Includes the smallest dead volume microinjection when the 10 µL syringe is used with WPI needles 34-36 g
- Smallest dead volume microinjection syringe
- Various needle sizes available: 26g, 33-36g
- Blunt or beveledneedles
- Compatible with WPI"s UMP3 microinjection system
- NANOFIL includes a 1CC syringe and (2) MF28G Microfil 28g needles for back filling the syringe
Click here to view the current NanoFil Data Sheet.
Options
| Order code | Size | Includes |
NANOFIL | 10μL | - one 26 gauge needle mounted to the microlitersyringe - 2 - MF28G MicroFil, 1 - 1CC syringe |
NANOFIL-100 | 100µL | -one 26 gauge needle mounted to the microlitersyringe |
Benefits
- Low dead volume (0.5 µL or less)
- Switching the syringe tip during an experiment is easy
- Variety of tips
Applications
- Animal research
- Capillary electrophoresis
- Versatile research applications — Retinal Pigment Epithelial (RPE) and Intra Ocular (IO) injection kits
NanoFil™ is a specially designed 10 µL syringe developed in response to customer requests for improved microinjection in mice and other small animals. It makes quantitative nanoliter injection much easier and more accurate than any other method currently in use.
Low Dead Volume
NanoFil"s low dead volume eliminates the need for oil backfilling, a messy process which risks contamination of the injected sample. Injection is now simpler, and less messy, and there is no possibility of oil contamination in critical applications such as ophthalmology research (see the Retinal Pigment Epithelial (RPE) and Intra Ocular (IO) injection kits listed below).
Easily Switch Syringe Tip
When the inner tip diameter of a conventional syringe is reduced to less than 100 µm, it is very difficult to front fill the solution at a reasonable speed. NanoFil solves this problem by using a tip coupling mechanism that makes it possible to change the syringe tip during the experiment. Simply load the sample using a larger tip, such as the 26 gauge needle provided with the microlitersyringe, and then replace it with a micro tip for sample injection. On a conventional 10 µL syringe, a solid ring or bushing is permanently bonded to the tubing. Replacing the tip in the middle of the experiment is not practical. With NanoFil, tips can be exchanged by a simple twist of the brass lock, gently pulling out the tip, and replacing with the desired new tip.
Holds Metal Tips and Quartz Tubing
To secure the tip, NanoFil uses an olive-shaped silicon gasket that is similar to, but much sturdier than, some of the microelectrode holders used for electrophysiology recording. The silicone gasket makes it possible to hold not only metal needles but also Silflex tubing. Many types of tubing can be easily connected to the syringe as long as the outer diameter (OD) is close to, but not more than, the barrel inner diameter (ID) of 460 µm. Flexible quartz capillaries used in Gas Chromotography (GC) and Capillary Electrophoresis (CE) can also be easily coupled to the syringe.
Variety of Tips
Specially designed needles as small as 36 gauge (110 µm OD) are offered in both blunt and beveled styles. Our studies have shown that these needles will cause less trauma to the tissue. NanoFil has a unique coupling mechanism that allows many different forms of small tubing and tips to be coupled with the syringe barrel.
More Information
How to select the correct tip for your application.
NanoFil for Microinjection

The NanoFil-100 is a 100µL syringe with a small dead volume.

The NanoFil syringe is a 10µL syringe.NanoFil is a specially designed microlitersyringe developed in response to customer requests for improved microinjection in mice and other small animals. It makes quantitative nanoliter injection much easier and more accurate than any other method currently in use.
Using NanoFil™ in different configurations
Direct injection by hand
This is the simplest and most economical way to inject. Any of our tips can be inserted directly into the NanoFil™ microlitersyringe. Even the SilFlex tubing can be inserted to switch from hand injection to the other methods listed below. This method is limited by the accuracy of plunger movement that is achievable with a human hand.
Installed on WPI’s UMP3 microsyringe pump
This will allow the user to achieve nanoliter resolution and reproducibility. For neural system injection, mount the UMP3 on a stereotaxic frame.
