
Includes the smallest dead volume microinjection when the 10 µL syringe is used with WPI needles 34-36 g
- Smallest dead volume microinjection syringe
- Various needle sizes available: 26g, 33-36g
- Blunt or beveledneedles
- Compatible with WPI"s UMP3 microinjection system
- NANOFIL includes a 1CC syringe and (2) MF28G Microfil 28g needles for back filling the syringe
Click here to view the current NanoFil Data Sheet.
Options
Order code | Size | Includes |
NANOFIL | 10μL | - one 26 gauge needle mounted to the microlitersyringe - 2 - MF28G MicroFil, 1 - 1CC syringe |
NANOFIL-100 | 100µL | -one 26 gauge needle mounted to the microlitersyringe |
Benefits
- Low dead volume (0.5 µL or less)
- Switching the syringe tip during an experiment is easy
- Variety of tips
Applications
- Animal research
- Capillary electrophoresis
- Versatile research applications — Retinal Pigment Epithelial (RPE) and Intra Ocular (IO) injection kits
NanoFil™ is a specially designed 10 µL syringe developed in response to customer requests for improved microinjection in mice and other small animals. It makes quantitative nanoliter injection much easier and more accurate than any other method currently in use.
Low Dead Volume
NanoFil"s low dead volume eliminates the need for oil backfilling, a messy process which risks contamination of the injected sample. Injection is now simpler, and less messy, and there is no possibility of oil contamination in critical applications such as ophthalmology research (see the Retinal Pigment Epithelial (RPE) and Intra Ocular (IO) injection kits listed below).
Easily Switch Syringe Tip
When the inner tip diameter of a conventional syringe is reduced to less than 100 µm, it is very difficult to front fill the solution at a reasonable speed. NanoFil solves this problem by using a tip coupling mechanism that makes it possible to change the syringe tip during the experiment. Simply load the sample using a larger tip, such as the 26 gauge needle provided with the microlitersyringe, and then replace it with a micro tip for sample injection. On a conventional 10 µL syringe, a solid ring or bushing is permanently bonded to the tubing. Replacing the tip in the middle of the experiment is not practical. With NanoFil, tips can be exchanged by a simple twist of the brass lock, gently pulling out the tip, and replacing with the desired new tip.
Holds Metal Tips and Quartz Tubing
To secure the tip, NanoFil uses an olive-shaped silicon gasket that is similar to, but much sturdier than, some of the microelectrode holders used for electrophysiology recording. The silicone gasket makes it possible to hold not only metal needles but also Silflex tubing. Many types of tubing can be easily connected to the syringe as long as the outer diameter (OD) is close to, but not more than, the barrel inner diameter (ID) of 460 µm. Flexible quartz capillaries used in Gas Chromotography (GC) and Capillary Electrophoresis (CE) can also be easily coupled to the syringe.
Variety of Tips
Specially designed needles as small as 36 gauge (110 µm OD) are offered in both blunt and beveled styles. Our studies have shown that these needles will cause less trauma to the tissue. NanoFil has a unique coupling mechanism that allows many different forms of small tubing and tips to be coupled with the syringe barrel.
More Information
How to select the correct tip for your application.
NanoFil for Microinjection
The NanoFil-100 is a 100µL syringe with a small dead volume.
The NanoFil syringe is a 10µL syringe.NanoFil is a specially designed microlitersyringe developed in response to customer requests for improved microinjection in mice and other small animals. It makes quantitative nanoliter injection much easier and more accurate than any other method currently in use.
Using NanoFil™ in different configurations
Direct injection by hand
This is the simplest and most economical way to inject. Any of our tips can be inserted directly into the NanoFil™ microlitersyringe. Even the SilFlex tubing can be inserted to switch from hand injection to the other methods listed below. This method is limited by the accuracy of plunger movement that is achievable with a human hand.
Installed on WPI’s UMP3 microsyringe pump
This will allow the user to achieve nanoliter resolution and reproducibility. For neural system injection, mount the UMP3 on a stereotaxic frame.
