请使用支持JavaScript的浏览器! +,Smartox/TTX-S selective blocker/08HWT002-00500/0.5mg,酸碱缓冲液,Smartox,Smartox,,0.5mg蚂蚁淘商城
商品信息
联系客服
Smartox/TTX-S selective blocker/08HWT002-00500/0.5mg
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
Smartox/TTX-S selective blocker/08HWT002-00500/0.5mg
品牌 / 
Smartox
货号 / 
08HWT002-00500
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616

HuwentoxinIV (HwTx-IV) isaneurotoxinthatwasoriginallyisolatedfromHaplopelmaschmidti(Chinesebirdspider).Thislethalneurotoxinactsselectivelyon tetrodotoxin-sensitive(TTX-S)voltage-gatedsodiumchannels,withanIC50 of30nMinratDRGneurons.Itpreferentiallyinhibitsneuronal voltage-gatedsodiumchannelsubtypehNav1.7 (SCN9A,IC50 is26nM), rNav1.2 (SCN2A,IC50 is150nM),and rNav1.3 (SCN3A,IC50 is338nM),comparedwithmusclesubtypesrNav1.4(SCN4A)andhNav1.5(SCN5A)(IC50 is>10µM).HuwentoxinIV inhibitstheactivationofsodiumchannelsbytrappingthevoltagesensorofdomainIIofthesite4intheinward,closedconfiguration.


Description:

Productcode:N/A.Category:Sodiumchannels.Tags:nav,tetrodotoxin.

AAsequence: Glu-Cys2-Leu-Glu-Ile-Phe-Lys-Ala-Cys9-Asn-Pro-Ser-Asn-Asp-Gln-Cys16-Cys17-Lys-Ser-Ser-Lys-Leu-Val-Cys24-Ser-Arg-Lys-Thr-Arg-Trp-Cys31-Lys-Tyr-Gln-Ile-NH2
Disulfidebonds: Cys2-Cys17,Cys9-Cys24 andCys16-Cys31
Length(aa): 35
Formula: C174H277N51O52S6
MolecularWeight: 4107.20Da
Appearance:Whitelyophilizedsolid
Solubility: waterandsalinebuffer
CASnumber:
Source: Synthetic
Purityrate: >97%

Reference:

Analysisofthestructuralandmolecularbasisofvoltage-sensitivesodiumchannelinhibitionbythespidertoxin,Huwentoxin-IV(μ-TRTX-Hh2a)

Voltage-gatedsodiumchannels(VGSCs)areessentialtothenormalfunctionofthevertebratenervoussystem.AberrantfunctionofVGSCsunderliesavarietyofdisorders,includingepilepsy,arrhythmia,andpain.Alargenumberofanimaltoxinstargettheseionchannelsandmayhavesignificanttherapeuticpotential.Mostofthesetoxins,however,havenotbeencharacterizedindetail.Here,bycombiningpatchclampelectrophysiologyandrADIoligandbindingstudieswithpeptidemutagenesis,NMRstructuredetermination,andmolecularmodeling,wehaverevealedkeymoleculardeterminantsoftheinteractionbetweenthetarantulatoxinhuwentoxin-IVandtwoVGSCisoforms,Nav1.7andNav1.2.Ninehuwentoxin-IVresidues(F6A,P11A,D14A,L22A,S25A,W30A,K32A,Y33A,andI35A)wereimportantforblockofNav1.7andNav1.2.Importantly,moleculardynamicssimulationsandNMRstudiesindicatedthatfoldingwasnormalforseveralkeymutants,suggestingthattheseaminoacidsprobablymakespecificinteractionswithsodiumchannelresidues.Additionally,weidentifiedseveralaminoacids(F6A,K18A,R26A,andK27A)thatareinvolvedinisoform-specificVGSCinteractions.Ourstructuralandfunctionaldatawereusedtomodelthedockingofhuwentoxin-IVintothedomainIIvoltagesensorofNav1.7.ThemodelpredictsthatahydrophobicpatchcomposedofTrp-30andPhe-6,alongwiththebasicLys-32residue,docksintoagrooveformedbytheNav1.7S1-S2andS3-S4loops.Theseresultsprovidenewinsightintothestructuralandmolecularbasisofsodiumchannelblockbyhuwentoxin-IVandmayprovideabasisfortherationaldesignoftoxin-basedpeptideswithimprovedVGSCpotencyand/orselectivity.