SilFlex tubing and holder
The needle is mounted on a small plastic holder that is connected to the NanoFil by a 35 cm length of flexible tubing. The NanoFil syringe is mounted on the UMP3 pump. This configuration allows the user to hold the animal in one hand and insert the needle with the other. When the needle reaches the desired location, activate the pump using the footswitch and the pre-programmed injection volume will be delivered. This configuration gives a nanoliter level of accuracy and reproducibility. It is best suited for applications such as the RPE and IO injection.
NanoFil Microsyringe Instruction Manual
Adelson, J. D., Sapp, R. W., Brott, B. K., Lee, H., Miyamichi, K., Luo, L., … Shatz, C. J. (2014). Developmental Sculpting of Intracortical Circuits by MHC Class I H2-Db and H2-Kb. Cerebral Cortex (New York, N.Y. : 1991). http://doi.org/10.1093/cercor/bhu243
Ameri, H., Liu, H., Liu, R., Ha, Y., Paulucci-Holthauzen, A. A., Hu, S., … Zhang, W. (2014). TWEAK/Fn14 pathway is a novel mediator of retinal neovascularization. Investigative Ophthalmology & Visual Science, 55(2), 801–13. http://doi.org/10.1167/iovs.13-12812
Arriaga, G., Macopson, J. J., & Jarvis, E. D. (2015). Transsynaptic Tracing from Peripheral Targets with Pseudorabies Virus Followed by Cholera Toxin and Biotinylated Dextran Amines Double Labeling. Journal of Visualized Experiments, (103), e50672–e50672. http://doi.org/10.3791/50672
Cai, X., Seal, S., & McGinnis, J. F. (2014). Sustained inhibition of neovascularization in vldlr-/- mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-κB pathway. Biomaterials, 35(1), 249–58. http://doi.org/10.1016/j.biomaterials.2013.10.022
Coremans, V., Ahmed, T., Balschun, D., D’Hooge, R., DeVriese, A., Cremer, J., … Conway, E. M. (2010). Impaired neurogenesis, learning and memory and low seizure threshold associated with loss of neural precursor cell survivin. BMC Neuroscience, 11(1), 2. http://doi.org/10.1186/1471-2202-11-2
Crittenden, J. R., Lacey, C. J., Lee, T., Bowden, H. A., & Graybiel, A. M. (2014). Severe drug-induced repetitive behaviors and striatal overexpression of VAChT in ChAT-ChR2-EYFP BAC transgenic mice. Frontiers in Neural Circuits, 8, 57. http://doi.org/10.3389/fncir.2014.00057
Dai, D., Kadirvel, R., Rezek, I., Ding, Y.-H., Lingineni, R., & Kallmes, D. (2015). Elastase-induced intracranial dolichoectasia model in mice. Neurosurgery, 76(3), 337–43; discussion 343. http://doi.org/10.1227/NEU.0000000000000615
Delotterie, D. F., Mathis, C., Cassel, J.-C., Rosenbrock, H., Dorner-Ciossek, C., & Marti, A. (2015). Touchscreen tasks in mice to demonstrate differences between hippocampal and striatal functions. Neurobiology of Learning and Memory, 120, 16–27. http://doi.org/10.1016/j.nlm.2015.02.007
Evans, M. S., Chaurette, J. P., Adams, S. T., Reddy, G. R., Paley, M. A., Aronin, N., … Miller, S. C. (2014). A synthetic luciferin improves bioluminescence imaging in live mice. Nature Methods, 11(4), 393–5. http://doi.org/10.1038/nmeth.2839
Formaglio, P., Tavares, J., Ménard, R., & Amino, R. (2014). Loss of host cell plasma membrane integrity following cell traversal by Plasmodium sporozoites in the skin. Parasitology International, 63(1), 237–44. http://doi.org/10.1016/j.parint.2013.07.009
Gerrikagoitia, I., & MartÃnez-Millán, L. (2009). Guanosine-Induced Synaptogenesis in the Adult Brain In Vivo. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 292(12), 1968–1975. http://doi.org/10.1002/ar.20999