SilFlex tubing and holder
The needle is mounted on a small plastic holder that is connected to the NanoFil by a 35 cm length of flexible tubing. The NanoFil syringe is mounted on the UMP3 pump. This configuration allows the user to hold the animal in one hand and insert the needle with the other. When the needle reaches the desired location, activate the pump using the footswitch and the pre-programmed injection volume will be delivered. This configuration gives a nanoliter level of accuracy and reproducibility. It is best suited for applications such as the RPE and IO injection.
NanoFil Microsyringe Instruction Manual
Adelson, J. D., Sapp, R. W., Brott, B. K., Lee, H., Miyamichi, K., Luo, L., … Shatz, C. J. (2014). Developmental Sculpting of Intracortical Circuits by MHC Class I H2-Db and H2-Kb. Cerebral Cortex (New York, N.Y. : 1991). http://doi.org/10.1093/cercor/bhu243
Ameri, H., Liu, H., Liu, R., Ha, Y., Paulucci-Holthauzen, A. A., Hu, S., … Zhang, W. (2014). TWEAK/Fn14 pathway is a novel mediator of retinal neovascularization. Investigative Ophthalmology & Visual Science, 55(2), 801–13. http://doi.org/10.1167/iovs.13-12812
Arriaga, G., Macopson, J. J., & Jarvis, E. D. (2015). Transsynaptic Tracing from Peripheral Targets with Pseudorabies Virus Followed by Cholera Toxin and Biotinylated Dextran Amines Double Labeling. Journal of Visualized Experiments, (103), e50672–e50672. http://doi.org/10.3791/50672
Cai, X., Seal, S., & McGinnis, J. F. (2014). Sustained inhibition of neovascularization in vldlr-/- mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-κB pathway. Biomaterials, 35(1), 249–58. http://doi.org/10.1016/j.biomaterials.2013.10.022
Coremans, V., Ahmed, T., Balschun, D., D’Hooge, R., DeVriese, A., Cremer, J., … Conway, E. M. (2010). Impaired neurogenesis, learning and memory and low seizure threshold associated with loss of neural precursor cell survivin. BMC Neuroscience, 11(1), 2. http://doi.org/10.1186/1471-2202-11-2
Crittenden, J. R., Lacey, C. J., Lee, T., Bowden, H. A., & Graybiel, A. M. (2014). Severe drug-induced repetitive behaviors and striatal overexpression of VAChT in ChAT-ChR2-EYFP BAC transgenic mice. Frontiers in Neural Circuits, 8, 57. http://doi.org/10.3389/fncir.2014.00057
Dai, D., Kadirvel, R., Rezek, I., Ding, Y.-H., Lingineni, R., & Kallmes, D. (2015). Elastase-induced intracranial dolichoectasia model in mice. Neurosurgery, 76(3), 337–43; discussion 343. http://doi.org/10.1227/NEU.0000000000000615
Delotterie, D. F., Mathis, C., Cassel, J.-C., Rosenbrock, H., Dorner-Ciossek, C., & Marti, A. (2015). Touchscreen tasks in mice to demonstrate differences between hippocampal and striatal functions. Neurobiology of Learning and Memory, 120, 16–27. http://doi.org/10.1016/j.nlm.2015.02.007
Evans, M. S., Chaurette, J. P., Adams, S. T., Reddy, G. R., Paley, M. A., Aronin, N., … Miller, S. C. (2014). A synthetic luciferin improves bioluminescence imaging in live mice. Nature Methods, 11(4), 393–5. http://doi.org/10.1038/nmeth.2839
Formaglio, P., Tavares, J., Ménard, R., & Amino, R. (2014). Loss of host cell plasma membrane integrity following cell traversal by Plasmodium sporozoites in the skin. Parasitology International, 63(1), 237–44. http://doi.org/10.1016/j.parint.2013.07.009
Gerrikagoitia, I., & MartÃnez-Millán, L. (2009). Guanosine-Induced Synaptogenesis in the Adult Brain In Vivo. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 292(12), 1968–1975. http://doi.org/10.1002/ar.20999
