


Mini-Beadbeater-24
The Mini-Beadbeater-24 disrupts up to 24 microbial or tissue samples with better than 95 percent efficiency. Cells are disrupted quickly and safely in the sealed system. The apparatus is easy to clean, has a small footprint and is essentially maintenance free. Compared to the Minibeadbeater-16, the Mini-24 adds advanced electronics for enhanced motor function, variable speeds of 2400-3800 rpm and a 30% increase in microvial capacity.
Cat. No. 112011, Mini-BeadBeater-24, 115 voltCat. No. 112011EUR, Mini-Beadbeater-24, 230 volt
European buyers! The Mini-Beadbeater-24 is CE certified.
Our Price : $0.00
The Mini-BeadBeater-24 disrupts microbial cells and plant and animal tissue by violently agitating four to twentyfour 2 ml screw-cap microvials containing small glass, ceramic or steel beads and 0.1 to 1 ml disruption buffer. The performance of the Mini-BeadBeater equals or exceeds that of any other type or brand of cell disrupter. Even resistant samples like yeast, spores or fibrous tissue are completely homogenized in 1-3 minutes. The non-foaming, aerosol-free method preserves enzymes and organelles. In the presence of nucleic acid extraction media such as phenol, Gu-SCN or a commercial kit solution, DNA or RNA is recovered in the highest possible yield. The method is ideal for PAGE, PCR applications, and diagnostics using antibody or oligonucleotide probes. Because the beads and vials are disposable, there is absolutely zero cross-contamination between samples - essential for PCR techniques.
Protocols developed using a different model of the Mini-BeadBeater are transferable with minimal modification.
The Mini-Beadbeater-24 can also be used for dry grinding. Here, steel beads are added to hard samples such as hair, bone, teeth, seeds and minerals and are powdered in 10-60 seconds of operation. Resistant materials such as tendon, cartilage, rubber or some plastics can be powdered by pre-freezing the sample to liquid nitrogen temperatures (cryo-grinding), then grinding in the hard frozen state. Dry-grinding requires using special microvials resistant to breakage. When dry grinding with ceramic or steel beads at room temperature our 'XXTuff' microvials are recommended. Our Stainless steel microvials are available for dry grinding with steel beads at cryo-temperatures.
- Power: 115 volts, 60 Hz, 7.5 amps or 230 volts, 50 Hz, 3.7 amps
- Width: 10 in. Depth: 18 in. Height: 12 in. Weight 47 pounds
- Shaking pattern: Uses proven, more efficient near horizontal vial orientation
- Capacity: four to twenty four screw-cap microvials (0.5, 1.5, and 2.0 ml) each containing to 400 mg (wet weight) bio-sample
- Shaking speed: Digitally variable from 2400-3800 strokes/min. The calculated M/sec "performance" value is greater than all competitive beadbeater-type cell disrupters on the market.
- Throw or stroke displacement: 7/8 inches
- Controller: Digital 0-5 minute with auto reset and 3 programmable presets
- Magnetic lid interlock cuts power to the Mini-BeadBeater-24 if the lid is opened at any time.
- Removable vial-holding cassette
- No imposed motor cool-down-time between each sample run
- The Mini-BeadBeater-24 uses standard screw-cap plastic microvials. Stainless steel microvials or special reinforced polypropylene microvials ( XXTuff vials ) are available for dry- or cryo-milling with steel beads. Eight larger capacity, 7 ml vials can be processed using an accessory vial-holding ring (see Parts and Accessories below).
Buying Tips....
SHAKING TIME: If you are harvesting expressed proteins, for example, you need close to 100% cell disruption. But, if you want nucleic acids for PCR amplification, perhaps a partial disruption of cells is acceptable. Some manufacturers claim disruption times of less than 30 seconds. That may be fine for PCR work, but not for blotting.