MinassianNA.,etal.(2013)Analysisofthestructuralandmolecularbasisofvoltage-sensitivesodiumchannelinhibitionbythespidertoxin,Huwentoxin-IV(μ-TRTX-Hh2a). JBC. PMID: 23760503

Commonmoleculardeterminantsoftarantulahuwentoxin-IVinhibitionofNa+channelvoltagesensorsindomainsIIandIV

ThevoltagesensorsofdomainsIIandIVofsodiumchannelsareimportantdeterminantsofactivationandinactivation,respectively.AnimaltoxinsthatalterelectrophysiologicalexcitABIlityofmusclesandneuronsoftenmodifysodiumchannelactivationbyselectivelyinteractingwithdomainIIandinactivationbyselectivelyinteractingwithdomainIV.Thissuggeststhattheremaybesubstantialdifferencesbetweenthetoxin-bindingsitesinthesetwoimportantdomains.Hereweexploretheabilityofthetarantulahuwentoxin-IV(HWTX-IV)toinhibittheactivityofthedomainIIandIVvoltagesensors.HWTX-IVisspecificfordomainII,andweidentifyfiveresiduesintheS1-S2(Glu-753)andS3-S4(Glu-811,Leu-814,Asp-816,andGlu-818)regionsofdomainIIthatarecrucialforinhibitionofactivationbyHWTX-IV.ThesedataindicatethatasingleresidueintheS3-S4linker(Glu-818inhNav1.7)iscrucialforallowingHWTX-IVtointeractwiththeotherkeyresiduesandtrapthevoltagesensorintheclosedconfiguration.MutagenesisanalysisindicatesthatthefivecorrespondingresiduesindomainIVareallcriticalforendowingHWTX-IVwiththeabilitytoinhibitfastinactivation.Ourdatasuggestthatthetoxin-bindingmotifindomainIIisconservedindomainIV.Increasingourunderstandingofthemoleculardeterminantsoftoxininteractionswithvoltage-gatedsodiumchannelsmaypermitdevelopmentofenhancedisoform-specificvoltage-gatingmodifiers.

Xiao,Y., etal.(2011)Commonmoleculardeterminantsoftarantulahuwentoxin-IVinhibitionofNa+channelvoltagesensorsindomainsIIandIV, JBC. PMID: 21659528

 

ThetarantulatoxinsProTx-IIandhuwentoxin-IVdifferentiallyinteractwithhumanNav1.7voltagesensorstoinhibitchannelactivationandinactivation