Gerrikagoitia, I., & Martínez-Millán, L. (2009). Guanosine-induced synaptogenesis in the adult brain in vivo. Anatomical Record (Hoboken, N.J. : 2007), 292(12), 1968–75. http://doi.org/10.1002/ar.20999
Gibson, D. A., & Ma, L. (2011). Mosaic Analysis of Gene Function in Postnatal Mouse Brain Development by Using Virus-based Cre Recombination. Journal of Visualized Experiments, (54), e2823–e2823. http://doi.org/10.3791/2823
Goel, M., Sienkiewicz, A. E., Picciani, R., Wang, J., Lee, R. K., & Bhattacharya, S. K. (2012). Cochlin, intraocular pressure regulation and mechanosensing. PloS One, 7(4), e34309. http://doi.org/10.1371/journal.pone.0034309
Gueirard, P., Tavares, J., Thiberge, S., Bernex, F., Ishino, T., Milon, G., … Amino, R. (2010). Development of the malaria parasite in the skin of the mammalian host. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18640–5. http://doi.org/10.1073/pnas.1009346107
Han, Z., Banworth, M. J., Makkia, R., Conley, S. M., Al-Ubaidi, M. R., Cooper, M. J., & Naash, M. I. (2015). Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 29(6), 2535–44. http://doi.org/10.1096/fj.15-270363
Havekes, R., Bruinenberg, V. M., Tudor, J. C., Ferri, S. L., Baumann, A., Meerlo, P., & Abel, T. (2014). Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss. Journal of Neuroscience, 34(47), 15715–15721. http://doi.org/10.1523/JNEUROSCI.2403-14.2014
Heitz, F. D., Erb, M., Anklin, C., Robay, D., Pernet, V., Gueven, N., … Lambert, W. (2012). Idebenone Protects against Retinal Damage and Loss of Vision in a Mouse Model of Leber’s Hereditary Optic Neuropathy. PLoS ONE, 7(9), e45182. http://doi.org/10.1371/journal.pone.0045182
Hewing, N. J., Weskamp, G., Vermaat, J., Farage, E., Glomski, K., Swendeman, S., … Blobel, C. P. (2013). Intravitreal injection of TIMP3 or the EGFR inhibitor erlotinib offers protection from oxygen-induced retinopathy in mice. Investigative Ophthalmology & Visual Science, 54(1), 864–70. http://doi.org/10.1167/iovs.12-10954
Hollis, E. R., Ishiko, N., Tolentino, K., Doherty, E., Rodriguez, M. J., Calcutt, N. A., & Zou, Y. (2015). A novel and robust conditioning lesion induced by ethidium bromide. Experimental Neurology, 265, 30–9. http://doi.org/10.1016/j.expneurol.2014.12.004
Horn, C. C., Meyers, K., Lim, A., Dye, M., Pak, D., Rinaman, L., & Yates, B. J. (2014). Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 306(5), R341-51. http://doi.org/10.1152/ajpregu.00413.2013
Iyer, S. M., Montgomery, K. L., Towne, C., Lee, S. Y., Ramakrishnan, C., Deisseroth, K., & Delp, S. L. (2014). Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nature Biotechnology, 32(3), 274–8. http://doi.org/10.1038/nbt.2834
Kim, J., Woo, J., Park, Y.-G., Chae, S., Jo, S., Choi, J. W., … Kim, D. (2011). Thalamic T-type Ca2+ channels mediate frontal lobe dysfunctions caused by a hypoxia-like damage in the prefrontal cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(11), 4063–73. http://doi.org/10.1523/JNEUROSCI.4493-10.2011
Kinkel, M. D., Eames, S. C., Philipson, L. H., & Prince, V. E. (2010). Intraperitoneal injection into adult zebrafish. Journal of Visualized Experiments : JoVE, (42), e2126. http://doi.org/10.3791/2126
Konopatskaya, O., Churchill, A. J., Harper, S. J., Bates, D. O., & Gardiner, T. A. (2006). VEGF165b, an endogenous C-terminal splice variant of VEGF, inhibits retinal neovascularization in mice. Molecular Vision, 12, 626–32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16735996
Kwon, S., Agollah, G. D., Wu, G., & Sevick-Muraca, E. M. (2014). Spatio-temporal changes of lymphatic contractility and drainage patterns following lymphadenectomy in mice. PloS One, 9(8), e106034. http://doi.org/10.1371/journal.pone.0106034