SHAKING SPEED: Some manufacturers of beadbeaters (bead-mill) machine offer speed settings expressed in an ill-defined term: meters/second. The term combines measurable shaking speeds with vial displacements to create a unit presumed to define cell disruption power. Unfortunately, no unit is available that comprehensively defines cell disruption efficiency of bead mill grinding machines. Were it to exist, such a term would need to take into consideration not only shaking speed and distance of vial displacement, but also shaking direction (vertical vs.horizontal), shaking pattern (linear vs.figure eight), kinetics of change in shaking direction (sigmoidal vs. square wave), vial size and shape and other engineering variables. Clearly, the interplay of these variables is complex. They must be taken into consideration in the design of a high performance cell disrupter machine and, as might be expected, some machines achieve this goal better than others. Additionally, most published protocols rarely call for shaking speeds below the maximum shaking speed available from the machine. Thus, speed control, when available, can be viewed as a 'bell and whistle' feature.
FROM THE BIOSPEC 'TECH GUYS': BioSpec Products was the first to introduce 'beadbeating' cell disruption to the scientific laboratory 35 years ago. This method of cell disruption for small samples has replaced many traditional methods. In addition to BioSpec's current five models of beadbeater cell disruptor, about a dozen other manufacturers offer similar microvial-shaking 'beadbeater-type' cell disruptors*. Most of them are well designed and fulfill criteria for maximum cell disruption performance: Look for machines that have a shaking speed of at least 2000 rpm; a throw (or displacement) of the vial of at least 3/4 inches and a shaking orientation and pattern that maximizes bead circulation within the vial. As discussed earlier, other factors influencing cell disruption performance are numerous and complex. They cannot be expressed in a simple mathematical formula with units of meters/sec.
Here is a Rule of Thumb for operating any shaking-type, bead mill cell disruption machine offering variable shaking speed, whether made by BioSpec or any other manufacturer: If the objective is to disrupt cells, crank up the machine and get the job done. Operate the machine at its maximum speed setting. Special applications requiring lower operating speeds are rare. Grinding time will vary, depending on the type of sample. Generally, 2-3 minutes will get you close to total cell lysis. If you are doing PCR work and can settle for less than 100% lysis, shorter periods of beadbeating may suffice. Also important for good cell disruption is the choice of bead size, bead composition, and bead load. These later details are covered in operating instructions that accompany our machines and are also available on our home page under "INSTRUCTIONS"
If native proteins or intracellular organelles are being recovered, temperature control will be essential. With most high energy beadbeaters the grinding process increases the homogenate temperature about 10º per minute of beadbeating. This is most easily done by removing the microvials after one minute of beadbeating and cooling them in crushed ice/water mix for one minute. Recycle this one minute beadbeat and cooling cyle as necessary. Temperature control is not as important for nucleic acid extraction in nucleic acid extraction media.There are three equally important variables under the control of the user which determine efficiency of cell disruption: bead size, bead composition and bead load in the vial. These variables must be optimized by the user, not only for the 'beadbeater' machine which is in use, but for the type of sample being investigated. While there are commercially available vials prefilled with special bead mixes offering solutions for these three variables, one can usually get equivalent results and at the same time, save money by loading your own beads into vials. Only one kind and size of bead is usually needed. BioSpec's web site OPERATING INSTRUCTIONS and our web site Beads (Guide-lines) give straight forward advice on how to do that. And also, there are our tech guys standing by to help.
