
주문정보




- - 재고수량은 변동될 수 있습니다.
- - 재고 확인 시 "갱신" 버튼을 누르시면 실시간 재고를 확인하실 수 있습니다.
- - 가격이 ‘별도문의‘ 시, 상단 ‘견적신청’ 버튼을 눌러 문의해주시면 빠른 답변을 받으실 수 있습니다.
선택 | Cat.No. | 제품명 | 가격(VAT별도) | 수량 |
---|
제품특징
□ 특징
● 역전사 반응에 필요한 모든 시약이 포함된 완전 premix 타입으로 사용이 간편
● 불과 15분의 반응으로 역전사반응 완료
● 2종류의 역전사용 primer로 Real Time PCR에 최적인 주형 cDNA를 합성
□ 제품설명
PrimeScript™ RT MasterMix (Perfect Real Time)은 2 step Real Time RT-PCR 에최적화된 역전사 반응용 premix 시약이다.Real Time RT-PCR의 역전사 반응에 필요한 시약 (PrimeScript™ RTase, RNaseInhibitor, Random 6 mers, Oligo dT Primer, dNTP Mixture, reaction buffer)이모두 포함된 5×premix 시약이며, 주형 RNA와 H2O를 첨가하는 것만으로 신속히 반응을역전사반응을 진행할 수 있다.신장성이 뛰어난 PrimeScript®RTase를 사용하여, PrimeScript™ RT reagent Kit (Perfect Real Time) (Code RR037A/B)와 같이 Real Time PCR용 주형 cDNA를 짧은 시간안에 높은 효율로합성할 수 있다.본 제품에 의해 합성된 cDNA는 TB Green™ assay, Dual-Laveled Probe assay에 모두 사용할수 있으며, 목적에 따라TB Green®Premix Ex Taq™ II (Tli RNaseH Plus) (Code RR820A),TB Green®Fast qPCR Mix (Code RR430A), Probe qPCR Mix (Code RR391A) 등 Real Time PCR 시약과 함께 사용한다.
□ 내용 (200 회, 10 ㎕ 반응시)
1. | 5×PrimeScript RT Master Mix (Perfect Real Time)*1 | 400 ㎕ |
2. | RNase Free dH2O | 1 ㎖ x 2 |
3. | EASY Dilution(for Real Time PCR) *2 | 1 ㎖ |
*1 PrimeScript® RTase, RNase Inhibitor, Oligo dT Primer, Random 6 mers, dNTP Mixture 및 반응 버퍼 (Mg2+함유)를 포함
한다.*2 total RNA나 cDNA를 단계 희석할 때 희석용액으로 사용한다. H2O나 TE buffer로 희석하면 정확한 희석을 할 수 없는 경우가
있지만,EASY Dilution을 이용하면 저농도까지 정확히 희석을 할 수 있다. 본 buffer는 역전사 반응이나 PCR의 반응성에 영향을
미치지 않으므로 희석한 주형 용액을 그대로 역전사 반응이나 PCR 반응의 주형으로서 사용할 수 있다.EASY Dilution (for Real Time PCR) (Code 9160)는 별도 구매 가능.【주의】 EASY Dilution은 Takara의 Real Time PCR시약과 함께 사용하기를 권장하며, 타사 제품과의호환성은 확인되지
않았습니다.