Kwon, S., Agollah, G. D., Wu, G., Chan, W., & Sevick-Muraca, E. M. (2013). Direct visualization of changes of lymphatic function and drainage pathways in lymph node metastasis of B16F10 melanoma using near-infrared fluorescence imaging. Biomedical Optics Express, 4(6), 967–77. http://doi.org/10.1364/BOE.4.000967
Lei, Y., Overby, D. R., Boussommier-Calleja, A., Stamer, W. D., Ethier, C. R., RF, B., … JC, M. (2011). Outflow Physiology of the Mouse Eye: Pressure Dependence and Washout. Investigative Opthalmology & Visual Science, 52(3), 1865. http://doi.org/10.1167/iovs.10-6019
Lim, T. K. Y., Shi, X. Q., Martin, H. C., Huang, H., Luheshi, G., Rivest, S., & Zhang, J. (2014). Blood-nerve barrier dysfunction contributes to the generation of neuropathic pain and allows targeting of injured nerves for pain relief. Pain, 155(5), 954–67. http://doi.org/10.1016/j.pain.2014.01.026
Lin, P., Fang, Z., Liu, J., & Lee, J. H. (2016). Optogenetic Functional MRI. Journal of Visualized Experiments, (110), e53346–e53346. http://doi.org/10.3791/53346
Mac-Daniel, L., Buckwalter, M. R., Berthet, M., Virk, Y., Yui, K., Albert, M. L., … Ménard, R. (2014). Local immune response to injection of Plasmodium sporozoites into the skin. Journal of Immunology (Baltimore, Md. : 1950), 193(3), 1246–57. http://doi.org/10.4049/jimmunol.1302669
Mac-Daniel, L., Buckwalter, M. R., Gueirard, P., & Ménard, R. (2016). Myeloid Cell Isolation from Mouse Skin and Draining Lymph Node Following Intradermal Immunization with Live Attenuated <em>Plasmodium</em> Sporozoites. Journal of Visualized Experiments, (111), e53796–e53796. http://doi.org/10.3791/53796
Magableh, A., & Lundy, R. (2014). Somatostatin and Corticotrophin Releasing Hormone Cell Types Are a Major Source of Descending Input From the Forebrain to the Parabrachial Nucleus in Mice. Chemical Senses, 39(8), 673–682. http://doi.org/10.1093/chemse/bju038
Marker, D. F., Tremblay, M.-E., Lu, S.-M., Majewska, A. K., & Gelbard, H. A. (2010). A Thin-skull Window Technique for Chronic Two-photon <em>In vivo</em> Imaging of Murine Microglia in Models of Neuroinflammation. Journal of Visualized Experiments, (43), e2059–e2059. http://doi.org/10.3791/2059
Matsumoto, H., Kataoka, K., Tsoka, P., Connor, K. M., Miller, J. W., & Vavvas, D. G. (2014). Strain difference in photoreceptor cell death after retinal detachment in mice. Investigative Ophthalmology & Visual Science, 55(7), 4165–74. http://doi.org/10.1167/iovs.14-14238
Michael, I. P. I., Westenskow, P. P. D., Hacibekiroglu, S., Greenwald, A. C., Ballios, B. B. G., Kurihara, T., … Gertsenstein, M. (2014). Local acting Sticky-trap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye. EMBO Molecular Medicine, 6(5), 604–23. http://doi.org/10.1002/emmm.201303708
Mittelman-Smith, M. A., Krajewski-Hall, S. J., McMullen, N. T., & Rance, N. E. (2015). Neurokinin 3 Receptor-Expressing Neurons in the Median Preoptic Nucleus Modulate Heat-Dissipation Effectors in the Female Rat. Endocrinology, 156(7), 2552–62. http://doi.org/10.1210/en.2014-1974
Mojumder, D. K., Concepcion, F. A., Patel, S. K., Barkmeier, A. J., Carvounis, P. E., Wilson, J. H., … Wensel, T. G. (2010). Evaluating retinal toxicity of intravitreal caspofungin in the mouse eye. Investigative Ophthalmology & Visual Science, 51(11), 5796–803. http://doi.org/10.1167/iovs.10-5541