NOTES:
For the names and contact details of all commercially available bead mill cell disrupters see Cell Disrupters: A Review. In addition to shaking cell disrupters there are vortexing bead mill cell disrupters. Most function like the shaking bead mill cell disrupters but tend to be 5 to 10X slower in achieving complete disruption. The notable exception is BioSpec Product's NEW SoniBeast™ Cell Disrupter which can disrupt cells at rates up to 10X faster than the current commercial shaking-type beadbeating machines.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
第四节 抗原的分类
一、天然抗原
根据抗原性物质与机体的亲缘关系可分为“自己”(self)与“非已”(non-self)抗原。即与机体种系发生关系愈远,其遗传性差异越大,其免疫原性也愈强。
(一)“自己”抗原
正常自身组织成分及体液组分处于免疫耐受状态,不能激发免疫应答,但如打破自身耐受,则可引起自身免疫应答;另一些自身组织成分虽具有免疫原性,但在正常情况下,由于组织屏障,不能进入血流,因此不能与免疫细胞接触,也不能激发免疫应答,称此种抗原为隐蔽性身抗原,如脑组织、眼晶状体蛋白及精子等。一旦因外伤或手术等原因,可使此种抗原进入血流时,则可引起自身免疫应答。受病原微生物的感染或应用某些化学药物,可与自身组织蛋白结合,改变其分子结构,形成修饰的自身抗原,也能引起免疫应答。
(二)非已抗原
来自异种动物的抗原物质称为异种抗原。如来自外部侵入人体的各种病原微生物及其产物的外毒素,注射的异种动物免疫血清,以及吸入和食进的异种蛋白,例如花粉和食物均属异种抗原。由于与人种属关系远为强免疫原。此外癌细胞可在人体内产生特异性癌抗原,但对其免疫原性迄今尚未能证实。
在同种动物不同个体间也存在各种组织成分抗原性的差异,称此种抗原为同种异型抗原。这种抗原受遗传支配,它可在遗传性不同的另一些个体内引起免疫应答,称之为异型免疫应答。如人血型抗原不同输血时可引起输血反应,组织相容性抗原或移植抗原型不同可引起移植排斥反应。此外,免疫球蛋白分子上存在的Gm、Am、Km标记均属异型抗原,可用以鉴别IgG、IgA及K轻链的异型。
在不同种属动物组织间也可发现有共同抗原,称这种抗原为异嗜性抗原。Forssman首先发现这种抗原,故亦称之为Forssman抗原。即这种抗原无种属特异性,它可共同存于人、不同种动物与微生物之间,因此它与疾病的发病学和诊断有一定意义。
目前已发现多种异嗜性抗原,如大肠杆轿O86含有人的B血型物质,肺炎球菌14型含有人A血型物质,它们与人血型抗体的产生有关。有些病原微生物与人体某些组织具有共同抗原成分,是引起免疫性疾病的原因之一。如溶血性链球菌一些抗原可与肾小球基底及心肌组织有有共同抗原成分,它们可能与急性肾小球肾炎和风湿病的发病有关。又如大肠杆菌O14型脂多糖与人结肠粘膜有共同抗原,可能与溃疡性结肠炎的发病有关。
某些疾病的诊断也可借助于对异嗜性抗原的检测。例如引起原发性非典型肺炎的病原支原体与MG株链球菌有共同抗原,可藉其血清中抗体对此种链球菌的凝集反应进行诊断,引起斑疹伤寒的立克次体与变形杆菌一些菌株间有共同抗原,可藉其血清中抗休对变型杆菌的的凝集反应进行诊断,称之为Weil-Felix反应。此外传染性单核细胞增多症患者血清中,可出现凝集羊红细胞的异嗜性抗体,可用羊红细胞凝集反应进行诊断。