Gerrikagoitia, I., & Martínez-Millán, L. (2009). Guanosine-induced synaptogenesis in the adult brain in vivo. Anatomical Record (Hoboken, N.J. : 2007), 292(12), 1968–75. http://doi.org/10.1002/ar.20999
Gibson, D. A., & Ma, L. (2011). Mosaic Analysis of Gene Function in Postnatal Mouse Brain Development by Using Virus-based Cre Recombination. Journal of Visualized Experiments, (54), e2823–e2823. http://doi.org/10.3791/2823
Goel, M., Sienkiewicz, A. E., Picciani, R., Wang, J., Lee, R. K., & Bhattacharya, S. K. (2012). Cochlin, intraocular pressure regulation and mechanosensing. PloS One, 7(4), e34309. http://doi.org/10.1371/journal.pone.0034309
Gueirard, P., Tavares, J., Thiberge, S., Bernex, F., Ishino, T., Milon, G., … Amino, R. (2010). Development of the malaria parasite in the skin of the mammalian host. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18640–5. http://doi.org/10.1073/pnas.1009346107
Han, Z., Banworth, M. J., Makkia, R., Conley, S. M., Al-Ubaidi, M. R., Cooper, M. J., & Naash, M. I. (2015). Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 29(6), 2535–44. http://doi.org/10.1096/fj.15-270363
Havekes, R., Bruinenberg, V. M., Tudor, J. C., Ferri, S. L., Baumann, A., Meerlo, P., & Abel, T. (2014). Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss. Journal of Neuroscience, 34(47), 15715–15721. http://doi.org/10.1523/JNEUROSCI.2403-14.2014
Heitz, F. D., Erb, M., Anklin, C., Robay, D., Pernet, V., Gueven, N., … Lambert, W. (2012). Idebenone Protects against Retinal Damage and Loss of Vision in a Mouse Model of Leber’s Hereditary Optic Neuropathy. PLoS ONE, 7(9), e45182. http://doi.org/10.1371/journal.pone.0045182
Hewing, N. J., Weskamp, G., Vermaat, J., Farage, E., Glomski, K., Swendeman, S., … Blobel, C. P. (2013). Intravitreal injection of TIMP3 or the EGFR inhibitor erlotinib offers protection from oxygen-induced retinopathy in mice. Investigative Ophthalmology & Visual Science, 54(1), 864–70. http://doi.org/10.1167/iovs.12-10954
Hollis, E. R., Ishiko, N., Tolentino, K., Doherty, E., Rodriguez, M. J., Calcutt, N. A., & Zou, Y. (2015). A novel and robust conditioning lesion induced by ethidium bromide. Experimental Neurology, 265, 30–9. http://doi.org/10.1016/j.expneurol.2014.12.004
Horn, C. C., Meyers, K., Lim, A., Dye, M., Pak, D., Rinaman, L., & Yates, B. J. (2014). Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 306(5), R341-51. http://doi.org/10.1152/ajpregu.00413.2013
Iyer, S. M., Montgomery, K. L., Towne, C., Lee, S. Y., Ramakrishnan, C., Deisseroth, K., & Delp, S. L. (2014). Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nature Biotechnology, 32(3), 274–8. http://doi.org/10.1038/nbt.2834
Kim, J., Woo, J., Park, Y.-G., Chae, S., Jo, S., Choi, J. W., … Kim, D. (2011). Thalamic T-type Ca2+ channels mediate frontal lobe dysfunctions caused by a hypoxia-like damage in the prefrontal cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(11), 4063–73. http://doi.org/10.1523/JNEUROSCI.4493-10.2011
Kinkel, M. D., Eames, S. C., Philipson, L. H., & Prince, V. E. (2010). Intraperitoneal injection into adult zebrafish. Journal of Visualized Experiments : JoVE, (42), e2126. http://doi.org/10.3791/2126
Konopatskaya, O., Churchill, A. J., Harper, S. J., Bates, D. O., & Gardiner, T. A. (2006). VEGF165b, an endogenous C-terminal splice variant of VEGF, inhibits retinal neovascularization in mice. Molecular Vision, 12, 626–32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16735996
Kwon, S., Agollah, G. D., Wu, G., & Sevick-Muraca, E. M. (2014). Spatio-temporal changes of lymphatic contractility and drainage patterns following lymphadenectomy in mice. PloS One, 9(8), e106034. http://doi.org/10.1371/journal.pone.0106034