Thevoltage-gatedsodiumchannelNa(v)1.7playsacrucialroleinpain,anddrugsthatinhibithNa(v)1.7mayhavetremendoustherapeuticpotential.ProTx-IIandhuwentoxin-IV(HWTX-IV),cystineknotpeptidesfromtarantulavenoms,preferentiallyblockhNa(v)1.7.Understandingtheinteractionsofthesetoxinswithsodiumchannelscouldaidthedevelopmentofnovelpaintherapeutics.WhereasbothProTx-IIandHWTX-IVhavebeenproposedtopreferentiallyblockhNa(v)1.7activationbytrappingthedomainIIvoltage-sensorintherestingconfiguration,weshowthatspecificresiduesinthevoltage-sensorpaddleofdomainIIplaysubstantiallydifferentrolesindeterminingtheaffinitiesofthesetoxinstohNa(v)1.7.ThemutationE818CincreasesProTx-II‘sandHWTX-IV‘sIC(50)forblockofhNa(v)1.7currentsby4-and400-fold,respectively.Incontrast,themutationF813GdecreasesProTx-IIaffinityby9-foldbuthasnoeffectonHWTX-IVaffinity.ItisnoteworthythatwealsoshowthatProTx-II,butnotHWTX-IV,preferentiallyinteractswithhNa(v)1.7toimpedefastinactivationbytrappingthedomainIVvoltage-sensorintherestingconfiguration.MutationsE1589QandT1590KindomainIVeachdecreasedProTx-II’sIC(50)forimpairmentoffastinactivationby~6-fold.IncontrastmutationsD1586AandF1592Aindomain-IVincreasedProTx-II’sIC(50)forimpairmentoffastinactivationby~4-fold.OurresultsshowthatwhereasProTx-IIandHWTX-IVbindingdeterminantsondomain-IImayoverlap,domainIIplaysamuchmorecrucialroleforHWTX-IV,andcontrarytowhathasbeenproposedtobeaguidingprincipleofsodiumchannelpharmacology,moleculesdonothavetoexclusivelytargetthedomainIVvoltage-sensortoinfluencesodiumchannelinactivation.

Xiao,Y., etal.(2010)ThetarantulatoxinsProTx-IIandhuwentoxin-IVdifferentiallyinteractwithhumanNav1.7voltagesensorstoinhibitchannelactivationandinactivation, MolPharmacol. PMID: 20855463

Mechanismofactionoftwoinsecttoxinshuwentoxin-IIIandhainantoxin-VIonvoltage-gatedsodiumchannels

SelenocosmiahuwenaandSelenocosmiahainanaaretwotarantulaspeciesfoundinsouthernChina.Theirvenomscontainabundantpeptidetoxins.Twonewneurotoxicpeptides,huwentoxin-III(HWTX-III)andhainantoxin-VI(HNTX-VI),wereobtainedfromthevenomusingion-exchangechromatographyandreverse-phasehighperformanceliquidchromatography(RP-HPLC).ThemechanismofactionofHWTX-IIIandHNTX-VIoninsectneuronalvoltage-gatedsodiumchannels(VGSCs)wasstudiedviawhole-cellpatchclamptechniques.Inafashionsimilartodelta-atracotoxins,HNTX-VIcaninduceaslowdownofcurrentinactivationoftheVGSCandreductioninthepeakofNa+currentincockroachdorsalunpairedmedian(DUM)neurons.Meanwhile,10micromol/LHNTX-IVcausedapositiveshiftofsteady-stateinactivationofsodiumchannel.HWTX-IIIinhibitedVGSCsonDUMneurons(concentrationoftoxinathalf-maximalinhibition(IC(50))approximately1.106micromol/L)inawaymuchsimilartotetrodotoxin(TTX).HWTX-IIIhadnoeffectonthekineticsofactivationandinactivation.Theshiftinthesteady-stateinactivationcurvewasdistinctfromotherdepressantspidertoxins.ThediverseeffectandthemechanismofactionofthetwoinsecttoxinsillustratethediverseBIOLOGicalactivitiesofspidertoxinsandprovideafreshtheoreticalfoundationtodesignanddevelopnovelinsecticides.

WangRL, etal.(2010)Mechanismofactionoftwoinsecttoxinshuwentoxin-IIIandhainantoxin-VIonvoltage-gatedsodiumchannels. PMID: 20506577

Tarantulahuwentoxin-IVinhibitsneuronalsodiumchannelsbybindingtoreceptorsite4andtrappingthedomainiivoltagesensorintheclosedconfiguration