二、人工抗原
用化学合成法或基因重组法制备含有已知化学结构决定簇的抗原,称之为人工抗原。它可包括人工结合抗原、人工合成抗原和基因重组抗原。无论对免疫学理论研究和分子疫苗的制备都具有重要意义。
(一)人工结合抗原
将无免疫原性的简单化学基团与蛋白质载体偶联,或将无免疫原性的有机分子如二硝基苯(DNP)或三硝基苯(TNP)与蛋白质载体结合,形成载体-半抗原结合物,均属人工结合抗原。应用此种抗原证明了抗原与抗体特异结合的化学基础,以及在抗体生成过程中T与B细胞的协同作用。
(二)人工合成抗原
用化学方法将活化氨基酸聚合,使之成为合成多肽,只由一种氨基酸形成的聚合体称为同聚多肽,如由左旋赖氨酸形成的共同聚多肽(PLL)。由二种或二种以上氨基酸形成的聚合多肽称为共聚多肽,如由酪氨酸、谷氨酸与多聚丙氨酸和赖氨酸组成的聚合成多肽(T、G)-AL。应用这种人工合成多肽可研究氨基酸种类、序列与蛋白质抗原性及免疫原性的关系,也可研究机体遗传性与免疫性的关系。
对天然蛋白质抗原性的研究证明,任何一个氨基酸片段,只要具有合适的构型,都有抗原性,甚至一小段合成的小肽与合适的载体相联接,也能诱导产生抗体,并能与其天然分子构型相结合,这就提示,可根据天然蛋白质抗原的免疫原性片段进行氨基酸序列分析,或由其编码DNA推导的氨基酸序列,进行构建人工合成多肽疫苗。
(三)基因工程抗原
近年来由于分子生物学技术的进步,已有可能将编码免疫原性氨基酸序列的基因克隆化并与适当载体(如细菌粒或病毒)DNA分子相结合,然后引入受体细胞中(如原核细胞的大肠杆菌或真核细胞酵母菌及哺乳类动物细胞)使之表达,即能获得免疫原性之融合蛋白,经纯化后可做为疫苗,此即基因工程疫苗。
应用分子生物学技术制备基因重组疫苗的另一进展,是将目的抗原决定簇的DNA序列插入另一种比较安全的活病素基因组中(如牛痘苗),制备所谓重组感染载体多价疫苗。
随着70年代分子病毒学的发展,特别是对病毒基因的结构、功能与复制方面知识的积累,为迅速研制病毒亚单位疫苗、合成多肽苗以及基因工程疫苗奠定了基础。
一些重要病毒如乙型肝炎病毒、脊髓灰质炎病毒、疱疹病毒以及流感病毒等的蛋白质多肽,都已利用基因工程进行了成功的表达,有的已进入临床试验阶段。我国也报导了正在进行研制基因工程乙型肝炎病毒疫苗和在牛痘苗表达系统中研制乙肝病毒的重组感染载体的多价疫苗。
三、胸腺依赖抗原与胸腺非依赖抗原
实验证明,由抗原激发的免疫应答是多细胞相互作用的结果,即由抗原呈递细胞、T细胞和B细胞共同参与予完成的。大多数抗原激发的体液免疫应答,必须有TH细胞参予才能完成,称这种抗原为胸腺依赖抗原(thymus-dependent antigen,TD Ag)。但也有少数抗原物质,不须TH细胞参予,可单独刺激B细胞产生抗体,称这种抗原为胸腺非依赖抗原(thymus independent antigen,TIAg)。这二种抗原的区别主要在于其抗原决定簇的结构不同所致。TD抗原在其分子结构上,既具有载体功能的决定簇,也具有抗原性决定簇。且在其分子表面出现多种不同抗原决定簇,但缺乏重复出现的同一决定簇,TD抗原主要是大分子蛋白质。而TI抗原多数为大分子多聚体,带有重复出现的同一抗原决定簇,且降解缓慢,故不须TH参加即能直接刺激B细胞,TI抗原主要是多糖类物质(图10-5、表10-5、6)。
图10-5 TD与T1抗原种类
表10-5 TD与TI抗原种类
TD TI
人丙种球蛋白
牛血清清蛋白
卵白蛋白
类毒素
羊红细胞
组织相容性抗原等
肺炎球菌荚膜多糖
脂多糖
聚合鞭毛
DNP-聚蔗糖
聚乙烯基吡络烷酮(PVP)
表10-6 TD抗原与TI抗原的特性
特性 TD抗原 TI抗原
