
Product Description
Advanced BioMatrix’s silk solution is approximately 50 mg/mL (5% W/V) of solubilized protein with a molecular weight of approximately 100k Da, available in 20 mL volume. The silk solution is made of 100% fibroin protein that is derived from the domesticatedBombyx morisilkworm. The product is manufactured in a manner to minimize contamination and has a low bioburden but is not considered sterile.
Fibroin protein is the major structural component of the silkworm’s cocoon fiber. Fibroin offers great potential for use in medically related applications due to the high degree of biocompatibility and lack of immune response when implanted within the body. The silk fiber is solubilized into an aqueous fibroin solution, which can then be used as an additive in culture or for producing 3D scaffolds for tissue-engineering related studies.
As with traditional tissue-engineering approaches, the silk scaffolds are typically seededin vitrowith a specific cell type as most cells will adhere to fibroin protein, and then cultured over time to mimic tissue architecture. It has been shown that the silk fibroin protein can be degraded a number of naturally occurring proteolytic enzymes, and is thus a biologically active scaffold unlike other synthetic materials. As a result the silk scaffold material is degraded and remodeled through similar physiological pathways in the body. Silk fibroin protein is composed of both non-essential and essential amino acids, with a particular concentration of alanine and glycine present, and these amino acids are then reabsorbed by the surrounding cells for new tissue regeneration. This is important as silk degradation products do not collect in the local environment to induce a toxicity which is commonly associated with other synthetic and naturally occurring biomaterials.
The ability to produce a variety of forms and formats scaffold types (e.g. coatings, films, sponges, hydrogels, electro-spun fibers, micro/nanospheres, etc.) offers a number of advantages over other biopolymer systems like collagen, chitosan, and alginate that have less variety in processing choices. The silk material properties can then be modified through a variety of processing techniques to change degradation rate, hydrophobicity/hydrophilicity, transparency, mechanical strength, porosity, oxygen permeability, and thermal stability. In this regard, silk proteins represent a class of biopolymers with definable material properties for a given application.
This product is prepared from silk fibroin extracted fromBombyx morisilkworm cocoons and contains a high monomer content with a molecular weight of approximately 100k Da. It is supplied as a ~50 mg/mL (5%) aqueous solution. This product is aseptically processed resulting in a low bioburden but is not considered sterile. If culturing cells using this product, measures should be taken to maintain sterility of cultures such as use of antibiotics.This product is shipped separately on dry ice.
Parameter, Testing, and Method | Silk Fibroin #5154 |
Form | Solution - Slight haziness |
Package Size | 20 mL |
Storage Temperature | -70°C |
Shelf Life | Minimum of 6 months from date of receipt |
Concentration | 40-60 mg/mL |
Purity - SDS PAGE Electrophoresis | Characteristic |
pH | >4.5 |
Bioburden | Low (< 50 CFU's) but not sterile |
Cell Culture Conditions | Antibiotics are recommended |
Endotoxin | < 5.0 EU/mL |
Source | Domesticated Bombyx Mori Silkworm |
Osmolality (mOsmo H20/kg) | <160 |
Molecular Weight (kDa) | 100-150 |
Directions for Use
Download the full PDF versionor continue reading below:
Experimental Protocols for Material Processing :
1.Culture Well Coating Procedure:Use these recommendations as guidelines to determine the optimal coating conditions for your culture system.
- Remove required quantity of silk solution from the bottle and dispense into a dilution vessel.
- Dilute silk solution with water to 1 mg/mL (1:50).
- Swirl contents gently until material is completely mixed.
- Add appropriate amount of diluted silk solution to the culture surface ensuring that the entire surface is coated.
- Incubate in a clean bench (ISO 100) at room temperature uncovered, for 2-3 hours to allow for complete drying.
- After incubation apply 70% methanol for 20 minutes to induce a water-insoluble silk surface.
- Rinse coated surfaces carefully with sterile medium or PBS. Do not scratch surface.
- Coated surfaces are ready for use or may be stored at 4°C for future use.
2.Concentrating Silk Solution:This technique is used if a higher silk concentration is desired. Higher silk concentrations may be important for specific processing techniques or to modify final material properties.
- Prepare a 10% (W/V).solution of polyethylene glycol (PEG, 10K MW) with deionized water. Mix with a large stir bar on a magnetic stir plate until PEG is completely dissolved.
