Recombinant Human SUMO1 AMC Protein, CF Summary
Product Datasheets
Carrier Free
CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins.Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration.The carrier free version does not contain BSA.
In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard.In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.
UL-551
| Formulation | 1.13 mg/ml (100 µM) in 50 mM HEPES pH 7.5, 100 mM NaCl |
| Shipping | The product is shipped with dry ice or equivalent. Upon receipt, store it immediately at the temperature recommended below. |
| Stability & Storage: | Protect from light. Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
|
Reconstitution Calculator
Background: SUMO1
Human Small Ubiquitin-like Modifier 1 (SUMO1), also known as Sentrin, UBL1, and SMT3C, is synthesized as a 101 amino acid (aa) propeptide with a predicted molecular weight of 11.5 kDa. Human SUMO1 is the most unique of the four identified SUMO proteins and shares only 44%, 47%, and 41% aa sequence identity with SUMO2, SUMO3, and SUMO4, respectively. In contrast, human SUMO1 shares 100% aa sequence identity with the mouse ortholog. SUMOs are a family of small, related proteins that can be enzymatically attached to a target protein by a post-translational modification process termed SUMOylation (1-3). All SUMO proteins share a conserved Ubiquitin domain and a C-terminal diglycine cleavage/attachment site. Following cleavage of a four aa C-terminal prosegment, the C-terminal glycine residue of SUMO1 is enzymatically attached to a lysine residue on a target protein. In humans, SUMO1 is conjugated to a variety of molecules in the presence of the SAE1/UBA2 SUMO-activating (E1) enzyme and the UBE2I/Ubc9 SUMO-conjugating (E2) enzyme (4,5). In yeast, the SUMO-activating (E1) enzyme is Aos1/Uba2p (6). SUMOylation can occur without the requirement of a specific SUMO ligase (E3), where SUMO1 is transferred directly from UBE2I/Ubc9 to specific substrates. In Alzheimer"s disease models SUMO1 has been shown to influence the generation of Amyloid-beta peptide by promoting the accumulation of BACE-1 (7). Covalent modification of Phosphatase and Tensin Homolog Deleted on Chromosome (PTEN) by SUMO1 is thought to regulate tumorigenesis by retaining PTEN at the plasma membrane, an effect that suppresses PI 3-Kinase/Akt-dependent tumor growth (8).
This fluorogenic substrate for SUMO1 hydrolases is based on the carboxy-terminus derivatization of SUMO1 with 7-amido-4-methylcoumarin (AMC). SUMO1 AMC is useful for studying SUMO1 hydrolases when detection sensitivity or continuous monitoring of activity is essential.
- Desterro, J.M. et al. (1997) FEBS. Lett. 417:297.
- Bettermann, K. et al. (2012) Cancer Lett. 316:113.
- Praefcke, G.J. et al. (2012) Trends Biochem. Sci. 37:23.
- Okuma, T. et al. (1999) Biochem. Biophys. Res. Commun. 254:693.
- Tatham, M.H. et al. (2001) J. Biol. Chem. 276:35368.
- Johnson, E.S. et al. (1997) EMBO J. 16:5509.
- Yun, S.M. et al. (2013) Neurobiol Aging. 34:650.
- Huang, J. et al. (2012) Nat. Commun. 3:911.
Citations for Recombinant Human SUMO1 AMC Protein, CF
R&D Systems personnel manually curate a database that contains references using R&D Systems products.The data collected includes not only links to publications in PubMed,but also provides information about sample types, species, and experimental conditions.
5Citations: Showing 1 - 5Filter your results:
Filter by:
- Crystal structure and activity-based labeling reveal the mechanisms for linkage-specific substrate recognition by deubiquitinase USP9XAuthors: P Paudel, Q Zhang, C Leung, HC Greenberg, Y Guo, YH Chern, A Dong, Y Li, M Vedadi, Z Zhuang, Y TongProc. Natl. Acad. Sci. U.S.A., 2019;0(0):.Applications: Bioassay
- The SUMO protease SENP1 and the chromatin remodeller CHD3 interact and jointly affect chromatin accessibility and gene expressionAuthors: F Rodríguez-, RB Lemma, I Cuervo, M Bengtsen, LM Moen, M Ledsaak, R Eskeland, OS GabrielsenJ. Biol. Chem., 2018;0(0):.