TⅠ-1 TⅠ-2
化学特性 蛋白质 脂多糖 多糖
抗体应答 + +
无胸腺鼠 - + -/少
无T细胞培养物 -
抗体应答的特点 -
类别转换 + - -
亲和性成熟 + - -
记忆B细胞 + - -
多克隆B细胞活化剂作用 - + -
诱导DTH能力 + - -
四、超抗原
(一)超抗原的概念
超抗原(supper antigen,Sag)是一类由细菌外毒素和逆转录病毒蛋白构成的抗原性物质。它们能与多数T细胞结合并为T细胞活化提供信号。而上述的普通抗原只能与少数对应T细胞结合并使之活化。因此称这种能与多数T细胞结合的抗原为超抗原。
(二)超抗原与T细胞结合的特征
超抗原主要与CD4+T细胞结合,而和普通抗原肽与T细胞的结合有很大差异。超抗原既能与APC细胞上MHCⅡ类分子结合,也能与TCR Vβ链结合是其作用特点。
超抗原无需经APC加工可直接与MHCⅡ类分子非多态区外侧结合,而不是与肽结合沟结合,故无MHc 限制性。
在T细胞方面超抗原只与TCR Vβ片段结合,而与D和J区无关,也与TCRα链无关。任一已知超抗原能与其特殊殊的Vβ片段结合,所以一种超抗原可活化多数T细胞,约占T细胞库的1/20~1/5,这远远超过普通抗原活化T细胞的数量(表10-7)。
表10-7 超抗原的作用特性
普通抗原 超抗原
T细胞一次应答 - +
T细胞反应频率 1/106~1/104 1/20~1/5
MHCⅡ类分子 肽结合沟 非多态区(α-螺旋)
结合部位 外侧
MHC限制性 + -
APC存在 +
(三)超抗原的种类
1.内源性超抗原(病毒性) 70年代初Festenstein发现在MHC相同,而MHC以外基因区不同的纯系鼠间进行淋巴细胞混合培养,可引起很强的T细胞增殖反应,将刺激这种增殖反应的抗原称为次要淋巴细胞刺激抗原(minor lymph'ocyte stimulating antigen,Mlsag)。
近年来证明这种内源性MLs抗原是小鼠乳腺肿瘤病毒(mouse mamary umor virus,MMTV)产生的蛋白。MMTV是一种逆转录病毒,以前病毒(provirus)形式整合于小鼠细胞DNA中。这种小鼠可终生制造这种病毒蛋白,因之可视为一种自身超抗原。这种小鼠内源性MLs抗原的化学性质现已证明是一种糖蛋白。
由于MLs抗原的来源已经清楚,故目前称这种小鼠的内源性超抗原为病毒性超抗原。人类是否也有这种病毒性超抗原,目前尚不能肯定,但有人提出人类免疫缺损病毒(HIV)也是逆转录病毒,有可能是人类的病毒性超抗原。
2.外源性超抗原(细菌性)外源性超抗原是一类细菌性外毒素组成,主要由革兰氏阳性细菌产生。如金黄色葡萄球菌产生的肠毒素(staphylococcus enterotoxin,SE)以及链球菌产生的致热外毒素等。
(四)超抗原的生物学意义
1.超抗原与T细胞的耐受诱导 实验证明在胸腺内分化发育中的T细胞如与超抗原结合,可诱发程序性细胞死亡,导致克隆排除。用抗Vβ单克隆抗体在周围血中检测不出带有特殊Vβ受体的T细胞,为T细胞耐受诱导机制的研究提供了有力的实验模式。
2.超抗原与疾病葡萄球菌感染所产生的外毒素主要是可溶性蛋白分子,近年来的研究证明葡萄球菌外毒素对靶细胞并无直接毒性作用,而是通过活化多数T细胞所释放的大量细胞因子产生的生物学效应引起的毒性休克综合征等临床征状。
一些疾病,例如原因不明的川畸病,风湿性关节等疾病,发现与某些Vβ阳性T细胞的增殖相关。周围组织中存在的自身反应性T细胞克隆可为外源性超抗原激活而引发自身免疫病。也有学者认为HIV引发的人艾滋病,其发病学与其超抗原相关。
Keyword:Cell-PenetratingPeptides,多肽修饰,分子动力学
关键词:抗原制备,电渗流,包涵体
出版时间:2015-10.ProteinExpressionandPurification118(2016)77-82.