Molotkov, D. A., Yukin, A. Y., Afzalov, R. A., & Khiroug, L. S. (2010). Gene Delivery to Postnatal Rat Brain by Non-ventricular Plasmid Injection and Electroporation. Journal of Visualized Experiments, (43), e2244–e2244. http://doi.org/10.3791/2244
Nickerson, J. M., Goodman, P., Chrenek, M. A., Bernal, C. J., Berglin, L., Redmond, T. M., & Boatright, J. H. (2012). Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods in Molecular Biology (Clifton, N.J.), 884, 53–69. http://doi.org/10.1007/978-1-61779-848-1_4
Oswald, M. J., Tantirigama, M. L. S., Sonntag, I., Hughes, S. M., & Empson, R. M. (2013). Diversity of layer 5 projection neurons in the mouse motor cortex. Frontiers in Cellular Neuroscience, 7. http://doi.org/10.3389/fncel.2013.00174
Park, C. Y., Zhou, E. H., Tambe, D., Chen, B., Lavoie, T., Dowell, M., … Krishnan, R. (2014). High-throughput screening for modulators of cellular contractile force. Biological Physics; Quantitative Methods; Tissues and Organs. Retrieved from http://arxiv.org/abs/1411.5695
Park, S. W., Kim, J. H., Park, W. J., & Kim, J. H. (2015). Limbal Approach-Subretinal Injection of Viral Vectors for Gene Therapy in Mice Retinal Pigment Epithelium. Journal of Visualized Experiments, (102), e53030–e53030. http://doi.org/10.3791/53030
Paveliev, M., Kislin, M., Molotkov, D., Yuryev, M., Rauvala, H., & Khiroug, L. (2014). Acute Brain Trauma in Mice Followed By Longitudinal Two-photon Imaging. Journal of Visualized Experiments : JoVE, (April), 1–8. http://doi.org/10.3791/51559
Piltti, K. M., Salazar, D. L., Uchida, N., Cummings, B. J., & Anderson, A. J. (n.d.). Safety of Epicenter Versus Intact Parenchyma as a Transplantation Site for Human Neural Stem Cells for Spinal Cord Injury Therapy. http://doi.org/10.5966/sctm.2012-0110
Puccini, J. M., Marker, D. F., Fitzgerald, T., Barbieri, J., Kim, C. S., Miller-Rhodes, P., … Gelbard, H. A. (2015). Leucine-rich repeat kinase 2 modulates neuroinflammation and neurotoxicity in models of human immunodeficiency virus 1-associated neurocognitive disorders. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 35(13), 5271–83. http://doi.org/10.1523/JNEUROSCI.0650-14.2015
Rangel, A., Race, B., Phillips, K., Striebel, J. J., Kurtz, N., Chesebro, B., … Nicoll, J. (2014). Distinct patterns of spread of prion infection in brains of mice expressing anchorless or anchored forms of prion protein. Acta Neuropathologica Communications, 2(1), 8. http://doi.org/10.1186/2051-5960-2-8
Rocha, E. M., Di Pasquale, G., Riveros, P. P., Quinn, K., Handelman, B., Chiorini, J. A., … Z, Z. (2011). Transduction, Tropism, and Biodistribution of AAV Vectors in the Lacrimal Gland. Investigative Opthalmology & Visual Science, 52(13), 9567. http://doi.org/10.1167/iovs.11-8171
Rodrigues, M., Xin, X., Jee, K., Babapoor-Farrokhran, S., Kashiwabuchi, F., Ma, T., … Sodhi, A. (2013). VEGF Secreted by Hypoxic Muller Cells Induces MMP-2 Expression and Activity in Endothelial Cells to Promote Retinal Neovascularization in Proliferative Diabetic Retinopathy. Diabetes, 62(11), 3863–3873. http://doi.org/10.2337/db13-0014
Rossmiller, B. P., Ryals, R. C., & Lewin, A. S. (2015). Gene therapy to rescue retinal degeneration caused by mutations in rhodopsin. Methods in Molecular Biology (Clifton, N.J.), 1271, 391–410. http://doi.org/10.1007/978-1-4939-2330-4_25
Saito, T. (Ed.). (2015). Electroporation Methods in Neuroscience (Vol. 102). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4939-2459-2
Sheehy, N. T., Cordes, K. R., White, M. P., Ivey, K. N., & Srivastava, D. (2010). The neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch. Development, 137(24).