□ 보존 -20℃
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
ECT包括SPECT与 PET -CT,那么它们有什么区别呢?首先,这些它们和CT、MRI一样,都是断层成像,与 X-线、CR、DR 不一样。
通俗的讲,CT, MRI是组织影像,看的是身体和器官的组织密度、水分密度等等。物理原理上 CT 成像靠体外 X-线穿透身体被 CT 机器探测到成像,由于骨头、脂肪、肌肉、肝、肾等组织密度不同,X-线穿过身体以后被不同程度衰减,所以成像可以看到不同的组织。MRI的诊断基本原理是病变组织与周围正常组织密度不一样,或者位置、大小不一样。而 SPECT 和 PET 都是靠注射同位素药物到身体里面,被身体某个部位吸收,身体向外发射 gamma 射线,被 SPECT 或者 PET 相机探测到成像。要说明 PET 是发射的是正电子,但是正电子很快就湮灭,转变为一对 gamma 射线。狭义的ECT,一般指SPECT,即单光子发射型计算机断层扫描。实际上ECT(发射型计算机断层)还包括PET(正电子发射型计算机断层),是SPECT和PET的统称。
SPECT 和 PET 最重要的原理是“同位素药物被身体某个部位吸收”。身体内异常的组织会异常吸收药物,因此图像可以看出病变。具体为啥药物会被某些器官吸收,这个学科非常深奥,这里就不说了。那么 PET 与 SPECT 区别在什么地方呢? 物理上它们用不同的药物和同位素,所以针对性也不太一样。这两种检查的最大应用都在肿瘤和心脏,SPECT 还有些其他功能影像如肾、胆、甲状腺、胃、骨头病、内出血等等。但是同样针对肿瘤它们的应用和效果也是不同的。总的来说目前的 PET 全身肿瘤检查用得多,SPECT 局部病变用得多。如果怀疑肿瘤和远端转移 PET-CT 效果好 (当然,也要根据肿瘤类型和阶段)。在没有 PET-CT 之前,SPECT 全身骨扫描起到类似作用,但是针对的只是骨转移,肺转移、肝转移、脑、淋巴等转移等,骨扫描不会有好的效果。
通俗的说,CT, MR 是组织影像,SPECT 和 PET-CT是功能分子影像;现在虽然有不少 MRI 、CT 和超声功能影像研究,但是功能影像不是这些设备的主流功能。
共杂了5张膜,其中两张是升级版的NylonN+,另外两张是Osmonics公司的MAGNA:NylonTransferMembrane,还有一张是之前碱转法杂交过的,结果很好的膜,拿来重复杂交用做阳性对照。
我们按照说明书上用10×SSC转24h,UV焦联800J,洗膜,预杂交6h后用标记了同位素的探针杂交过夜,洗膜40min,用盖格计数器扫描五张膜上计数都很明显,而且膜上不同的部位信号强度不同,当时估计肯定是杂上了,心里挺高兴的。
可是压磷屏24hour后,扫描结果除了五张白白的膜什么也看不到。
现在可以肯定的是:磷屏、同位素和标记试剂盒都没问题(因为用做Northern结果很好)。
这样一来就提出以下几个疑问:
1,如果是转膜的问题,为什么阳性对照那张膜也杂不出来呢?
2,如果是标记探针模板的问题,为什么我们的Marker(λDNA)也杂不出来呢?λDNA做模板应该不会出问题吧。
3,如果是扫描系统的问题为什么别人的都能扫出结果?
4,如果是磷屏坏了,为什么还能看到五张白白的膜,而不是漆黑一片?
5,如果没有杂交上,为什么用计数器扫描时计数都很明显,而且膜上不同的部位信号强度也不同?
6,如果这两种膜不能使用同位素,为什么原来用同位素杂的很好的阳性对照也没有结果呢?
做之前已经仔细的阅读了两种膜的说明书,加之以前的经验,本来感觉是十拿九稳的事。再者说NylonN+和MAGNA:NylonTransferMembrane这两种膜是不同公司生产的,性质上有一定差别,按道理两种膜都杂不出来的可能行应该很小才对。感觉好像就在压磷屏之后可能出了什么问题,明明是有信号的为什么杂不出来呢??
希望有经验的朋友帮助分析一下,发表一下意见,不胜感激!
谢拉~~~~~~~
AIM:Todevelopafuzzyclassificationmethodtoscorethetexturefeaturesofpancreaticcancerinendoscopicultrasonography(EUS)imagesandevaluateitsutilityinmakingprognosisjudgmentsforpatientswithunresectablepancreaticcancertreatedbyEUS-guidedinterstitialbrachytherapy.