特异性抗体是一个依赖性工具用于测定蛋白表达模式和测定蛋白在细胞内的位置。一般来说,重组抗体常作为抗原用于特异性抗体制备。然而,来源于哺乳动物和植物的重组蛋白常在大肠杆菌体内的包涵体中过表达。
因为溶解的抗原比较适合用于注射到动物体内产生抗原,所有这些包涵体的溶解是令人满意的。此外,高纯化的蛋白也被用来制备特异性抗体。为了获得纯化的蛋白(用来作为抗原),通过制备的圆盘凝胶电泳用于从包涵体中纯化蛋白。
纯化的蛋白含有0.1%SDS的电泳缓冲液(直接注射带免疫动物体内)中作为溶解的片段被回收,所以该方法适合用于从包涵体中纯化抗原。该方法也能用于制备大批量的抗原(几十毫升)。
Estimationofanti-AccDantibodiesusingwesternblotting.
采用蛋白免疫印迹估计抗AccD抗体
原文地址:http://www.ontoresinc.cn/Blog_%E5%88%B6%E5%A4%87%E7%9A%84%E5%9C%86%E7%9B%98%E5%87%9D%E8%83%B6%E7%94%B5%E6%B3%B3%E7%94%A8%E4%BA%8E%E4%BB%8E%E5%8C%85%E6%B6%B5%E4%BD%93%E4%B8%AD%E7%BA%AF%E5%8C%96%E6%8A%97%E5%8E%9F%E7%9A%84%E5%BA%94%E7%94%A8_82.html
由此,注射疫苗(没有破坏力但却能刺激机体产生对应的抗体)属于主动免疫,注射血清(即抗体)属于被动免疫,前者旨在预防,标本兼治,后者则能够应急。
抗原注射进入动物体内后,因为不是一个单独的分子,会随血液循环输送到各处,也就会接触不同的免疫细胞。有些还会被抗原提呈细胞再加工。所以最后的结果是很多个免疫细胞都会接触到。一个抗原分子也有很多抗原表位。每个表位理论上都有能力激活一个B细胞转化为浆细胞。所以体内最后针对该抗原的必定是多克隆
由于动物个体差异的存在,同一抗原免疫同一种系不同个体的动物,产生的抗体的效价有很大的差异.与动物的年龄和营养状况密切相关.免疫用的动物最好选择适龄的健康雄性动物,雌性动物特别是妊娠动物用于制备免疫抗体则非常不合适,有时甚至不产生抗体.
先饲养观察7天其实就是等于隔离检疫,观察一下兔子的身体状况和是否带有其他传染病,淘汰体质多病的个体,防止在免疫过程中死亡或免疫应答不灵敏而不产生抗体.
1.淋巴因子(lymphokine) 于命名,主要由淋巴细胞产生,包括T淋巴细胞、B淋巴细胞和NK细胞等。重要的淋巴因子有IL-2、IL-3、IL-4、IL-5、IL-6、IL-9、IL-10、IL-12、IL-13、IL-14、IFN-γ、TNF-β、GM-CSF和神经白细胞素等。
2.单核因子(monokine) 主要由单核细胞或巨噬细胞产生,如IL-1、IL-6、IL-8、TNF-α、G-CSF和M-CSF等。
3.非淋巴细胞、非单核-巨噬细胞产生的细胞因子 主要由骨髓和胸腺中的基质细胞、血管内皮细胞、成纤维细胞等细胞产生,如EPO、IL-7、IL-11、SCF、内皮细胞源性IL-8和IFN-β等。
(二)根据细胞因子主要的功能不同分类
1.白细胞介素(interleukin, IL) 1979年开始命名。由淋巴细胞、单核细胞或其它非单个核细胞产生的细胞因子,在细胞间相互作用、免疫调节、造血以及炎症过程中起重要调节作用,凡命名的白细胞介素的cDNA基因克隆和表达均已成功,已报道有三十余种(IL-1―IL-38)。