Kwon, S., Agollah, G. D., Wu, G., Chan, W., & Sevick-Muraca, E. M. (2013). Direct visualization of changes of lymphatic function and drainage pathways in lymph node metastasis of B16F10 melanoma using near-infrared fluorescence imaging. Biomedical Optics Express, 4(6), 967–77. http://doi.org/10.1364/BOE.4.000967
Lei, Y., Overby, D. R., Boussommier-Calleja, A., Stamer, W. D., Ethier, C. R., RF, B., … JC, M. (2011). Outflow Physiology of the Mouse Eye: Pressure Dependence and Washout. Investigative Opthalmology & Visual Science, 52(3), 1865. http://doi.org/10.1167/iovs.10-6019
Lim, T. K. Y., Shi, X. Q., Martin, H. C., Huang, H., Luheshi, G., Rivest, S., & Zhang, J. (2014). Blood-nerve barrier dysfunction contributes to the generation of neuropathic pain and allows targeting of injured nerves for pain relief. Pain, 155(5), 954–67. http://doi.org/10.1016/j.pain.2014.01.026
Lin, P., Fang, Z., Liu, J., & Lee, J. H. (2016). Optogenetic Functional MRI. Journal of Visualized Experiments, (110), e53346–e53346. http://doi.org/10.3791/53346
Mac-Daniel, L., Buckwalter, M. R., Berthet, M., Virk, Y., Yui, K., Albert, M. L., … Ménard, R. (2014). Local immune response to injection of Plasmodium sporozoites into the skin. Journal of Immunology (Baltimore, Md. : 1950), 193(3), 1246–57. http://doi.org/10.4049/jimmunol.1302669
Mac-Daniel, L., Buckwalter, M. R., Gueirard, P., & Ménard, R. (2016). Myeloid Cell Isolation from Mouse Skin and Draining Lymph Node Following Intradermal Immunization with Live Attenuated <em>Plasmodium</em> Sporozoites. Journal of Visualized Experiments, (111), e53796–e53796. http://doi.org/10.3791/53796
Magableh, A., & Lundy, R. (2014). Somatostatin and Corticotrophin Releasing Hormone Cell Types Are a Major Source of Descending Input From the Forebrain to the Parabrachial Nucleus in Mice. Chemical Senses, 39(8), 673–682. http://doi.org/10.1093/chemse/bju038
Marker, D. F., Tremblay, M.-E., Lu, S.-M., Majewska, A. K., & Gelbard, H. A. (2010). A Thin-skull Window Technique for Chronic Two-photon <em>In vivo</em> Imaging of Murine Microglia in Models of Neuroinflammation. Journal of Visualized Experiments, (43), e2059–e2059. http://doi.org/10.3791/2059
Matsumoto, H., Kataoka, K., Tsoka, P., Connor, K. M., Miller, J. W., & Vavvas, D. G. (2014). Strain difference in photoreceptor cell death after retinal detachment in mice. Investigative Ophthalmology & Visual Science, 55(7), 4165–74. http://doi.org/10.1167/iovs.14-14238
Michael, I. P. I., Westenskow, P. P. D., Hacibekiroglu, S., Greenwald, A. C., Ballios, B. B. G., Kurihara, T., … Gertsenstein, M. (2014). Local acting Sticky-trap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye. EMBO Molecular Medicine, 6(5), 604–23. http://doi.org/10.1002/emmm.201303708
Mittelman-Smith, M. A., Krajewski-Hall, S. J., McMullen, N. T., & Rance, N. E. (2015). Neurokinin 3 Receptor-Expressing Neurons in the Median Preoptic Nucleus Modulate Heat-Dissipation Effectors in the Female Rat. Endocrinology, 156(7), 2552–62. http://doi.org/10.1210/en.2014-1974
Mojumder, D. K., Concepcion, F. A., Patel, S. K., Barkmeier, A. J., Carvounis, P. E., Wilson, J. H., … Wensel, T. G. (2010). Evaluating retinal toxicity of intravitreal caspofungin in the mouse eye. Investigative Ophthalmology & Visual Science, 51(11), 5796–803. http://doi.org/10.1167/iovs.10-5541
