactide)electrospunmembranes.
Biomacromolecules,14(12),pp.4436-4446.doi:10.1021/bm401363v.
·NGuyen,T.T.,Duong,H.T.,Basuki,J.,Montembault,V.,Pascual,S.,Guibert,C.,Fresnais,J.,Boyer,
C.,Whittaker,M.R.,Davis,T.P.andFontaine,L.,2013. FunctionalIronOxideMagnetic
NanoparticleswithHyperthermiaInducedDrugReleaseAbilitybyUsingaCombinationof
OrthogonalClickReactions. AngewandteChemieInternationalEdition,52(52),pp.14152-14156.
doi:10.1002/ange.201306724
·Armijo,L.M.,Kopciuch,M.,Olszόwka,Z.,Wawrzyniec,S.J.,Rivera,A.C.,Plumley,J.B.,Cook,N.C.,
Brandt,Y.I.,Huber,D.L.,Smolyakov,G.A.andAdolphi,N.L.,2014. Deliveryoftobramycincoupled
toironoxidenanoparticlesacrossthebiofilmofmucoidalPseudonomasaeruginosaand
investigationofitsefficacy.InSPIEBiOS(pp.89550I-89550I).InternationalSocietyforOpticsand
Photonics.doi:10.1117/12.2043340
·Kolosnjaj-Tabi,J.,DiCorato,R.,Lartigue,L.,Marangon,I.,Guardia,P.,Silva,A.K.,Luciani,N.,
Clément,O.,Flaud,P.,Singh,J.V.andDecuzzi,P.,2014. Heat-generatingironoxidenanocubes:
subtle “destructurators”ofthetumoralmicroenvironment.ACSnano,8(5),pp.4268-4283.doi:
10.1021/nn405356r
·Kim,S.J.,Hyun,S.W.,Kim,C.S.andKim,H.J.,2014. ThermalvariationofMgZnnanoferritesfor
magnetichyperthermia. JournaloftheKoreanPhysicalSociety,65(4),pp.553-556.doi:
10.3938/jkps.65.553
·Céspedes,E.,Byrne,J.M.,Farrow,N.,Moise,S.,Coker,V.S.,Bencsik,M.,Lloyd,J.R.andTelling,
N.D.,2014. Bacteriallysynthesizedferritenanoparticlesformagnetichyperthermia
applications.Nanoscale,6(21),pp.12958-12970.doi:10.1039/C4NR03004D.
·Nesztor,D.,Bali,K.,Tóth,I.Y.,Szekeres,M.andTombácz,E.,2015. Controlledclusteringof
carboxylatedSPIONsthroughpolyethylenimine. JournalofMagnetismandMagneticMaterials,
380,pp.144-149.doi:10.1016/j.jmmm.2014.10.091.
·Malik,V.,Goodwill,J.,Mallapragada,S.,Prozorov,T.andProzorov,R.,2014. ComparativeStudyof
MagneticPropertiesofNanoparticlesbyHigh-FrequencyHeatDissipationandConventional
Magnetometry.MagneticsLetters,IEEE,5,pp.1-4.doi:10.1371/journal.pone.0114271
·Hua,X.,Tan,S.,Bandara,H.M.H.N.,Fu,Y.,Liu,S.andSmyth,H.D.,2014. Externallycontrolled
triggered-releaseofdrugfromPLGAmicroandnanoparticles.PloSone,9(12),p.e114271.
doi:10.1371/journal.pone.0114271.
·Peci,T.,Dennis,T.J.S.andBaxendale,M.,2015. Iron-filledmultiwalledcarbonnanotubes
surface-functionalizedwithparamagneticGd(III):Acandidatedual-functioningMRIcontrast
agentandmagnetichyperthermiastructure.Carbon,87,pp.226-232.
doi:10.1016/j.carbon.2015.01.052.