- Obtain a dialysis membrane with a molecular weight cutoff between 3,500 and 10,000 Da. If necessary hydrate the dialysis cassette per the manufacturer requirements.
- Fill the dialysis membrane with the appropriate amount of 5% silk solution per the dialysis membrane manufacturer guidelines for filling volume.
- Place the silk solution filled dialysis membrane into the 10% (wt/vol) PEG solution and cover.
- Indicate the time and date that the cassette was added to solution. Typical concentrating times will vary depending on the desired final concentration of silk solution, the volume of silk solution being concentrated, and the dialysis membrane used.Note As a typical example, 10 mL of 5% silk solution will yield 2–4 mL of concentrated silk solution after dialyzing against 10% (W/V) PEG for 20–22 hours. In general, optimization runs are usually recommended per user requirements.
- Remove the concentrated silk solution from the PEG bath and dialysis cassette after the concentrating time has finished and store silk solution at 4°C for future use. NOTE: Silk solution shelf life decreases with increasing concentration, so use concentrated silk solution soon within 1 week after it is produced.
- Silk solution concentration can be determined by weight percent concentration. To do this, weigh out approximately 100 µL of concentrated silk solution on a precision balance and record the wet weight. Allow the solution to dry into a film and measure the silk protein dry weight. Divide the dry weight over the wet weight and multiply by 100% to get the weight percent concentration of the solution.
3.Freestanding Silk Films:This processing method produces freestanding silk film materials that can be used for cell culture or in vivo transplantation. Freestanding silk films offer the advantage of easy removal from culture conditions for further sample analysis.
- Add 7 mL of 5% silk solution into a 100 mm Petri dish and allow drying uncovered in a clean bench environment. This typically takes several hours and is best left overnight.
- The formed film will be approximately 40-60 µm in thickness and can be removed from the Petri dish using forceps. Increasing the amount of silk solution or using higher concentration silk solution produces thicker films.
- The films are currently water-soluble and can be made insoluble for cell culture using either of the following methods:
i. Methanol bath incubation:a. Fill dish with 70% methanol and 30% deionized water and mix.b. Place silk film into methanol solution for 10 minutes.c. Remove silk film and rinse with sterile water or appropriate medium.Note :This processing method rapidly produces insoluble silk film material properties that tend to be opaque, more hydrophobic, and have slow degradation rates in situ.
ii. Water-annealing:a. Obtain an emptied lab vacuum desiccator and fill bottom partially with water.b. Place films on shelf above water, cover, and then pull a 25 in Hg vacuum.c. Stop cock the chamber and allow to sit for 4 hours.d. Remove samples from chamber and sterilize with 70% ethanol and then rinse with sterile water or appropriate media. Note: This processing method produces insoluble silk film material properties that tend to be transparent, more hydrophilic, and have fast degradation rates in situ.
- Films can then be cut to shape and stored for 2 years or more at room temperature if not used immediately.Note:Silk films can also be cast onto patterned surfaces to replicate the surface topography, typically silicone rubber or similar materials will be used for ease of silk material removal. In addition, weighting methods may be required to keep films submerged in media due to potential material buoyancy.
4.3D Silk Sponge Scaffolds:This processing method creates 3D porous scaffolds for both in vitro and in vivo applications or in situ implantation. The scaffold pore size and degradability characteristics can also be tuned using the method below.
A. Aliquot silk solution into a desired molding vessel, Teflon is recommended to allow for ease of material removal.
B. For each sample being prepared weigh the necessary amount of salt to maintain a 25:1 ratio of salt to silk weigh.Note: The control over pore size is dictated by the chosen sodium chloride (salt) crystal size. If a defined pore size is preferred use stainless steel sieves to produce a uniform salt crystal size. It is recommended for salt particles that are 750 µm and larger that the silk solution is concentrated to 8% or above.
C. Add the salt slowly to the silk solution while rotating the molds to allow for uniform salt addition. Be sure to carefully remove air bubbles formed from material displacement through mild agitation or tapping on a surface.
D. Cover the mold and allow the solution to sit for 1-2 days at room temperature to allow for silk scaffold formation.
E. After the scaffold has formed remove the mold cover and place samples into a 2-liter beaker of DI water and place on stir plate.