METHODS:EUSimagesfromourretrospectivedatabasewereanalyzed.Theregionsofinterestweredrawn,andtexturefeatureswereextracted,selected,andscoredwithafuzzyclassificationmethodusingaC++program.Then,patientswithunresectablepancreaticcancerwereenrolledtoreceiveEUS-guidediodine125rADIoactiveseedimplantation.Theirfuzzyclassificationscores,tumorvolumes,andcarbohydrateantigen199(CA199)levelsbeforeandafterthebrachytherapywererecorded.Theassociationbetweenthechangesintheseparametersandoverallsurvivalwasanalyzedstatistically.
RESULTS:EUSimagesof153patientswithpancreaticcancerand63non-cancerpatientswereanalyzed.Atotalof25consecutivepatientswereenrolled,andtheytoleratedthebrachytherapywellwithoutanycomplications.Therewasacorrelationbetweenthechangeinthefuzzyclassificationscoreandoverallsurvival(Spearmantest,r=0.616,P=0.001),whereasnocorrelationwasfoundtobesignificantbetweenthechangeintumorvolume(P=0.663),CA199level(P=0.659),andoverallsurvival.Therewere15patientswithadecreaseintheirfuzzyclassificationscoreafterbrachytherapy,whereasthefuzzyclassificationscoreincreasedinanother10patients.Therewasasignificantdifferenceinoverallsurvivalbetweenthetwogroups(67dvs151d,P=0.001),butnotinthechangeoftumorvolumeandCA199level.
CONCLUSION:UsingthefuzzyclassificationmethodtoanalyzeEUSimagesofpancreaticcancerisfeasIBLe,andthemethodcanbeusedtomakeprognosisjudgmentsforpatientswithunresectablepancreaticcancertreatedbyinterstitialbrachytherapy.
INTRODUCTION:Theapplicationofdigitalimageprocessing(DIP)inendoscopicultrasonography(EUS)imagesandotherimagingscenarioshasbeenproventobeausefuladjuncttoendoscopicdiagnosesandoftencomparablewithspecialists’interpretationindifferentpathologicsettings.ThetextureparametersofEUSimagesareextractedandclassifiedfromthereturnedechoestoidentifythetissuetypepresentintheimages.OneeffectiveapproachistouseDIPbasedonasupportvectormachine(SVM),whichisacomputeralgorithmthatlearnsbyexampletoassignlabelstoobjects.TheSVMtechnique,asasubfieldofdigitalsignalprocessing,hasbeenappliedtoaseriesofpathologicallyprovendiseases.
ThetypicalmethodofSVM,whichisonlyabletoprovideadifferentialdiagnosisforsolidtumors(“yes”or“no”),cannotprovidenumericaldatadescribingthetextureparametersintheEUSimage.Inthisstudy,anewDIPmethodbasedonfuzzyclassificationisappliedtoobtainthefeaturevalueoftextureparametersinEUSimagesofpancreaticcancerandobservethechangeoftextureparameterstoevaluateitsutilityinmakingprognosisjudgmentsforpatientswithunresectablepancreaticcancerafterEUS-guidedinterstitialbrachytherapy.