·Briceño,S.,Silva,P.,Bramer-Escamilla,W.,Zablala,J.,Alcala,O.,Guari,Y.,Larionova,J.andLong,
J.,2015. Magneticwater-solublerhamnose-coatedMn1-XCoxFe2O4nanoparticlesas
potentialheatingagentsforhyperthermia.BiointerfaceResearchinAppliedChemistry,5(1).
magneTherm™publicationsPI-405-35
nanoThericsLtd,Studio3–Unit3,SilverdaleEnterpriseCentre,Staffordshire,ST56SR.UnitedKingdom.www.nanotherics.com
·Armijo,L.M.,Jain,P.,Malagodi,A.,Fornelli,F.Z.,Hayat,A.,Rivera,A.C.,French,M.,Smyth,H.D.
andOsiński,M.,2015. Inhibitionofbacterialgrowthbyironoxidenanoparticleswithand
withoutattacheddrug:Haveweconqueredtheantibioticresistanceproblem?. InSPIEBiOS
(pp.93381Q-93381Q).InternationalSocietyforOpticsandPhotonics.doi:10.1117/12.2085048.
·Szekeres,M.,Illés,E.,Janko,C.,Farkas,K.,Tóth,I.Y.,Nesztor,D.,Zupkó,I.,Földesi,I.,Alexiou,C.
andTombácz,E.,2015. HemocompatibilityandBiomedicalPotentialofPoly(GallicAcid)
CoatedIronOxideNanoparticlesforTheranosticUse.JournalofNanomedicine&
Nanotechnology,2015.doi:10.4172/2157-7439.1000252
·Choi,H.,Kim,S.J.,Choi,E.H.andKim,C.S.,2015. StudyofHyperthermiaThroughtheBioplasma
TreatmentandMagneticPropertiesofFe3O4Nanoparticles.Magnetics,IEEETransactionson,
51(11),pp.1-4.doi:1109/TMAG.2015.2435062.
·Lemine,O.M.,Omri,K.,ElMir,L.,Velasco,V.,Crespo,P.,delaPresa,P.,Bouzid,H.,Youssif,A.and
Hajry,A.,2015. Fe2O3nanoparticlesformagnetichyperthermiaapplications.InMRS
Proceedings(Vol.1779,pp.7-13).CambridgeUniversityPress.doi:10.1557/opl.2015.697.
·Raniszewski,G.,Miaskowski,A.andWiak,S.,2015. TheApplicationofCarbonNanotubesin
MagneticFluidHyperthermia.JournalofNanomaterials,2015,p.1.doi:10.1155/9182
·Kim,S.J.,Hyun,S.W.,Kim,C.S.andKim,H.J.,2014. ThermalvariationofMgZnnanoferritesfor
magnetichyperthermia.JournaloftheKoreanPhysicalSociety,65(4),pp.553-556.doi:
10.3938/jkps.65.553
·Arteaga-Cardona,F.,Rojas-Rojas,K.,Costo,R.,Mendez-Rojas,M.A.,Hernando,A.anddelaPresa,
P.,2016. Improvingthemagneticheatingbydisaggregatingnanoparticles.JournalofAlloysand
Compounds,663,pp.636-644.doi:10.1016/j.jallcom.2015.10.285
·Gangwar,A.,Alla,S.K.,Srivastava,M.,Meena,S.S.,Prasadrao,E.V.,Mandal,R.K.,Yusuf,S.M.and
Prasad,N.K.,2016. StructuralandmagneticcharacterizationofZr-substitutedmagnetite(Zrx
Fe3 xO4,0≤x≤1).JournalofMagnetismandMagneticMaterials,401,pp.559-566.
doi:10.1016/j.jmmm.2015.10.087
·Guibert,C.,Dupuis,V.,Peyre,V.andFresnais,J.,2015. HyperthermiaofMagneticNanoparticles:
ExperimentalStudyoftheRoleofAggregation. TheJournalofPhysicalChemistryC,119(50),
pp.28148-28154.doi:10.1021/acs.jpcc.5b07796
·Deka,S.,Singh,R.K.andKannan,S.,2015. In-situsynthesis,structural,magneticandinvitro
analysisof α-Fe2O3SiO2binaryoxidesforapplicationsinhyperthermia.Ceramics
International,41(10),pp.13164-13170.doi:10.1016/j.ceramint.2015.07.091
·Griffete,N.,Fresnais,J.,Espinosa,A.,Wilhelm,C.,Bée,A.andMénager,C.,2015. Designof
magneticmolecularlyimprintedpolymernanoparticlesforcontrolledreleaseofdoxorubicin
underanalternativemagneticfieldinathermalconditions.Nanoscale,7(45),pp.18891-18896.