- Shigella entry unveils a calcium/calpain-dependent mechanism for inhibiting sumoylationAuthors: P Lapaquette, S Fritah, N Lhocine, A Andrieux, G Nigro, J Mounier, P Sansonetti, A DejeanElife, 2017;6(0):.Applications: Bioassay
- Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophilaAuthors: Malene L UrbanusMol. Syst. Biol, 2016;12(12):893.Applications: Bioassay
- A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses.Authors: Liang, Qin, Dexheimer, Thomas S, Zhang, Ping, Rosenthal, Andrew S, Villamil, Mark A, You, Changjun, Zhang, Qiuting, Chen, Junjun, Ott, Christin, Sun, Hongmao, Luci, Diane K, Yuan, Bifeng, Simeonov, Anton, Jadhav, Ajit, Xiao, Hui, Wang, Yinsheng, Maloney, David J, Zhuang, ZhihaoNat Chem Biol, 2014;10(4):298-304.Species: N/ASample Types: ProteinApplications: Bioassay
FAQs
No product specific FAQs exist for this product, however you may
View all Proteins and Enzyme FAQsReviews for Recombinant Human SUMO1 AMC Protein, CF
There are currently no reviews for this product. Be the first toreview Recombinant Human SUMO1 AMC Protein, CF and earn rewards!
Have you used Recombinant Human SUMO1 AMC Protein, CF?
Submit a review and receive an Amazon gift card.
$25/€18/£15/$25CAN/¥75 Yuan/¥1250 Yen for a review with an image
$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
>
非常感谢!
荧光原位杂交技术(Florescence In-Situ Hybridization简称FISH)是一种利用非放射性的荧光信号对原位杂交样本进行检测的技术。它将荧光信号的高灵敏度、安全性,荧光信号的直观性和原位杂交的高准确性结合起来,通过荧光标记的DNA探针与待测样本的DNA进行原位杂交,在荧光显微镜下对荧光信号进行辨别和计数,从而对染色体或基因异常的细胞、组织样本进行检测和诊断,为各种基因相关疾病的分型、预前和预后提供准确的依据。自20世纪80年代末,Pinkel和Heiles将FISH技术引入染色体检测领域后,FISH技术就在临床诊断及科研工作中得到了广泛的运用,显示出与一些传统技术相比的明显优势。
与传统的免疫组织化学法(IHC)相比,FISH具有良好的稳定性和可重复性。目前免疫组织化学法正广泛应用于肿瘤等多个领域的临床诊断。免疫组化的检测对象是疾病相关的蛋白。由于蛋白的表达和本身的构象受各种因素的影响很大(例如酸、碱和变性剂),检测条件的稳定性对检测结果至关重要。此外,免疫组化检测结果的判断依赖于检测者对显色结果的主观判断,对于一些弱阳性的结果,不同的检测者容易产生分歧。上述的因素都可能影响医生对病情的最终诊断。荧光原位杂交技术检测的对象是细胞中的DNA,致密的双螺旋结构使DNA可以历经千百万年而依然保持良好,其结构稳定,不易被环境条件影响,为荧光原位杂交技术的稳定提供了良好的基础。此外,荧光原位杂交结果的判定借助于对荧光的颜色判断和信号计数,客观地量化了检测地结果。如果借助于相应的FISH操作系统(例如Abbott-Vysis公司的Hybrit杂交仪和VP2000样本预处理系统)和染色体成像系统(例如AI公司的CytoVision)就能实现整个FISH操作的自动化,最大限度的降低操作者和检测者的主观因素,确保结果的准确性。
PCR由于灵敏度高,操作简便快捷是近年来应用比较多的基因诊断技术,但PCR诊断技术的假阴性和假阳性的比例较高,对同一样本也只能作一次分析,不能重复实验结果。随着探针技术的不断发展,FISH目前的灵敏度已经接近或达到PCR的水平,并能很好弥补PCR技术的局限。FISH技术不仅有极低的假阳性、假阴性的比例(以Abbott-Vysis的产前诊断探针为例,29,000例的使用结果证实正确率高达99.9%),还能对同一样本进行多次的FISH操作以及利用不同颜色的荧光探针一次检测多个染色体或基因的异常,大大节省了检测的时间。此外,通过FISH可以对染色体或特定基因的数目异常,特定片断的缺失、易位和重排进行诊断研究。展开