PET是英文 Positron Emission Tomography的缩写。其临床显像过程为:将发射正电子的放射性核素(如F-18等)标记到能够参与人体组织血流或代谢过程的化合物上,将标有带正电子化合物的放射性核素注射到受检者体内。让受检者在PET的有效视野范围内进行 PET显像。放射核素发射出的正电子在体内移动大约1mm后与组织中的负电子结合发生湮灭辐射。产生两个能量相等(511 KeV)、
方向相反的γ光子。由于两个光子在体内的路径不同,到达两个探测器的时间也有一定差别,如果在规定的时间窗内(一般为 0-15 us),探头系统探测到两个互成180度(士0.25度)的光子时。即为一个符合事件,探测器便分别送出一个时间脉冲,脉冲处理器将脉冲变为方波,符合电路对其进行数据分类后,送人工作站进行图像重建。便得到人体各部位横断面、冠状断面和矢状断面的影像。
PET系统的主要部件包括机架、环形探测器、符合电路、检查床及工作站等。探测系统是整个正电子发射显像系统中的主要部分,它采用的块状探测结构有利于消除散射、提高计数率。许多块结构组成一个环,再由数十个环构成整个探测器。每个块结构由大约36个锗酸铋(BGO)小晶体组成,晶体之后又带有2对(4个)光电倍增管(PMT)(请看图1)。BGO晶体将高能光子转换为可见光.PMT将光信号转换成电信号,电信号再被转换成时间脉冲信号,探头层间符合线路对每个探头信号的时间耦合性进行检验判定,排除其它来源射线的干扰,经运算给出正电子的位置,计算机采用散射、偶然符合信号校正及光子飞行时间计算等技术,完成图像重建。重建后的图像将PET的整体分辨率提高到2 mm左右。
PET采用符合探测技术进行电子准直校正,大大减少了随机符合事件和本底,电子准直器具有非常高的灵敏度(没有铅屏蔽的影响)和分辨率。另外.BGO晶体的大小与灵敏度成正相关性。块状结构的PET探头。能进行2D或3D采集。2D采集是在环与环之间隔置铅板或钨板,以减少散射对图像质量的影响 2D图像重建时只对临近几个环(一般2-3个环)内的计数进行符合计算,其分辨率高,计数率低;3D数据采集则不同。取消了环与环之间的间隔, 在所有环内进行符合计算,明显地提高了计数率,但散射严重, 图像分辨率也较低,且数据重组时要进行大量的数据运算。两种采集方法的另一个重要区别是灵敏度不同,3D采集的灵敏度在视野中心为最高。
二 、多层螺旋CT的工作原理
CT的基本原理是图像重建, 根据人体各种组织(包括正常和异常组织)对X射线吸收不等这一特性, 将人体某一选定层面分成许多立方体小块(也称体素)X射线穿过体素后, 测得的密度或灰度值称为象素。X射线束穿过选定层面, 探测器接收到沿X射线束方向排列的各体素吸收X射线后衰减值的总和,为已知值,形成该总量的各体素X射线衰减值为未知值,当X射线发生源和探测器围绕人体做圆弧或圆周相对运动时。用迭代方法
求出每一体素的X射线衰减值并进行图像重建,得到该层面不同密度组织的黑白图像。
螺旋CT突破了传统CT的设计,采用滑环技术, 将电源电缆和一些信号线与固定机架内不同金属环相连运动的X射线管和探测器滑动电刷与金属环导联。球管和探测器不受电缆长度限制,沿人体长轴连续匀速旋转, 扫描床同步匀速递进(传统 CT扫描床在扫描时静止不动),扫描轨迹呈螺旋状前进,可快速、不间断地完成容积扫描。
多层螺旋CT的特点是探测器多层排列。是高速度、高空间分辨率的最佳结合。多层螺旋CT的宽探测器采用高效固体稀土陶瓷材料制成。每个单元只有 0.5、1或 1.25 mm厚, 最多也只有5 mm厚 薄层扫描探测器的光电转换效率高达99%能连续接收X射线信号。余辉极短, 且稳定性好。多层螺旋CT能高速完成较大范围的容积扫描, 图像质量好, 成像速度快,具有很高的纵向分辨率和很好的时间分辨率。大大拓宽了CT的应