doi:10.1039/C5NR06133D
·Arteaga-Cardona,F.,Rojas-Rojas,K.,Costo,R.,Mendez-Rojas,M.A.,Hernando,A.anddelaPresa,
P.,2016. Improvingthemagneticheatingbydisaggregatingnanoparticles.JournalofAlloysand
Compounds,663,pp.636-644.doi:10.1016/j.jallcom.2015.10.285
·Teleki,A.,Haufe,F.L.,Hirt,A.M.,Pratsinis,S.E.andSotiriou,G.A.,2016. Highlyscalable
productionofuniformly-coatedsuperparamagneticnanoparticlesfortriggereddrugrelease
fromalginatehydrogels.RSCAdvances,6(26),pp.21503-21510.doi:10.1039/C6RA03115C
·Carrião,MS.,andBakuzis,AF.,2016. Mean-fieldandlinearregimeapproachtomagnetic
hyperthermiaofcore-shellnanoparticles:Cantinynanostructuresfightcancer? Nanoscale.doi:
10.1039/C5NR09093H
·Rose,L.C.,Bear,J.C.,Southern,P.,McNaughter,P.D.,Piggott,R.B.,Parkin,I.P.,Qi,S.,Hills,B.P.
andMayes,A.G.,2016. On-demand,magnetichyperthermia-triggereddrugdelivery:
optimisationfortheGItract.JournalofMaterialsChemistryB,4(9),pp.1704-1711.doi:
10.1039/C5TB02068A
magneTherm™publicationsPI-405-35
nanoThericsLtd,Studio3–Unit3,SilverdaleEnterpriseCentre,Staffordshire,ST56SR.UnitedKingdom.www.nanotherics.com
·Gas,P.andMiaskowski,A.,2015. Specifyingtheferrofluidparametersimportantfromthe
viewpointofmagneticfluidhyperthermia.InSelectedProblemsofElectricalEngineeringand
Electronics(WZEE),2015(pp.1-6).IEEE.doi:10.1109/WZEE.2015.7394040
·Whiting,N.,Nolan,B.andKauzlarich,S.,2015. DevelopmentofSilicon-Coated
SuperparamagneticIronOxideNanoparticlesforTargetedMolecularImagingand
HyperthermicTherapyofProstateCancer.MDANDERSONCANCERCENTERHOUSTONTX.
·Subramanian,M.,Miaskowski,A.,Pearce,G.andDobson,J.,2015. Acoilsystemforreal-time
magneticfluidhyperthermiamicroscopystudies.InternationalJournalofHyperthermia,pp.1-9.
doi:10.3109/02656736.2015.1104732
·Bandara,H.M.H.N.,Nguyen,D.,Mogarala,S.,Osiñski,M.andSmyth,H.D.C.,2015. Magneticfields
suppressPseudomonasaeruginosabiofilmsandenhanceciprofloxacinactivity. Biofouling,
31(5),pp.443-457.
·Prasad,N.K.,Srivastava,M.,Alla,S.K.,Danda,J.R.andDivvela,A.,2016. ZrxFe3-xO4(0.01≤x≤
1.0)nanoparticles:apossiblemagneticin-vivoswitch. RSCAdvances.doi:
10.1039/C6RA04815C
·Kim,K.S.,Kim,J.,Lee,J.Y.,Matsuda,S.,Hideshima,S.,Mori,Y.,Osaka,T.andNa,K.,2016.
Stimuli-responsivemagneticnanoparticlesfortumor-targetedbimodalimagingand
photodynamic/hyperthermiacombinationtherapy. Nanoscale,8(22),pp.11625-11634.doi:
10.1039/C6NR02273A
·Lima-Tenório,M.K.,Pineda,E.A.G.,Ahmad,N.M.,Agusti,G.,Manzoor,S.,Kabbaj,D.,Fessi,H.and
Elaissari,A.,2016. Aminodextranpolymer-functionalizedreactivemagneticemulsionsfor
potentialtheranosticapplications. ColloidsandSurfacesB:Biointerfaces,145,pp.373-381.doi:
doi:10.1016/j.colsurfb.2016.05.020
·Koutsiouki,K.,Angelopoulou,A.,Ioannou,E.,Voulgari,E.,Sergides,A.,Magoulas,G.E.,
Bakandritsos,A.andAvgoustakis,K.,2016. TATPeptide-ConjugatedMagneticPLA-PEG
NanocapsulesfortheTargetedDeliveryofPaclitaxel:InVitro. AAPSPharmSciTech,pp.1-13.