F. Change the water every 8-12 hours for 48 hours.
H. After the washing period remove the formed scaffolds from the mold and place in a final deionized water rinse for 24 hours to ensure complete removal of residual salt.
I. Scaffolds can be stored in deionized water for at 4 °C or dry at room temperature until needed.
J. The scaffolds can be cut to the required dimensions and steam sterilized before using
5. 3D Silk Hydrogels:This processing method can be used to produce silk hydrogels for use as an injectable biomaterial, in vitro culture, and in vivo use.
A. Place the 5% silk solution into the desired molding vessel or vial.
B. Secure the vessel or vial to a lab vortexer with tape in an upright position.
C. Vortex the solution for a several minutes and at maximal rotational speed. These parameters will need to be optimized for the given silk solution volume and mold geometry.
Note: As an example, pipette 1 mL of silk solution in a glass vial and vortex for ~7 min at 3,200 RPM. The solution should increase in turbidity indicating the gelation process has been initiated.
Note: Once the solution has been vortexed, do not transfer the solution to a secondary container before gelation has completed.
D. Place the vortexed silk/molding vessel/vial in a 37 °C incubator overnight to expedite gelation time.
E. Silk hydrogels can be used for future use as long as they remain hydrated and stored in deionized water at 4 °C.
Product Q & A
The silk fibroin contains a fair number of aspartic (0.5 mol%, ~25 residues) and glutamic acids (0.6 mol%, ~30 residues),as well as a small number of lysine residues (0.2 mol%, ~12 residues).
We use the dry down method. (Weigh out a certain amount of silk fibroin and leave in a 60C oven overnight, and weigh the left-over protein).
The silk we supply is a partially hydrolyzed silk fibroin II solution. Whole cocoons, harvested from domesticated Bombyx mori in China, are degummed and processed into a liquid protein solution using heavy inorganic salts. The solution is then desalted, tested, and packaged. One of the key features of our silk fibroin solution is the preservation of the fibroin light chain at around 25 kDa as shown on the gel.
Prepare 1- 2 Liters of 10% wt./vol. PEG solution and then dialyze the 5% fibroin solution overnight in a 3 kDa dialysis cassette overnight (~12 hrs). This should get you to between 10% - 15% fibroin.
Otherwise, the 'quick and dirty' way to do this is allow the water to evaporate from the Silk Fibroin 5% solution in a clean bench. You can dispense the Silk Fibroin solution into a large weigh dish to increase the evaporative surface and then check the dry weight of the fibroin protein periodically. This method can concentrate the solution significantly by the end of the work day.
The Silk Fibroin Protein that we offer is in the ‘regenerated’ form. This material is derived from the silk worm cocoon and then processed and solubilized into an aqueous form.
The silkis a partially hydrolyzed solution of fibroin heavy and light chain proteins. There will be some free amino acids present due to this hydrolysis, but the large majority of the material consists of the former two elements (heavy and light chains).
The silk solution is made from de-sericinized (or degummed it is sometime called) silk fiber. We remove the sericin via our extraction process.
Yes.
A coating allowed to air dry, or a shorter (15-30 minutes) water annealing.
While the native fibroin proteins exist in a 6:6:1 ratio, this composition is almost certainly not preserved during the manufacturing process that are used to create aqueous fibroin solution. This is because the heavy and light chains of fibroin have considerably different amino acid composition and hydrophobicity, rendering them unequally prone to hydrolysis during sericin degumming. This can be seen on the electrophoretic gel from the solution, where the heavy chain is seen as a smear, but the light chain is a relatively preserved band. We have not endeavored into determining the extent of p25 hydrolysis.
Yes.
It is best to maintain the product between -20 and -70 C. Any unused solution should be divided into smaller aliquots and frozen. Try to thaw/refreeze as few times as possible.
The 5% solution has a viscosity of ~12cp. When diluted in water to 2.5%, the viscosity is ~6cp.
Product References
References using Silk Fibroin from Advanced BioMatrix
Compaan, Ashley M., Kyle Christensen, and Yong Huang. "Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate."ACS Biomaterials Science & Engineering8 (2016): 1519-1526.
Jiang, Bojing, et al. "Water‐Based Photo‐and Electron‐Beam Lithography Using Egg White as a Resist."Advanced Materials Interfaces7 (2017): 1601223.