Peptidetoxinswithhighaffinity,divergentpharmacologicalfunctions,andisoform-specificselectivityarepowerfultoolsforinvestigatingthestructure-functionrelationshipsofvoltage-gatedsodiumchannels(VGSCs).Althoughanumberofinterestinginhibitorshavebeenreportedfromtarantulavenoms,littleisknownaboutthemechanismfortheirinteractionwithVGSCs.Weshowthathuwentoxin-IV(HWTX-IV),a35-residuepeptidefromtarantulaOrnithoctonushuwenavenom,preferentiallyinhibitsneuronalVGSCsubtypesrNav1.2,rNav1.3,andhNav1.7comparedwithmusclesubtypesrNav1.4andhNav1.5.OfthefiveVGSCsexamined,hNav1.7wasmostsensitivetoHWTX-IV(IC(50)approximately26nM).Followingapplicationof1micromHWTX-IV,hNav1.7currentscouldonlybeelicitedwithextremedepolarizations(>+100mV).RecoveryofhNav1.7channelsfromHWTX-IVinhibitioncouldbeinducedbyextremedepolarizationsormoderatedepolarizationslastingseveralminutes.Site-directedmutagenesisanalysisindicatedthatthetoxindockedatneurotoxinreceptorsite4locatedattheextracellularS3-S4linkerofdomainII.MutationsE818QandD816NinhNav1.7decreasedtoxinaffinityforhNav1.7byapproximately300-fold,whereasthereversemutationsinrNav1.4(N655D/Q657E)andthecorrespondingmutationsinhNav1.5(R812D/S814E)greatlyincreasedthesensitivityofthemuscleVGSCstoHWTX-IV.Ourdataidentifyanovelmechanismforsodiumchannelinhibitionbytarantulatoxinsinvolvingbindingtoneurotoxinreceptorsite4.Incontrasttoscorpionbeta-toxinsthattraptheIIS4voltagesensorinanoutwardconfiguration,weproposethatHWTX-IVtrapsthevoltagesensorofdomainIIintheinward,closedconfiguration.

Xiao,Y., etal.(2008)Tarantulahuwentoxin-IVinhibitsneuronalsodiumchannelsbybindingtoreceptorsite4andtrappingthedomainiivoltagesensorintheclosedconfiguration, JBC. PMID: 18628201

Functionandsolutionstructureofhuwentoxin-IV,apotentneuronaltetrodotoxin(TTX)-sensitivesodiumchannelantagoNISTfromChinesebirdspiderSelenocosmiahuwena

WehaveisolatedahighlypotentneurotoxinfromthevenomoftheChinesebirdspider,Selenocosmiahuwena.This4.1-kDatoxin,whichhasbeennamedhuwentoxin-IV,contains35residueswiththreedisulfidebridges:Cys-2-Cys-17,Cys-9-Cys-24,andCys-16-Cys-31,assignedbyachemicalstrategyincludingpartialreductionofthetoxinandsequenceanalysisofthemodifiedintermediates.Itspecificallyinhibitstheneuronaltetrodotoxin-sensitive(TTX-S)voltage-gatedsodiumchannelwiththeIC(50)valueof30nminadultratdorsalrootganglionneurons,whilehavingnosignificanteffectonthetetrodotoxin-resistant(TTX-R)voltage-gatedsodiumchannel.ThistoxinseemstobeasiteItoxinaffectingthesodiumchannelthroughamechanismquitesimilartothatofTTX:itsuppressesthepeaksodiumcurrentwithoutalteringtheactivationorinactivationkinetics.Thethree-dimensionalstructureofhuwentoxin-IVhasbeendeterminedbytwo-dimensional(1)HNMRcombinedwithdistantgeometryandsimulatedannealingcalculationbyusing527nuclearOverhausereffectconstraintsand14dihedralconstraints.Theresultingstructureiscomposedofadouble-strandedantiparallelbeta-sheet(Leu-22-Ser-25andTrp-30-Tyr-33)andfourturns(Glu-4-Lys-7,Pro-11-Asp-14,Lys-18-Lys-21andArg-26-Arg-29)andbelongstotheinhibitorcystineknotstructuralfamily.Aftercomparisonwithothertoxinspurifiedfromthesamespecies,weareconvincedthatthepositivelychargedresiduesofloopIV(residues25-29),especiallyresidueArg-26,mustbecrucialtoitsbindingtotheneuronaltetrodotoxin-sensitivevoltage-gatedsodiumchannel.