doi:10.1208/s12249-016-0560-9
·Subramanian,M.,Pearce,G.,Guldu,O.K.,Tekin,V.,Miaskowski,A.,Aras,O.,Unak,P.,2016. A
PilotstudyintotheuseofFDGmNPasanalternativeapproachinneuroblastomacell
hyperthermia. IEEETransactionsonNanobioscience[acceptedforpublication].(99).doi:
10.1109/TNB.2016.2584543
·Srivastava,M.,Meena,S.S.,Mandal,R.K.,Yusuf,S.M.andPrasad,N.K.,2016. ACmagneticfield
regulatedin-vivoswitchofHf-substitutedmagnetite(HfxFe3 xO4,0.01≤x≤0.8)
nanoparticles. JournalofAlloysandCompounds[acceptedforpublication].doi:
10.1016/j.jallcom.2016.06.287
·Espinosa,A.,Bugnet,M.,Radtke,G.,Neveu,S.,Botton,G.A.,Wilhelm,C.andAbou-Hassan,A.,
2015. Canmagneto-plasmonicnanohybridsefficientlycombinephotothermiawithmagnetic
hyperthermia?. Nanoscale,7(45),pp.18872-18877.doi:10.1039/c5nr06168g
·Espinosa,A.,DiCorato,R.,Kolosnjaj-Tabi,J.,Flaud,P.,Pellegrino,T.andWilhelm,C.,2016. Duality
ofironoxidenanoparticlesincancertherapy:amplificationofheatingefficiencybymagnetic
hyperthermiaandphotothermalbimodaltreatment. ACSnano,10(2),pp.2436-2446.doi:
10.1021/acsnano.5b07249
·DiCorato,R.,Béalle,G.,Kolosnjaj-Tabi,J.,Espinosa,A.,Clement,O.,Silva,A.K.,Menager,C.and
Wilhelm,C.,2015. Combiningmagnetichyperthermiaandphotodynamictherapyfortumor
ablationwithphotoresponsivemagneticliposomes.ACSnano,9(3),pp.2904-2916.doi:
10.1021/nn506949t
·Chudzik,B.,Miaskowski,A.,Surowiec,Z.,Czernel,G.,Duluk,T.,Marczuk,A.andGagoś,M.,2016.
EffectivenessofmagneticfluidhyperthermiaagainstCandidaalbicanscells. International
JournalofHyperthermia,32(8),pp.842-857.doi:10.1080/02656736.2016.1212277
magneTherm™publicationsPI-405-35
nanoThericsLtd,Studio3–Unit3,SilverdaleEnterpriseCentre,Staffordshire,ST56SR.UnitedKingdom.www.nanotherics.com
·Guibert,C.,Fresnais,J.,Peyre,V.andDupuis,V.,2017. MagneticFluidHyperthermiaprobedby
bothcalorimetricanddynamichysteresismeasurements. JournalofMagnetismandMagnetic
Materials,421,pp.384-392.doi:10.1016/j.jmmm.2016.08.015
·Miaskowski,A.,Sawicki,B.andSubramanian,M.,2016.Identificationofdiffusioncoefficientsin
heatequationonthebaseofnon-adiabaticmeasurementsofferrofluids. InComputational
ProblemsofElectricalEngineering(CPEE),17thInternationalConferenceon.IEEE.September.
·Choi,H.,Kim,S.J.,Kim,C.S.andChoi,E.H.,2016. Characterizationofpartially-invertedzinc
ferritewithabio-plasmatreatment.JournaloftheKoreanPhysicalSociety,69(5),pp.847-851.
doi:10.3938/jkps.69.847
·Lak,A.,Niculaes,D.,Anyfantis,G.C.,Bertoni,G.,Barthel,M.J.,Marras,S.,Cassani,M.,Nitti,S.,
Athanassiou,A.,Giannini,C.andPellegrino,T.,2016. FaciletransformationofFeO/Fe3O4coreshell
nanocubestoFe3O4viamagneticstimulation.ScientificReports,6,p.33295.