Liew, Lawrence J., Richard M. Day, and Rodney J. Dilley. "Tympanic membrane organ culture using cell culture well inserts engrafted with tympanic membrane tissue explants."BioTechniques3 (2017): 109-114.
Jativa, Fernando, and Xuehua Zhang. "Transparent silk fibroin microspheres from controlled droplet dissolution in a binary solution."Langmuir31 (2017): 7780-7787.
Maghdouri-White, Yas, et al. "Mammary epithelial cell adhesion, viability, and infiltration on blended or coated silk fibroin–collagen type I electrospun scaffolds."Materials Science and Engineering: C43 (2014): 37-44.
Choi, Moonhyun, Daheui Choi, and Jinkee Hong. "Multilayered controlled drug release silk fibroin nano-film by manipulating secondary structure."Biomacromolecules(2018).
Other references using Silk Fibroin:
Panilaitis B, Altman G, Chen J, Jin H, Karageorgiou V, Kaplan D. Macrophage responses to silk. Biomaterials. 2003;24(18):3079–85.
Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials. 2005;26(2):147–55.
Wang Y, Rudym D, Walsh A, Abrahamsen L, Kim H, Kim H, et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials. 2008;29(24-25):3415–28.
Kim U, Park J, Kim HJ, Wada M. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005.
Horan R, Antle K, Collette A, Wang Y, Huang J, Moreau J, et al. In vitro degradation of silk fibroin. Biomaterials. 2005;26(17):3385–93.
Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials. 2003;24(2):357–65.
Desjardins M. Phagocytosis: at the crossroads of innate and adaptive immunity. Annu Rev Cell Dev Biol. 2005.
Onuki Y, Bhardwaj U. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Science and Technology. 2008.
Motta A, Fambri L, Migliaresi C. Regenerated silk fibroin films: thermal and dynamic mechanical analysis. Macromolecular Chemistry and Physics. 2002;203(10-11):1658–65.
Agarwal N, Hoagland D, Farris R. Effect of moisture absorption on the thermal properties of Bombyx mori silk fibroin films. Journal of Applied Polymer Science. 1997;63(3):401–10.
Jin H, Park J, Valluzzi R, Cebe P, Kaplan D. Biomaterial films of Bombyx mori silk fibroin with poly (ethylene oxide). Biomacromolecules. 2004;5(3):711–7.
Tretinnikov O, Tamada Y. Influence of casting temperature on the near-surface structure and wettability of cast silk fibroin films. Langmuir. 2001;17(23):7406–13.
DuFort CC, Paszek MJ, Weaver VM. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol. Nature Publishing Group; 2011 May;12(5):308–19.
Califano JP, Reinhart-King CA. A Balance of Substrate Mechanics and Matrix Chemistry Regulates Endothelial Cell Network Assembly. Cel Mol Bioeng. 2008 Oct 15;1(2-3):122–32.
Reinhart-King CA. How Matrix Properties Control the Self-Assembly and Maintenance of Tissues. Annals of Biomedical Engineering. 2011 Apr 14;39(7):1849–56.
Rice W, Firdous S, Gupta S, Hunter M, Foo C, Wang Y, et al. Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy. Biomaterials. 2008;29(13):2015–24.
Lawrence BD, Pan Z, Weber MD, Kaplan DL, Rosenblatt MI. Silk film culture system for in vitro analysis and biomaterial design. J Vis Exp. 2012;(62):e3646.
Lawrence B, Cronin-Golomb M, Georgakoudi I, Kaplan D, Omenetto F. Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules. 2008;9(4):1214–20.
Omenetto F, Kaplan D. A new route for silk. Nature Photonics. 2008;2(11):641–3.
Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nature protocols. Nature Publishing Group; 2011;6(10):1612–31.
Yucel T, Cebe P, Kaplan DL. Vortex-Induced Injectable Silk Fibroin Hydrogels. Biophysical Journal. 2009 Oct;97(7):2044–50.
Product Certificate of Analysis
Safety and Documentation
Safety Data Sheet
Certificate of Origin
Product Disclaimer
This product is for R&D use only and is not intended for human or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.