Peng,K., etal.(2002)Functionandsolutionstructureofhuwentoxin-IV,apotentneuronaltetrodotoxin(TTX)-sensitivesodiumchannelantagonistfromChinesebirdspiderSelenocosmiahuwena, JBiolChem.PMID: 12228241

Smartox"scitation:Anaturalpointmutationchangesbothtargetselectivityandmechanismofactionofseaanemonetoxins

APETx3,anovelpeptideisolatedfromtheseaanemoneAnthopleuraelegantissima,isanaturallyoccurringmutantfromAPETx1,onlydifferingbyaThrtoProsubstitutionatposition3.APETx1isbelievedtobeaselectivemodulatorofhumanether-á-go-gorelatedgene(hERG)potassiumchannelswithaK(d)of34nM.Inthisstudy,APETx1,2,and3havebeensubjectedtoanelectrophysiologicalscreeningonawiderangeof24ionchannelsexpressedinXenopuslaevisoocytes:10clonedvoltage-gatedsodiumchannels(Na(V)1.2-Na(V)1.8,theinsectchannelsDmNa(V)1,BgNa(V)1-1a,andthearachnidchannelVdNa(V)1)and14clonedvoltage-gatedpotassiumchannels(K(V)1.1-K(V)1.6,K(V)2.1,K(V)3.1,K(V)4.2,K(V)4.3,K(V)7.2,K(V)7.4,hERG,andtheinsectchannelShakerIR).Surprisingly,theThr3ProsubstitutionresultsinacompleteabolishmentofAPETx3modulationonhERGchannelsandprovidesthistoxintheabilitytobecomeapotent(EC(50)276nM)modulatorofvoltage-gatedsodiumchannels(Na(V)s)becauseitslowsdowntheinactivationofmammalianandinsectNa(V)channels.OurstudyalsoshowsthatthehomologoustoxinsAPETx1andAPETx2displaypromiscuouspropertiessincetheyarealsocapableofrecognizingNa(V)channelswithIC(50)valuesof31nMand114nM,respectively,causinganinhibitionofthesodiumconductancewithoutaffectingtheinactivation.Ourresultsprovidenewinsightsinkeyresiduesthatallowtheseseaanemonetoxinstorecognizedistinctionchannelswithsimilarpotencybutwithdifferentmodulatoryeffects.FurThermore,wedescribeforthefirsttimethetargetpromiscuityofafamilyofseaanemonetoxinsthusfarbelievedtobehighlyselective.

PeigneurS, etal. (2012)Anaturalpointmutationchangesbothtargetselectivityandmechanismofactionofseaanemonetoxins. FASEBJ. PMID: 22972919

蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
Tris-HCl缓冲液(1mol/L,pH7.6)是由北京雷根生物技术有限公司代理或销售的Leagene品牌的试剂,产品来源于北京。北京雷根生物技术有限公司是中国最权威的Tris-HCl缓冲液(1mol/L,pH7.6)试剂销售服务商之一,在北京等地方销售Tris-HCl缓冲液(1mol/L,pH7.6)试剂已经多年。生物在线为您提供众多企业Tris-HCl缓冲液(1mol/L,pH7.6)仪器产品及图片,以便挑选到性价比高,合适的Tris-HCl缓冲液(1mol/L,pH7.6)产品 查看更多>
amresco TAE缓冲液【1218】,amresco现货。Amresco公司来自美国,成立于 1976 年,为高质量生化试剂 / 试剂盒的生产商及供应商,产品服务于生物科研领域。用于体外诊断及医药中间体的美国 FDA 注册。amresco TAE缓冲液【1218】021-61806666 33779006品牌:AMRESCO数量:大量保存条件:4℃供应商:AMRESCO保质期:1年amresco TAE缓冲液【1218】CodeIt 查看更多>
北京绿百草科技发展有限公司在发布的4% 多聚甲醛磷酸盐缓冲液4%-Paraformaldehyde Phosphate Buffer Solution供应信息,浏览与4% 多聚甲醛磷酸盐缓冲液4%-Paraformaldehyde Phosphate Buffer Solution相关的产品或在搜索更多与4% 多聚甲醛磷酸盐缓冲液4%-Paraformaldehyde Phosphate Buffer Solution相关的内容。 查看更多>
上海研生实业有限公司所提供的Citrate  柠檬酸盐缓冲液 (1.0M pH6.0)质量可靠、规格齐全,上海研生实业有限公司不仅具有精湛的技术水平,更有良好的售后服务和优质的解决方案,欢迎您来电咨询此产品具体参数及价格等详细信息! 查看更多>
2018-07-16
amresco咪唑层析缓冲液【1218】,amresco现货。Amresco公司来自美国,成立于 1976 年,为高质量生化试剂 / 试剂盒的生产商及供应商,产品服务于生物科研领域。用于体外诊断及医药中间体的美国 FDA 注册。amresco咪唑层析缓冲液【1218】021-61806666 33779006品牌:AMRESCO数量:大量保存条件:4℃供应商:AMRESCO保质期:1年amresco咪唑层析缓冲液【1218】CodeIt 查看更多>
For amplification of cognate sequences from different organisms, or for "evolutionary PCR", one may increase the chances of getting product by designing 查看更多>
Visikol产品介绍/代理进口/现货 查看更多>
上海笃玛生物科技有限公司在发布的TESCA缓冲液(pH7.4,无菌)供应信息,浏览与TESCA缓冲液(pH7.4,无菌)相关的产品或在搜索更多与TESCA缓冲液(pH7.4,无菌)相关的内容。 查看更多>
蛋白分离胶缓冲液,4X是由上海百赛生物技术有限公司代理或销售的Amresco品牌的试剂,产品来源于美国。上海百赛生物技术有限公司是中国最权威的蛋白分离胶缓冲液,4X试剂销售服务商之一,在上海等地方销售蛋白分离胶缓冲液,4X试剂已经多年。生物在线为您提供众多企业蛋白分离胶缓冲液,4X仪器产品及图片,以便挑选到性价比高,合适的蛋白分离胶缓冲液,4X产品 查看更多>
南京森贝伽生物科技有限公司在发布的包涵体裂解缓冲液供应信息,浏览与包涵体裂解缓冲液相关的产品或在搜索更多与包涵体裂解缓冲液相关的内容。 查看更多>
amresco Tris-Tricine缓冲液粉末包【1218】,amresco现货。Amresco公司来自美国,成立于 1976 年,为高质量生化试剂 / 试剂盒的生产商及供应商,产品服务于生物科研领域。用于体外诊断及医药中间体的美国 FDA 注册。amresco Tris-Tricine缓冲液粉末包【1218】021-61806666 33779006品牌:AMRESCO数量:大量保存条件:4℃供应商:AMRESCO保质期:1年am 查看更多>
南京森贝伽生物科技有限公司在发布的Tris-Triton-NaCl缓冲液供应信息,浏览与Tris-Triton-NaCl缓冲液相关的产品或在搜索更多与Tris-Triton-NaCl缓冲液相关的内容。 查看更多>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