·Laili,CR.,Hamdan,S.2016. HeatingBehaviourofIronOxideNanomaterialsviaMagnetic
NanoparticleHyperthermiaAsianJournalofChemistry 2675-2679.
dx.doi.org/10.14233/ajchem.2016.20068
·Voulgari,E.,Aristides,B.,Galtsidis,S.,Zoumpourlis,V.,Burke,B.P.,Clemente,G.S.,Cawthorne,C.,
Archibald,S.J.,Tucek,J.,Zboril,R.andKantarelou,V.,2016. Synthesis,characterizationandin
vivoevaluationofamagneticcisplatindeliveryNanosystembasedonPMAA-graft-PEG
copolymers. JournalofControlledRelease.doi:10.1016/j.jconrel.2016.10.021.
·Beck,M.M.,Lammel,C.andGleich,B.,2016. ImprovingHeatGenerationofMagnetic
NanoparticlesbyPre-OrientationofParticlesinaStaticThreeTeslaMagneticField.Journalof
MagnetismandMagneticMaterials.doi:10.1016/j.jmmm.2016.11.005
·Crippa,F.,Moore,T.L.,Mortato,M.,Geers,C.,Haeni,L.,Hirt,A.M.,Rothen-Rutishauser,B.and
Petri-Fink,A.,2016. Dynamicandbiocompatiblethermo-responsivemagnetichydrogelsthat
respondtoanalternatingmagneticfield. JournalofMagnetismandMagneticMaterials.doi:
10.1016/j.jmmm.2016.11.023
·Benyettou,F.,Flores,O.,Alonso,J.,Ravaux,F.,Rezgui,R.,Jouiad,M.,Nehme,S.I.,Parsapur,R.K.,
Olsen,J.C.,Selvam,P.andTrabolsi,A.,2016. Mesoporous γIronOxideNanoparticlesfor
MagneticallyTriggeredReleaseofDoxorubicinandHyperthermiaTreatment. Chemistry-A
EuropeanJournal,22(47),pp.17020-17028.doi:10.1002/chem.201602956
·Choi,H.,Lee,S.,Kouh,T.,Kim,S.J.,Kim,C.S.andHahn,E.,2017. Synthesisandcharacterization
ofCo-Znferritenanoparticlesforapplicationtomagnetichyperthermia. JournaloftheKorean
PhysicalSociety,70(1),pp.89-92.doi:10.3938/jkps.70.89
·Choi,H.,An,M.,Eom,W.,Lim,S.W.,Shim,I.B.,Kim,C.S.andKim,S.J.,2017. Crystallographicand
magneticpropertiesofthehyperthermiamaterialCoFe2O4@AlFe2O4. JournaloftheKorean
PhysicalSociety,70(2),pp.173-176.doi:10.3938/jkps.70.173
·Bonvin,D.,Arakcheeva,A.,Millán,A.,Piñol,R.,Hofmann,H.andEbersold,M.M.,2017. Controlling
structuralandmagneticpropertiesofIONPsbyaqueoussynthesisforimprovedhyperthermia.
RSCAdvances,7(22),pp.13159-13170.doi:10.1039/C7RA00687J
Patents
·Krishnan,K.M.,Ferguson,R.M.andKhandhar,A.P.,UniversityofWashingtonthroughitscenterfor
commercialization,2011. Tunedmultifunctionalmagneticnanoparticlesforbiomedicine.U.S.
PatentApplication13/805,763.doi:10.1517/14712598.8.10.1571
·Trabolsi,A.andBenyettou,F.,NewYorkUniversity,2016. Compositionsandmethodsforimaging
andtreatment.U.S.Patent20,160,038,610.
·Riedinger,A.,Pellegrino,T.,GuardiaGiros,P.,Curcio,A.,Cingolani,R.andManna,L.,Fondazione
IstitutoItalianoDiTechnologia,2015. Heat-SensitiveNanoparticleSystem.U.S.Patent
20,150,359,887.
·Subramanian,M.,Jones,C.N.,nanoThericsLimited,2016. Methodandapparatustoenablereal
timenon-contactinvitrotemperaturemeasurementfornanoparticlecalorimetryintime
varyingmagneticfield. GB1611248.4
免责声明 本文仅代表作者个人观点,与本网无关。其创作性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
版权声明 未经蚂蚁淘授权不得转载、摘编或利用其他方式使用上述作品。已经经本网授权使用作品的,应该授权范围内使用,并注明“来源:蚂蚁淘”。违反上述声明者,本网将追究其相关法律责任。
相关文章