美国AdvancedBioMatrix(简称ABM) www.advancedbiomatrix.comAdvancedBioMatrix(简称ABM)是美国一家著名的生物公司,获得了AllerganInc的授权(Allergan用25年时间不断完善胶原蛋白相关的产品的生产工艺),将Allergan的专业和技术用于蛋白生产与检测,致力于为组织工程、细胞分析及细胞增殖等研究领域提供优质稳定的产品。AdvancedBioMatrix不断丰富已有产品线,目前可为三维细胞培养提供各种胶原蛋白、纤连蛋白、玻连蛋白、水性凝胶、不同粘度与分子量的透明质酸以及低代成纤维细胞等。在美国全部产品授权Sigma销售。AdvancedBioMatrix是组织培养,细胞分析和细胞增殖三维(3D)应用的生命科学领域的领导者。我们的产品被公认为纯度,功能性和一致性的标准。我们在生产,分离,纯化,冷冻干燥,细胞培养和蛋白质测试,粘附肽,附着因子,底物刚性和其他3D矩阵产品方面拥有丰富的专业知识。我们的专业技术和知识正在被用来确保我们的产品质量最高,批次之间一致且易于为我们的研究客户使用。
美国AdvancedBioMatrix是3D组织培养、细胞检测和细胞增殖等领域实验解决方案的佼佼者。AdvancedBioMatrix在分离、纯化、冻干、细胞培养和蛋白检测、多肽粘附、附着因子、基质硬度和其他3Dmatrix 产品开发方面有着丰富的经验。AdvancedBioMatrix的研发经验和专业知识确保其产品可达到最佳质量,并保证产品之间一致性,方便研究客户使用。以下为AdvancedBioMatrix3DMatrices 产品竞争优势:1. 提供高纯度和成分确定的胞外基质;2. 超过1000余篇文献引用PureCol产品,品质非常均一;3. 在3D培养基领域可提供最全面的产品线;4. 唯一可提供特异性刚性有机硅基板的公司(CytoSoft);5. 唯一可提供可溶性丝纤蛋白的供应商(可运用于多种3D培养);6. 如果客户首次接触3D胶原凝胶,AdvancedBioMatrix还是唯一的预制胶原蛋白(PureColEZGel)供应商;
以下产品为AdvancedBioMatrix全球畅销品:1.PureCol 牛源I型胶原蛋白 3mg/ml#5005-100ML2.Nutragen牛源I型胶原蛋白 6mg/ml#5010-50ML3.FibriCol 牛源I型胶原蛋白 10mg/ml#5133-20ML4.VitroCol 人源I型胶原蛋白 #5007-20ML5. 弹性蛋白原 #5052-1MG6.ECMSelectArraykitUltra-36#5170-1EA7.CytoSoft(刚性可变的基底,AdvancedBioMatrix最新添加产品5190-7EA)8. 人III型胶原蛋白 #5021-10MG9. 人IV型胶原蛋白 #5022-5MG10.SilkFibroin溶液 #5154-20ML11.Fibronectin#5080-5MG12.Vitronectin#5051-0.1MG
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
编译字数:1452
Neurosurgery:神经外科术中可以同时使用磁共振与神经电生理监测
现代神经外科手术的目的,是实现最大化的肿瘤切除,同时保留神经功能。在过去的十几年间,新的技术工具如神经外科导航系统、低场强和高场强的术中核磁共振成像(iMRI)及先进的神经影像学技术(弥散张量成像技术DTI),以及术中神经电生理监测(IOM)一贯都有助于实现这一目标。但是,这几项技术集成一体化使用往往很难。
对于术中神经元系统和白质束的功能变化,IOM能够提供可靠的评估,而这些变化最终发生在手术中。在肿瘤切除过程中,高场强术中核磁共振成像(iMRI)可以提供残余肿瘤的影像图像,以及显示肿瘤转移和功能途径的形态学改变(通过DTI方式)。大脑雄辩区域的手术要求术中神经电生理监测(IOM),这在提供高场强(1.5T)iMRI的手术室可能会出现一些问题。比如安全性、失真率、IOM与iMRI之间相互干扰导致的可靠性受损。
来自意大利罗马LaSapienza大学医学心理学系神经科学和心理健康感觉器官教研室神经外科的GiancarloD’Andrea博士,为了鉴别在高场强iMRI的手术室里,哪些类型的电极更适合术中神经电生理监测,利用模型进行了一项实验研究。报告了他们在手术期间使用铱铂(Pt/Ir)电极的经验,并且证明IOM与Pt/Ir电极和高场强iMRI之间的集成一体化是安全的、可靠的。文章最近在线发表于Neurosurgery上。