因为强酸(碱)是完全电离,弱酸(碱)是部分电离,滴定的终点难以控制,所以一般用强酸(碱).太浓或太稀的溶液,也不利于控制滴定终点,部分酸碱的性质还会因为浓度的该变而发生变化,如浓H2SO4有强氧化性.
缓冲溶液是含共轭酸碱对的,其中共轭酸与共轭碱都必须是弱酸或弱碱,这样才能组成缓冲液。因为邻苯二甲酸是弱酸,氨是弱碱,并且它们的同浓度的电离度相似,所以组成的缓冲溶液缓冲能力强。
通HCl前,溶液是c(CH₃COOH)=c(CH₃COONa)=0.1mol/L的混合溶液,按照缓冲溶液pH的求法求.
pH(1)=pKa+lg[c(CH₃COONa)/c(CH₃COOH)]=pKa=4.74
通HCl后,溶液是c(CH₃COOH)=0.2mol/L、c(NaCl)=0.1mol/L的混合溶液,溶液pH按照弱酸溶液pH的求法求.
c(H⁺)=√[Ka*c(CH₃COOH)]=√(10^-4.74*0.2)=0.00191(mol/L)(采用了近似公式)
pH(2)=-lg{c(H⁺)}=2.72
两个pH求得,那么pH的变化量也就可得了.pH的变化量=|pH(2)-pH(1)|=|2.72-4.74|=2.02
1)PH缓冲溶液作用原理和pH值
  当往某些溶液中加入一定量的酸和碱时,有阻碍溶液pH变化的作用,称为缓冲作用,这样的溶液叫做缓冲溶液.弱酸及其盐的混合溶液(如HAc与NaAc),弱碱及其盐的混合溶液(如NH3·H2O与NH4Cl)等都是缓冲溶液.
  由弱酸HA及其盐NaA所组成的缓冲溶液对酸的缓冲作用,是由于溶液中存在足够量的碱A-的缘故.当向这种溶液中加入一定量的强酸时,H离子基本上被A-离子消耗:
  所以溶液的pH值几乎不变;当加入一定量强碱时,溶液中存在的弱酸HA消耗OH-离子而阻碍pH的变化.
  2)PH缓冲溶液的缓冲能力
  在缓冲溶液中加入少量强酸或强碱,其溶液pH值变化不大,但若加入酸,碱的量多时,缓冲溶液就失去了它的缓冲作用.这说明它的缓冲能力是有一定限度的.
  缓冲溶液的缓冲能力与组成缓冲溶液的组分浓度有关.0.1mol·L-1HAc和0.1mol·L-1NaAc组成的缓冲溶液,比0.01mol·L-1HAc和0.01mol·L-1NaAc的缓冲溶液缓冲能力大.关于这一点通过计算便可证实.但缓冲溶液组分的浓度不能太大,否则,不能忽视离子间的作用.
  组成缓冲溶液的两组分的比值不为1∶1时,缓冲作用减小,缓冲能力降低,当c(盐)/c(酸)为1∶1时△pH最小,缓冲能力大.不论对于酸或碱都有较大的缓冲作用.缓冲溶液的pH值可用下式计算:
  此时缓冲能力大.缓冲组分的比值离1∶1愈远,缓冲能力愈小,甚至不能起缓冲作用.对于任何缓冲体系,存在有效缓冲范围,这个范围大致在pKaφ(或pKbφ)两侧各一个pH单位之内.
  弱酸及其盐(弱酸及其共轭碱)体系pH=pKaφ±1
  弱碱及其盐(弱碱及其共轭酸)体系pOH=pKbφ±1
  例如HAc的pKaφ为4.76,所以用HAc和NaAc适宜于配制pH为3.76~5.76的缓冲溶液,在这个范围内有较大的缓冲作用.配制pH=4.76的缓冲溶液时缓冲能力最大,此时(c(HAc)/c(NaAc)=1.
  3)PH缓冲溶液的配制和应用
  为了配制一定pH的缓冲溶液,首先选定一个弱酸,它的pKaφ尽可能接近所需配制的缓冲溶液的pH值,然后计算酸与碱的浓度比,根据此浓度比便可配制所需缓冲溶液.
  以上主要以弱酸及其盐组成的缓冲溶液为例说明它的作用原理、pH计算和配制方法.对于弱碱及其盐组成的缓冲溶液可采用相同的方法.
  PH缓冲溶液在物质分离和成分分析等方面应用广泛,如鉴定Mg2离子时,可用下面的反应:
  白色磷酸铵镁沉淀溶于酸,故反应需在碱性溶液中进行,但碱性太强,可能生成白色Mg(OH)2沉淀,所以反应的pH值需控制在一定范围内,因此利用NH3·H2O和NH4Cl组成的缓冲溶液,保持溶液的pH值条件下,进行上述反应.
相关疾病:高钾血症碱中毒代谢性酸中毒输入库存血,钾离子大量释放入血,会导致高钾血症,同时容易伴发代谢性碱中毒,查了相关资料解释说:大量输...
求助:我目前需用离子交换法进行蛋白质的分离和纯化,但是我不知道要纯化的蛋白质的等电点,怎么样选择柱料及洗脱缓冲液呢?如果必须知道,有没有什么简便的方法测定蛋白质的等电点呢?谢谢
如何选择缓冲溶液?_123
sweetwater2021-07-21
做试验的时候用到很多种缓冲液,Tris,triethanolamine,HEPES,还有磷酸缓冲液,不知道这些缓冲液之间有没有大的区别,选择缓冲液的依据是什么?