2.集落刺激因子(colony stimulating factor, CSF) 根据不同细胞因子刺激造血干细胞或分化不同阶段的造血细胞在半固体培养基中形成不同的细胞集落,分别命名为G(粒细胞)-CSF、M(巨噬细胞)-CSF、GM(粒细胞、巨噬细胞)-CSF、Multi(多重)-CSF(IL-3)、SCF、EPO等。不同CSF不仅可刺激不同发育阶段的造血干细胞和祖细胞增殖的分化,还可促进成熟细胞的功能。
3.干扰素(interferon, IFN) 1957年发现的细胞因子,最初发现某一种病毒感染的细胞能产生一种物质可干扰另一种病毒的感染和复制,因此而得名。根据干扰素产生的来源和结构不同,可分为IFN-α、IFN-β和IFN-γ,他们分别由白细胞、成纤维细胞和活化T细胞所产生。各种不同的IFN生物学活性基本相同,具有抗病毒、抗肿瘤和免疫调节等作用。
4.肿瘤坏死因子(tumor necrosis factor, TNF) 最初发现这种物质能造成肿瘤组织坏死而得名。根据其产生来源和结构不同,可分为TNF-α和TNF-β两类,前者由单核-巨噬细胞产生,后者由活化T细胞产生,又名淋巴毒素(lymphotoxin, LT)。两类TNF基本的生物学活性相似,除具有杀伤肿瘤细胞外,还有免疫调节、参与发热和炎症的发生。大剂量TNF-α可引起恶液质,因而TNF-α又称恶液质素(cachectin)。
5.转化生长因子-β家族(transforming growth factor-β family, TGF-β family) 由多种细胞产生,主要包括TGF-β1、TGF-β2、TGF-β3、TGFβ1β2以及骨形成蛋白(BMP)等。
6.生长因子(growth factor,GF)如表皮生长因子(EGF)、血小板衍生的生长因子(PDGF)、成纤维细胞生长因子(FGF)、肝细胞生长因子(HGF)、胰岛素样生长因子-I(IGF-1)、IGF-Ⅱ、白血病抑制因子(LIF)、神经生长因子(NGF)、抑瘤素M(OSM)、血小板衍生的内皮细胞生长因子(PDECGF)、转化生长因子-α(TGF-α)、血管内皮细胞生长因子(VEGF)等。
7.趋化因子家族(chemokinefamily) 包括四个亚族:(1)C-X-C/α亚族,主要趋化中性粒细胞,主要的成员有IL-8、黑素瘤细胞生长刺激活性(GRO/MGSA)、血小板因子-4(PF-4)、血小板碱性蛋白、蛋白水解来源的产物CTAP-Ⅲ和β-thromboglobulin、炎症蛋白10(IP-10)、ENA-78;(2)C-C/β亚族,主要趋化单核细胞,这个亚族的成员包括巨噬细胞炎症蛋白1α(MIP-1α)、MIP-1β、RANTES、单核细胞趋化蛋白-1(MCP-1/MCAF)、MCP-2、MCP-3和I-309。(3)C型亚家族的代表有淋巴细胞趋化蛋白。(4)CX3C亚家族,Fractalkine是CX3C型趋化因子,对单核-巨噬细胞、T细胞及NK细胞有趋化作用。向左转|向右转
体液免疫:生发中心母细胞的轻链和重链V基因可发生高频率的点突变,在抗原诱导的情况下产生.在初次免疫应答时,大量抗原的出现,可使表达不同亲和力的BCR的各种B细胞克隆被选择和激活,产生多种不同亲和力的抗体.每个B细胞开始时一般均表达IgM,在免疫应答时首先分泌IgM,通过重链C区的基因重排,随后会产生IgG,IgA,起主要的免疫应答作用.
细胞免疫:抗原被提呈给T细胞后,T细胞活化,产生大量的细胞因子,比如干扰素,白细胞介素等,参与细胞免疫过程.
你可以根据抗原的特征去判断,
1、异物性 但也有例外:如癌细胞、损伤或衰老的细胞
2.大分子性 抗原多数是蛋白质,其结构较复杂,分子量较大
3.特异性 抗原决定簇(病毒的衣壳)
进入人体的弹片具有特异性,但不具有大分子性,因而不能称之为抗原;有些过敏源可以称之为抗原.
希望能帮到你,望采纳