研究人员使用凝胶样模型和苹果,对不同的材料(黄金、Pt/Ir,不锈钢(SS))构成的电极进行测试,以评估他们的安全性和兼容性。随后,在病人使用之前,在5例健康志愿者身上进行了电极测试。研究结果显示,这些不同的电极中,没有任何一个出现热不稳定,并且没有损害志愿者的皮肤的情况发生。
不锈钢电极造成了严重的图像失真。黄金电极没有造成图像失真,但是其高昂的费用使得他们在常规手术中使用负担不起。很明显,铂铱电极比黄金便宜,并且在高场强iMRI的手术室里,其具备完全的安全性、兼容性和适用性,可以提供出色的IOM和温和的干扰,根本不影响术中成像的质量。
因此,高场强的术中核磁共振辅助下的图像引导手术期间,核磁共振兼容的皮下铂铱针电极适用于术中神经电生理监测。在高场强iMRIBrainSuite®中使用IOM是有效的和安全的。
图1本图分为两个部分:在上半部分中,我们展示了我们手术室的照片,包括博医来公司提供的术中核磁共振辅助的脑科手术室(BrainSuite®iMRI)。在下半部分中,原理图描绘了同一手术室的设置证据,关系到逐步地增加与磁场的距离,安全线意味着磁场线使得所在区域的磁场强度逐步减少(10mT、5mT、3mT、1mT,0.5mT)。红线标记的是磁场强度为0.5mT的区域的内边界;因此,在此区域之外进行手术。病人、外科医师、麻醉医师和协助护士的理想位置,以及术中神经电生理监测设备(建议距离病人4-5米)和参与手术的神经生理学家的位置,也都按照上面提到的示意线的建议来事先设计好。附加到磁场的一个回转工作台,允许在手术期间病人的头部置放于5高斯示意线以外。在这条线以外可以使用普通的外科手术器械。术中神经电生理监测设备可以位于更远的地方,幸亏拥有足够7米长的电缆。(IOM=术中神经电生理监测,anesthesiologist=麻醉医师,m=米,mT=毫特斯拉)
图2相比较之下,铂铱电极在凝胶样模型测试期间增加了他们的差别,提供了优良的术中采集的核磁共振信号。(IntraoperativeMRIjellyphantomstudy=凝胶样模型的术中核磁共振成像研究,platinum-iridiumelectrode=铱铂电极,Steelelectrode=钢电极)
图3"苹果测试"更加证实了以前的研究结果,表明铱铂电极具备与术中强磁场最优的兼容性,相比而言,钢电极的人工产品和顺磁性的失真率都很高。(IntraoperativeMRIApplestudy=苹果的术中核磁共振成像研究,platinum-iridiumelectrode=铱铂电极,Steelelectrode=钢电极)
图4术中应用设备在"活体内"的演示图像(IntraoperativeT1VolumetricMRI=术中T1容积核磁共振成像,Intraoperative3Drendering=术中三维渲染图像)
我们一般是在心导管室内,要在特殊的X线设备,可以转动的C臂心血管造影机,影像增强设备和电视荧屏设备,多导电生理记录仪,心脏程控刺激仪等。高档可以有三维电解剖生理定位标测系统比如CARTO,EnSite3000,这仅仅国内少数顶尖医院才有。
我们做电生理检查是通过你自身的血管放入心导管,直到心脏相应部位,一般主要局部麻醉,小孩则需要全麻。手术前必须停用抗心律失常药物至少5个半衰期以上,一般至少要3天,一般抗凝药物也是需要停用的。
我们局部需要手术前备皮,也就是局部皮肤清洁,有毛发的也需要清理干净。然后铺上洞巾。仅仅暴露局部血管穿刺部位。
我们穿刺血管插入诱发电极导管是根据不同需要来的,比如通常我们需要至少放置冠状静脉窦电极,右心室电极,高位右心房电极,和His束电极,那么冠状静脉窦电极是一般通过左锁骨下静脉或者右颈内静脉穿刺放置的,而右心室、高右房和His束电极则通过右股静脉放置。这些和体表心电图构成都可以让医生在电视屏幕上看到你不同的心电图图形,这样可以更加明确你心律失常的机制,部位。那么我们就可以标定你需要消融的部位(靶点)