Song, H., Park, J.-Y., Kim, H.-S., Lee, M.-C., Kim, Y., & Kim, H.-I. (2016). Circumscribed Capsular Infarct Modeling Using a Photothrombotic Technique. Journal of Visualized Experiments, (112), e53281–e53281. http://doi.org/10.3791/53281
Stamer, W. D., Lei, Y., Boussommier-Calleja, A., Overby, D. R., Ethier, C. R., RF, B., … M, A. (2011). eNOS, a Pressure-Dependent Regulator of Intraocular Pressure. Investigative Opthalmology & Visual Science, 52(13), 9438. http://doi.org/10.1167/iovs.11-7839
Swaminathan, S. S., Oh, D.-J., Kang, M. H., Ren, R., Jin, R., Gong, H., … JC, M. (2013). Secreted protein acidic and rich in cysteine (SPARC)-null mice exhibit more uniform outflow. Investigative Ophthalmology & Visual Science, 54(3), 2035–47. http://doi.org/10.1167/iovs.12-10950
Swaminathan, S. S., Oh, D.-J., Kang, M. H., Shepard, A. R., Pang, I.-H., Rhee, D. J., … L, J. J. (2014). TGF-β2-mediated ocular hypertension is attenuated in SPARC-null mice. Investigative Ophthalmology & Visual Science, 55(7), 4084–97. http://doi.org/10.1167/iovs.13-12463
Tokunaga, C. C., Mitton, K. P., Dailey, W., Massoll, C., Roumayah, K., Guzman, E., … Drenser, K. A. (2014). Effects of anti-VEGF treatment on the recovery of the developing retina following oxygen-induced retinopathy. Investigative Ophthalmology & Visual Science, 55(3), 1884–92. http://doi.org/10.1167/iovs.13-13397
van Gorp, S., Leerink, M., Kakinohana, O., Platoshyn, O., Santucci, C., Galik, J., … Marsala, M. (2013). Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Research & Therapy, 4(3), 57. http://doi.org/10.1186/scrt209
Ventura, R. E., & Goldman, J. E. (n.d.). Dorsal Radial Glia Generate Olfactory Bulb Interneurons in the Postnatal Murine Brain. http://doi.org/10.1523/JNEUROSCI.0399-07.2007
Voza, T., Kebaier, C., Vanderberg, J. P. J., Nussenzweig, R., Vanderberg, J. P. J., Most, H., … Vanderberg, J. P. J. (2010). Intradermal immunization of mice with radiation-attenuated sporozoites of Plasmodium yoelii induces effective protective immunity. Malaria Journal, 9(1), 362. http://doi.org/10.1186/1475-2875-9-362
Yamaguchi, T., Qi, J., Wang, H.-L., Zhang, S., & Morales, M. (2015). Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area. European Journal of Neuroscience, 41(6), 760–772. http://doi.org/10.1111/ejn.12818
Zhao, B., Allinson, S. L., Ma, A., Bentley, A. J., Martin, F. L., & Fullwood, N. J. (2008). Targeted Cornea Limbal Stem/Progenitor Cell Transfection in an Organ Culture Model. Investigative Opthalmology & Visual Science, 49(8), 3395. http://doi.org/10.1167/iovs.07-1263
Zhu, Q., Sun, W., Okano, K., Chen, Y., Zhang, N., Maeda, T., & Palczewski, K. (2011). Sponge Transgenic Mouse Model Reveals Important Roles for the MicroRNA-183 (miR-183)/96/182 Cluster in Postmitotic Photoreceptors of the Retina * □ S. http://doi.org/10.1074/jbc.M111.259028
_. (n.d.). http://doi.org/10.1242/dev.052647
- NanoFil NeedlesMultiple SKUs
- 26g Beveled Replacement NanoFil needlesNF26BV-2For pricing, Customers outside of the US and Canada, please contact your distributor.