Molotkov, D. A., Yukin, A. Y., Afzalov, R. A., & Khiroug, L. S. (2010). Gene Delivery to Postnatal Rat Brain by Non-ventricular Plasmid Injection and Electroporation. Journal of Visualized Experiments, (43), e2244–e2244. http://doi.org/10.3791/2244
Nickerson, J. M., Goodman, P., Chrenek, M. A., Bernal, C. J., Berglin, L., Redmond, T. M., & Boatright, J. H. (2012). Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods in Molecular Biology (Clifton, N.J.), 884, 53–69. http://doi.org/10.1007/978-1-61779-848-1_4
Oswald, M. J., Tantirigama, M. L. S., Sonntag, I., Hughes, S. M., & Empson, R. M. (2013). Diversity of layer 5 projection neurons in the mouse motor cortex. Frontiers in Cellular Neuroscience, 7. http://doi.org/10.3389/fncel.2013.00174
Park, C. Y., Zhou, E. H., Tambe, D., Chen, B., Lavoie, T., Dowell, M., … Krishnan, R. (2014). High-throughput screening for modulators of cellular contractile force. Biological Physics; Quantitative Methods; Tissues and Organs. Retrieved from http://arxiv.org/abs/1411.5695
Park, S. W., Kim, J. H., Park, W. J., & Kim, J. H. (2015). Limbal Approach-Subretinal Injection of Viral Vectors for Gene Therapy in Mice Retinal Pigment Epithelium. Journal of Visualized Experiments, (102), e53030–e53030. http://doi.org/10.3791/53030
Paveliev, M., Kislin, M., Molotkov, D., Yuryev, M., Rauvala, H., & Khiroug, L. (2014). Acute Brain Trauma in Mice Followed By Longitudinal Two-photon Imaging. Journal of Visualized Experiments : JoVE, (April), 1–8. http://doi.org/10.3791/51559
Piltti, K. M., Salazar, D. L., Uchida, N., Cummings, B. J., & Anderson, A. J. (n.d.). Safety of Epicenter Versus Intact Parenchyma as a Transplantation Site for Human Neural Stem Cells for Spinal Cord Injury Therapy. http://doi.org/10.5966/sctm.2012-0110
Puccini, J. M., Marker, D. F., Fitzgerald, T., Barbieri, J., Kim, C. S., Miller-Rhodes, P., … Gelbard, H. A. (2015). Leucine-rich repeat kinase 2 modulates neuroinflammation and neurotoxicity in models of human immunodeficiency virus 1-associated neurocognitive disorders. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 35(13), 5271–83. http://doi.org/10.1523/JNEUROSCI.0650-14.2015
Rangel, A., Race, B., Phillips, K., Striebel, J. J., Kurtz, N., Chesebro, B., … Nicoll, J. (2014). Distinct patterns of spread of prion infection in brains of mice expressing anchorless or anchored forms of prion protein. Acta Neuropathologica Communications, 2(1), 8. http://doi.org/10.1186/2051-5960-2-8
Rocha, E. M., Di Pasquale, G., Riveros, P. P., Quinn, K., Handelman, B., Chiorini, J. A., … Z, Z. (2011). Transduction, Tropism, and Biodistribution of AAV Vectors in the Lacrimal Gland. Investigative Opthalmology & Visual Science, 52(13), 9567. http://doi.org/10.1167/iovs.11-8171
Rodrigues, M., Xin, X., Jee, K., Babapoor-Farrokhran, S., Kashiwabuchi, F., Ma, T., … Sodhi, A. (2013). VEGF Secreted by Hypoxic Muller Cells Induces MMP-2 Expression and Activity in Endothelial Cells to Promote Retinal Neovascularization in Proliferative Diabetic Retinopathy. Diabetes, 62(11), 3863–3873. http://doi.org/10.2337/db13-0014
Rossmiller, B. P., Ryals, R. C., & Lewin, A. S. (2015). Gene therapy to rescue retinal degeneration caused by mutations in rhodopsin. Methods in Molecular Biology (Clifton, N.J.), 1271, 391–410. http://doi.org/10.1007/978-1-4939-2330-4_25
Saito, T. (Ed.). (2015). Electroporation Methods in Neuroscience (Vol. 102). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4939-2459-2
Sheehy, N. T., Cordes, K. R., White, M. P., Ivey, K. N., & Srivastava, D. (2010). The neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch. Development, 137(24).