我们通过插入电极导管,然后我们就进行心电生理检查,也就是人工给与各种电刺激,诱发你心律失常,比如我们可以采用输出电刺激信号比如用S1S1 刺激,也可以采用S1S2刺激等等,有时候可以静脉点滴异丙肾上腺素等药物,增加诱发的成功率,术前我们停用抗心律失常药物也是这个目的,就是诱发出你心律失常,这样我们根据体表和心内心电图,可以准确判断并定位你心律失常发生机制和部位,为下一步射频导管消融作准备,其实标定,是最为关键的一步,你只有找准敌人才能准确打击。准确的标定,也就是找准敌人的位置,那么就为打击敌人,做出关键的作用。我们的射频导管就像导弹一样,但是你必须先直到敌人在哪里,把它标定好,然后我们的导弹就可以直接定点清除。
目前比较新的高档的比如CARTO,就是类似于全球定位系统GPS的原理,可以准确三维立体定位你心律失常形成的部位和路径。一般我们针对最多是折返造成的心律失常,比如最多用于房室结双径路或者房室旁路引起的阵发性室上速,成功率一般是95%以上。
如果是房扑,主要是经典房扑,那么一般我们需要用一个Halo导管,一根可以弯折的上面带有很多对电极的导管,沿着折返环,环形放置。那么成功率也可以到95%。
01中西医结合治疗内科疾病丁春华①101政治②201英语一或203日语③306西医综合或307中医综合中西医结合内科学▲广州中医药大学第二临床医学院
招生简章:http://www1.gzhtcm.edu.cn/bumen/yjsc2497/showart.asp?id=1906
招生目录:http://www1.gzhtcm.edu.cn/bumen/yjsc2497/showart.asp?id=1901
科室简介和个人简介:
一广东省中医院心律失常诊疗中心位于环境优美的广州大学城内以美国加州大学心脏中心归国的丁春华主任为学科带头人与美国加州大学心脏中心合作开展最前沿的介入诊疗手术心脏电生理导管室引进国际上最先进的三维标测系统EnsitevelocityCardioLab多导电生理仪西门子大型C臂血管造影X线机等设备开展心律失常的射频消融起搏器及除颤器植入手术
二充分发挥我院传统中医中药学的技术特色和独特优势由全国名老中医被誉为“中医泰斗”的邓铁涛教授中国科学院陈可冀院士著名中医黄春林教授为学术带头人以“中西医师各自专攻特长中西医学联合诊治病人”为科室特色为病人提供个体化最优化的中西医治疗方案
三心律失常诊疗中心设有病床张正高职称人博士研究生导师人主治医师人博士后人硕士人并设有心脏电生理研究室引进国际领先的光学标测膜片钳等研究设备开展心律失常疾病研究药物研发
四开展介入手术:
心房颤动(房颤)心房扑动(房扑)房性心动过速(房速)房性早搏(房早);阵发性室上性心动过速(室上速);预激综合征;室性心动过速(室速)室性早搏(室早);晕厥或头晕/晕倒;起搏器治疗病态窦房结综合征房室传导阻滞;心室再同步治疗心力衰竭;植入性心脏转复除颤器(ICD)治疗致死性恶性心律失常;家族先天性或复杂异常心电图的心内电生理检查诊断等
五中医特色治疗:在名老中医指导和实验研究基础上采用中药方剂耳针腹针体针穴位贴敷沐足等结合药膳调理综合治疗心律失常
六.地址:广州市番禺区小谷围街大学城内环西路号电话:-网址:wwwacucbbsorg
丁春华研究员
丁春华,男,河北省任丘市人,1972年2月生,医学博士。2010年自美国旧金山加州大学(UCSF)心脏中心归国,组建并担任广州中医药大学第二临床医学院(广东省中医院)心律失常诊疗中心主任、广东省中医药科学院心脏电生理研究室主任。现任心血管内科研究员、心血管(心律失常方向)博士研究生导师,心律失常专业国际权威期刊美国《心律》杂志编委、美国心律协会会员、美国华裔心脏协会会员、北美华人生物医药协会会员、美国《循环》杂志特约审稿人。
自1995年于华西医科大学攻读硕士学位,师从黄德嘉、姜建教授,从事心律失常介入手术和心脏电生理研究工作。1998年于天津医科大学总医院心脏科工作,并于2000年赴美国克里夫兰医学中心、亚利桑那州心脏病医院深造。2004年博士毕业于天津医科大学。
2005-2010年于美国旧金山加州大学心脏中心工作,任心脏电生理博士后、助理研究员。介入手术师从于心脏中心主任JeffreyOlgin和心律失常导管消融手术创始人MelvinScheinman教授。科研方面,建立了具有光学标测、膜片钳和微电极等心脏电生理先进技术的实验室,进行抗纤维化对心律失常的影响、心律失常发病机理等方面研究。发表SCI论文6篇,累计影响因子为42.304,英文专著1本。
目前承担2项科研课题。指导硕士生和博士生各2名。
问题:
1,既然外国公司的原材料这么贵,我就想购买国内厂家的,请各位大侠帮忙提供一下国内哪些厂家的玻璃胚针物廉价美?