- Spare Silicone Gasket for NanoFil & HolderNFGSK-5For pricing, Customers outside of the US and Canada, please contact your distributor.
- NanoFil Injection HolderNFINHLDFor pricing, Customers outside of the US and Canada, please contact your distributor.
- 34g Flexible Quartz Tubing for fillingNFQ34-5For pricing, Customers outside of the US and Canada, please contact your distributor.
- Nanofil Application KitsMultiple SKUs
- SilFlex tubingSILFLEX-2For pricing, Customers outside of the US and Canada, please contact your distributor.
- 1.0 mm Glass Pipette Holder for NANOFIL SyringeNFINHLD-G10For pricing, Customers outside of the US and Canada, please contact your distributor.
In the video below, you can see how to front fill an Nanofil syringe.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
二是使病菌产生抗药性:当不该使用抗生素的时候使用抗生素,可以使一些病菌逐渐产生对抗生素的抵抗力,即抗药性,一旦确定必须使用抗生素时,就不得不加大剂量才能有效,甚至加大剂量也无效。
三是毒性反应:如链霉菌对前庭与耳蜗神经的损害,可出现眩晕、平衡失调、耳鸣、听力减退、耳聋等;氯霉菌对骨髓的毒性,抑制骨髓造血机能,可致白细胞及血小板减少,严重可引起再生障碍性贫血;四环素、红霉素酯化剂、二性梅素B、灰黄酶素等都能损害肝脏,造成肝功能不全或原有肝损加重;庆大酶素、卡那酶素、新酶素、巴龙酶素、先锋酶素等对肾脏可有较大损害。
四是过敏反应:如常用的青酶素其发生率约为百分之一到百分之八,轻者有关节痛、淋巴结肿大、发热等,较重者发生血管神经性水肿、脑水肿或喉头水肿,最严重的为过敏性休克,如不及时抢救将会死亡。
抗生素的上述危害,除过敏反应外,其余均具有渐进性、累积性,病人自己很难察觉,因此易发生危险。因此,患者应在医生指导下使用抗生素,以免受到更大的伤害。
与同种型相对应的是同种异型和独特型。
【T。SDM】
抗体是人免疫功能自身产生的。当人体感染某种病毒的时候,人体免疫功能自动针对该病毒产生抵制其生存的病毒抗体或抑制病毒的生长 复制 并最终将该病毒杀死。
免疫荧光(IF)
IHC-P=Immunohistochemistry (Paraffin)
IHC-F=Immunohistochemistry (Frozen)
p代表石蜡切片
f代表冰冻切片
洛斯阿拉莫斯国家实验室(Los Alamos National Laboratory)研究员Andrew Bradbury说:“我们提出,就像基因一样,抗体也应由它们的序列来定义,并且它们应该是在细胞系中重组生成。”