用范围,与单层螺旋CT相比。采集同样体积的数据, 扫描时间大为缩短,在不增加X射线剂量的情况下, 每15 S左右就能扫描一个部位;5S内可完成层厚为3 mm的整个胸部扫描;采用较大的螺距 P值,一次屏气20 S,可以完成体部扫描;同样层厚, 同样时间内, 扫描范围增大4倍。扫描的单位时间覆盖率明显提高, 病人接受的射线剂量明显减少,x线球管的使用寿命明显延长,同时,节省了对比剂用量,提高了低对比分辨率和空间分辨率,明显减少了噪声、伪影及硬化效应。另外,还可根据不同层厚需要自动调节X射线锥形线束的宽度,经过准直的X射线束聚焦在相应数目的探测器上 探测器通过电子开关与四个数据采集系统(DAS)相连。每个DAS能独立采集完成一套图像, 按照DAS与探测器匹配方式不同。通过电子切换可以选择性地获得1层、2层或4层图像,每层厚度可自由选择(0.5、1.0、1.25 mm或 5、10 mm。采集的数据既可做常规图像显示, 也可在工作站进行后处理, 完成三维立体重建、多层面重建、器官表面重建等,并能实时或近于实时显示。另外.不同角度的旋转、不同颜色的标记,使图像更具立体感 更直观、逼真。仿真内窥镜、三维CT血管造影技术也更加成熟和快捷。
三 、 PET-CT的图像融合
PET与CT两种不同成像原理的设备同机组合,不是其功能的简单相加。而是在此基础上进行图像融合,融合后的图像既有精细的解剖结构又有丰富的生理.生化功能信息 能为确定和查找肿瘤及其它病灶的精确位置 定量、定性诊断提供依据。并可用X线对核医学图像进行衰减校正。
PET-CT的核心是融合,图像融合是指将相同或不同成像方式的图像经过一定的变换处理 使它们的空间位置和空间坐标达到匹配,图像融台处理系统利用各自成像方式的特点对两种图像进行空间配准与结合, 将影像数据注册后合成为一个单一的影像。 PET-CT同机融合(又叫硬件融合、非影像对位)具有相同的定位坐标系统,病人扫描时不必改变位置,即可进行 PET-CT同机采集, 避免了由于病人移位所造成的误差。采集后两种图像不必进行对位、转换及配准,计算机图像融合软件便可方便地进行
2D、3D的精确融合,融合后的图像同时显示出人体解剖结构和器官的代谢活动, 大大简化了整个图像融合过程中的技术难度、避免了复杂的标记方法和采集后的大量运算, 并在一定程度上解决了时间、空间的配准问题, 图像可靠性大大提高。
PET在成像过程中由于受康普顿效应、散射、偶然符合事件、死时间等衰减因素的影响, 采集的数据与实际情况并不一致, 图像质量失真,必须采用有效措施进行校正,才能得到更真实的医学影像。同位素校正得到的穿透图像系统分辨率一般为12 mm、而 X线方法的穿透图像系统分辨率为1mm左右 图像信息量远大于同位素方法。用 CT图像对 PET进行衰减校正 使 PET图像的清晰度大为提高,图像质量明显优于同位素穿透源校正的效果(请看图2), 分辨率提高了 25%以上,校正效率提高了 30%,且易于操作。校正后的 PET图像与 CT图像进行融合, 经信息互补后得到更多的解剖结构和生理功能关系的信息 对于肿瘤病人手术和放射治疗定位具有极其重要的临床意义。向左转|向右转
第九条 医疗机构应当按照下列要求配备并使用安全防护装置、辐射检测仪器和个人防护用品:(一)放射治疗场所应当按照相应标准设置多重安全联锁系统、剂量监测系统、影像监控、对讲装置和固定式剂量监测报警装置;配备放疗剂量仪、剂量扫描装置和个人剂量报警仪; (二)开展核医学工作的,设有专门的放射性同位素分装、注射、储存场所,放射性废物屏蔽设备和存放场所;配备活度计、放射性表面污染监测仪;
(三)介入放射学与其他X射线影像诊断工作场所应当配备工作人员防护用品和受检者个人防护用品。
.机器使用场所必须设置防护措施(防护板、铅玻璃等屏蔽物)放射性标记和工作信号(灯)。
个人防护设施(如防护椅、铅围裙、铅手套等)。