2,国内的哪些大学的测试中心,能够提供拉针仪的有偿使用服务的?
尽快!时间就是生命!
泸州医学院心肌电生理学研究室
网页:http://www.cardio-electrophysiol.com/
咨询电话:0830-3160619
泸州医学院心肌电生理学研究室正式成立于1984年,是西南地区心血管电生理唯一的专业研究机构,泸州医学院唯一四川省重点实验室,四川省高校重点实验室,四川省高校重点建设学科,国家中医药科研二级实验室,泸州医学院首批硕士学位点。拥有高、中级专业技术人员多名,其中专职研究人员16人,兼职人员10人,外国客座教授1人,人员结构合理、仪器设备先进、研究手段齐全、研究成绩显著。现任研究室主任由留学回国学者、国家“百千万人才工程”一、二层次人选入选者、四川省有突出贡献优秀专家、四川省学术技术带头人、国务院政府特贴专家曾晓荣研究员担任。研究室目前有器官、系统、整体水平的临床电生理实验室、细胞水平的常规细胞电生理实验室、分子水平的膜片钳制(6套)技术实验室、心血管分子生物实验室、激光共聚焦技术实验室等多个不同层次、不同水平、不同要求与目的的实验室。此外,还有数据分析处理室、细胞培养室等。
主要围绕心肌缺血、心律失常开展其病理生理机理、检测手段、药物机理、药物筛选的基础研究和应用研究。
研究室先后承担了国家自然科学基金(5项)、教育部(1项)、卫生部(4项)、科技部(1项)等各级科研课题49项,完成并取得成果18项,其中获四川省重大科技成果奖、科技进步奖7项、获省厅级成果奖7项。在国际、国内各级杂志上发表论文180余篇,获国家、部省、市院级优秀论文55篇,多篇论文参加了国际交流。参加学术会议64次,其中国际会议17次,全国性学术会议38次,与国内外学者进行了广泛的交流。培养本研究室、本校及受聘为华东、华南、西南等地区培养博士后、博士、硕士研究生90名,为多家院校和研究单位提供了技术指导和咨询,举办了电生理技术学习班,接受了国内14家单位进修生,与国际、国内20余所高等院校科研机构保持着密切的学术来往,接待了来自世界卫生组织、美、日、加等国学者和国内几十家单位专家、学者的参观、访问。
虽然是省属院校,但是实验室的条件比很多重点大学好,研究经费充足!北京上海广州等的博士硕士均来我室从事实验研究。
毕业的研究生很多在重点大学、外资企业和医院从事研究及相关工作!就业前景好!出国机会多!
磁共振 CT 脑电图 多普勒 肌电图 诱发电位 脑脊液检查 血液检查。。。。。。。。。。。。
心内科
心脏电生理记录系统、有创血压监测系统、心脏射频消融仪、心电分析系统、多参数监护仪、医疗网络产品等。
产品主要用于心脏射频消融、心脏电生理检查、冠脉造影、经皮冠状动脉成型术、支架植入、二尖瓣球囊扩张等心脏介入手术;人体生理参数监测;心电图分析等
谢谢啦~