如果只是为了缓冲酸碱度,是不是可以用一种缓冲液来代替所有其他的?这样做试验就方便多了。谢谢指教
EDTA对金属离子的络合能力随酸度改变而不同,酸度越低,络合能力增强;酸度越高,络合能力越弱。可见控制溶液的pH在络合滴..
PH值在多少为碱性水?123
wuzhixuan20032005-06-13
25倍电转缓冲液的ph=8.3真的不能调吗?听师兄说一次配好液后它的ph值就必须是8.3,不能再进行加酸或加碱调节,可我配了一天也没达到这个要求,用的是18g甘氨酸和3.64g的trisbase加dd水到100ml,总是ph值到8.8左右,在配过程中可以加热吗,不然太难溶解了,
Whatman的网站上说DE52(货号4057-200)是预膨胀的(Preswollen),有的中文网站上说DE52是即用型。
这就是说不用酸碱预处理吗?
Whatman的网站上没有DE52最大耐受压力,请问又经验的战友应该是多少?

Whatman的网站上:
DE32DryMicrogranularDEAECellulose
SimilarperformancecharacteristicsafterprecyclingasDE52.

DE52PreswollenMicrogranularDEAECellulose
ProbablythemostwidelyusedDEAEcelluloseintheworld;usedforbiopolymerswithlowtohighnegativecharges;exhibitsexcellentresolutionwithgoodflowrates.

附件是一本图书(MethodsinMolecularMedicine,)的章节,上面说:
WhatmanDEAE52comesalreadypreswollenandonlyneedstobetransferred
totherunningbuffer50mMTE8.

lAntibodiesUsingIonExchangeChromatography.pdf(87.06k)
缓冲溶液为什么能够低抗外来酸碱对ph的改变
【1】酸碱缓冲溶液:其中的一般酸碱缓冲溶液是指控制溶液酸碱度的溶液.他的作用是在此溶液中,加入少量的强酸或强碱,或者将其稍加稀释时,溶液的ph值基本上保持不变.【2】可以维持溶液酸碱度稳定的原因:主要原因是因为构成一般酸碱缓冲溶液的组分是“一元共轭酸碱”.例如“醋酸-醋酸钠”酸碱缓冲溶液.由PH的计算式:pH = p Ka +log[C酸/C碱] ,可见C酸/C碱的微小改变,其PH值,基本不变.
药典上说取本品10ml,加甲基红指示液(变色范围ph4.2-6.3,红~黄)2滴不得显红色;加溴麝香草酚蓝(变色范围ph6.0-7.6,黄~蓝)5滴不得显蓝色。
是否可以理解为纯化水得PH范围为6.3-7.6?能否直接用pH计测量?谢谢!