早期的研究通过对黑色页岩中Re和Os含量与TOC含量的关系推断出Re和Os的亲有机质特性[9, 10]。Selby等[6, 7]的研究直接证明了Re和Os富集在干酪根组分中(图1), 对原油的Re-Os直接定年分析也表明Re和Os有亲有机质的特性。亲有机质的特性使得Re-Os同位素定年方法能够成功应用于黑色页岩定年[9~13]。最近, 该方法扩展到了直接对有机质定年。Selby等[7]对加拿大Nunavut Polari密西西比河谷型(Mississippi Valley-type, MVT)铅锌矿伴生的沥青进行了Re-Os同位素定年, 获得了(374.2± 8.6) Ma的Re-Os等时线年龄, 该年龄与闪锌矿Rb-Sr定年和古地磁定年在误差范围内具有较好的一致性。Selby等[11]也应用该方法首次对原油进行了定年, 并把这个年龄解释为油气生成、运移的时间。Finlay等[12]及Lilis和Selby[13]的研究则进一步表明, 石油中得到的Re-Os年龄指示的是油气生成、运移的时间。
在国内学者的研究中, 王剑等[14]对羌塘盆地胜利河海相油页岩进行Re-Os同位素分析获得(101± 24)Ma的年龄, 该等时线年龄年龄比生物地层指示得的地层年龄年轻。陈玲等[15, 16]通过对麻江古油藏储层沥青的Re-Os同位素分析, 获得的模式年龄为28~144 Ma, 集中于85 Ma, Re-Os等时线年龄为(87± 3.3) Ma, 并将其解释为沥青的形成时间, 代表古油藏遭受破坏的时间。沈传波等[17]针对川西龙门山北段矿山梁下寒武统沥青的Re-Os同位素组成和等时线年龄的分析得出的年龄为164Ma, 并认为该年龄指示的是川西龙门山北段矿山梁油气生成和运移的时间, 这个年龄与龙门山北段晚侏罗世强烈的构造活动相一致, 指出油气生成运移与构造活动具有良好的匹配关系。
Figure Option
图1 黑色页岩全岩中Re、Os含量与黑色页岩有机质中Re, Os含量的关系[4]Fig.1 The relationships of Re and Os(whole rock) versus Re and Os (organic matter) in black shale[4]
与其他放射性同位素系统一样, 为了能够获得同位素等时线年龄, 样品必须满足3个条件[5, 6]:①Re-Os同位素体系保持封闭; ②样品有相同来源, 表现为具有近似的187Os/188Os初始值(initial Os ratio, IOs); ③相对较多的样品, 确保187Re/188Os比率有一定的变化范围。现有的研究表明烃类流体中的Os同位素组成继承了烃源岩中的187Os/188Os, 因此初始Os同位素比值可以作为一种无机指标用来示踪烃源岩[7, 18~20], 作为一种潜在较好的油源对比的工具, 对经历过生物降解和水洗作用以及普通有机地化参数失去作用的地区, 具有广泛的应用前景。
但是, 目前国内外学者对于Re-Os同位素系统在后期的地质作用过程(如熟化作用、变质作用、热蚀变、脱沥青等)中能否保持封闭, Re-Os定年方法是否适用于特定地质条件下的地层及原油样品等问题还存在较大争议。基于此, 本文综述了Re-Os同位素定年及其封闭性的研究新进展, 以促进Re-Os同位素定年在石油系统的应用。
由质子数相同,中子数不同的同种元素,形成同位素。
同位素的概念,仅仅用在元素层次,也就是原子层次。
在分子层次,在化合物的层次上,没有同位素的概念。
②、水是化合物,是由三种元素化合而成,对水来说,没有同位素的概念,
因此也就没有水的同位素的摩尔质量的说法。
③、楼主的问题应该是,水由氢、氧的不同同位素形成时的摩尔质量怎么算?
A、由氕 protium 形成的水是 H₂O,Mr = 18 grams。
B、由氘 deuterium 形成的水是 D₂O,Mr = 20 grams。
B、由氚 Tritium 形成的水是 T₂O,Mr = 22 grams。
上面是氢的最常见的同位素,氢一共有七种同位素。而氧元素,共有13种同位素。
由氢的不同同位素,跟氧的不同同位素,形成的同系物的水,供有91种。
这91种同系物的摩尔质量,比较好算,但是系统特征、性质,还没有人好好地
全部研究一遍。