根据编码各种亚基的序列来参考每次检测所用的抗体,它们的浓度和标准化实验缓冲液,可以让全世界的研究人员能够在相同条件下使用具有相同亲和力的抗体。
一种抗体或结合试剂的序列,是该试剂的最终“条形码”,其确保了每个人都能够使用相同的试剂来检测同一目标。导出这一条形码涉及到从体外文库中挑选出一些抗体,或是克隆及测序来自杂交瘤的抗体基因等工作。这将要求对抗体供应的模式作出重大的改变。
抗体是可以帮助机体识别与中和细菌、以及对免疫系统发起的其他攻击的一类特殊蛋白质,科学家们一直利用它们来作为特异的结合试剂。抗体质量控制和精确识别是那些有着序列测定和重组表达需求的研究者们一直努力寻求解决的问题。Bradbury指出,不同于基因、寡核苷酸、质粒、重组蛋白等,抗体是生物学研究中唯一没有在序列水平上进行定义的广泛应用试剂。
研究人员注意到,所有抗体的质量因制造商不同而存在巨大的差异,大多数抗体很少进行验证,批次间差异极为常见。
并且,批量产品附带的证明文件质量同样差异巨大;甚至提供的证明文件往往并不对应提供的批次。
“为了杜绝由于缺乏验证和鉴定所造成的对材料、研究人员时间以及金钱的巨大浪费,必须要根据它们的序列来定义抗体,并且要在标准条件下进行重新生产,”作者们指出。这里的“重新”生产是指采用一些不涉及动物免疫的方法来从头生成抗体或其他结合试剂,而非基于免疫接种生成的克隆抗体。
例如,多克隆抗体的生产是通过将一种蛋白质注射到动物体内,然后提取出响应这一免疫蛋白动物血液中生成并携带着的抗体。各种各样的抗体并非高精度,只有0.5-5%的产物是想得到的抗体,可对初始目标产生反应。其余的都是原本存在于动物血流中的抗体,表明了动物以往的免疫应激。漫无目的地收获如此多错误的抗体,使得生成了一些特异性较差的抗体,由此造成了研究领域的浪费。
“我们建议,借助一种体外方法来生成抗体,这样根本不需要使用动物,重要的是还将直接生成具有已知序列的分子,”Bradbury说。
(2)激活补体:IgM、IgG1、IgG2和IgG3可通过经典途径激活补体,凝聚的IgA、IgG4和IgE可通过替代途径激活补体。
(3)结合细胞:不同类别的免疫球蛋白,可结合不同种的细胞,参与免疫应答。
(4)可通过胎盘及粘膜:免疫球蛋白G(IgG)能通过胎盘进入胎儿血流中,使胎儿形成自然被动免疫。免疫球蛋白A(IgA)可通过消化道及呼吸道粘膜,是粘膜局部抗感染免疫的主要因素。
(5)具有抗原性:抗体分子是一种蛋白质,也具有刺激机体产生免疫应答的性能。不同的免疫球蛋白分子,各具有不同的抗原性。
(6)抗体对理化因子的抵抗力与一般球蛋白相同:不耐热,60~70℃即被破坏。各种酶及能使蛋白质凝固变性的物质,均能破坏抗体的作用。抗体可被中性盐类沉淀。在生产上常可用硫酸铵或硫酸钠从免疫血清中沉淀出含有抗体的球蛋白,再经透析法将其纯化。
(7)通过与细胞Fc受体结合发挥多种生物效应
①调理作用
IgG、IgM的Fc段与吞噬细胞表面的FcγR、FcμR结合,增强其吞噬能力,通常将抗体促进吞噬细胞吞噬功能的作用称为抗体的调理作用 (opsonization)。
②发挥抗体依赖的细胞介导的细胞毒作用向左转|向右转
比如该厂家的WB抗体,如果是1mg/ml的抗体,一般做WB的时候要求抗体工作液的浓度是1ug/ml,也就是说1mg/ml的抗体是可以按照1:1000的比例进行稀释。当然,根据抗体亲和力不同,这个浓度也是可以变化的。所以abcam的WB抗体稀释浓度一般是1ug/ml