Song, H., Park, J.-Y., Kim, H.-S., Lee, M.-C., Kim, Y., & Kim, H.-I. (2016). Circumscribed Capsular Infarct Modeling Using a Photothrombotic Technique. Journal of Visualized Experiments, (112), e53281–e53281. http://doi.org/10.3791/53281
Stamer, W. D., Lei, Y., Boussommier-Calleja, A., Overby, D. R., Ethier, C. R., RF, B., … M, A. (2011). eNOS, a Pressure-Dependent Regulator of Intraocular Pressure. Investigative Opthalmology & Visual Science, 52(13), 9438. http://doi.org/10.1167/iovs.11-7839
Swaminathan, S. S., Oh, D.-J., Kang, M. H., Ren, R., Jin, R., Gong, H., … JC, M. (2013). Secreted protein acidic and rich in cysteine (SPARC)-null mice exhibit more uniform outflow. Investigative Ophthalmology & Visual Science, 54(3), 2035–47. http://doi.org/10.1167/iovs.12-10950
Swaminathan, S. S., Oh, D.-J., Kang, M. H., Shepard, A. R., Pang, I.-H., Rhee, D. J., … L, J. J. (2014). TGF-β2-mediated ocular hypertension is attenuated in SPARC-null mice. Investigative Ophthalmology & Visual Science, 55(7), 4084–97. http://doi.org/10.1167/iovs.13-12463
Tokunaga, C. C., Mitton, K. P., Dailey, W., Massoll, C., Roumayah, K., Guzman, E., … Drenser, K. A. (2014). Effects of anti-VEGF treatment on the recovery of the developing retina following oxygen-induced retinopathy. Investigative Ophthalmology & Visual Science, 55(3), 1884–92. http://doi.org/10.1167/iovs.13-13397
van Gorp, S., Leerink, M., Kakinohana, O., Platoshyn, O., Santucci, C., Galik, J., … Marsala, M. (2013). Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Research & Therapy, 4(3), 57. http://doi.org/10.1186/scrt209
Ventura, R. E., & Goldman, J. E. (n.d.). Dorsal Radial Glia Generate Olfactory Bulb Interneurons in the Postnatal Murine Brain. http://doi.org/10.1523/JNEUROSCI.0399-07.2007
Voza, T., Kebaier, C., Vanderberg, J. P. J., Nussenzweig, R., Vanderberg, J. P. J., Most, H., … Vanderberg, J. P. J. (2010). Intradermal immunization of mice with radiation-attenuated sporozoites of Plasmodium yoelii induces effective protective immunity. Malaria Journal, 9(1), 362. http://doi.org/10.1186/1475-2875-9-362
Yamaguchi, T., Qi, J., Wang, H.-L., Zhang, S., & Morales, M. (2015). Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area. European Journal of Neuroscience, 41(6), 760–772. http://doi.org/10.1111/ejn.12818
Zhao, B., Allinson, S. L., Ma, A., Bentley, A. J., Martin, F. L., & Fullwood, N. J. (2008). Targeted Cornea Limbal Stem/Progenitor Cell Transfection in an Organ Culture Model. Investigative Opthalmology & Visual Science, 49(8), 3395. http://doi.org/10.1167/iovs.07-1263
Zhu, Q., Sun, W., Okano, K., Chen, Y., Zhang, N., Maeda, T., & Palczewski, K. (2011). Sponge Transgenic Mouse Model Reveals Important Roles for the MicroRNA-183 (miR-183)/96/182 Cluster in Postmitotic Photoreceptors of the Retina * □ S. http://doi.org/10.1074/jbc.M111.259028
_. (n.d.). http://doi.org/10.1242/dev.052647
NanoFil NeedlesMultiple SKUs
26g Beveled Replacement NanoFil needlesNF26BV-2For pricing, Customers outside of the US and Canada, please contact your distributor.
Spare Silicone Gasket for NanoFil & HolderNFGSK-5For pricing, Customers outside of the US and Canada, please contact your distributor.
NanoFil Injection HolderNFINHLDFor pricing, Customers outside of the US and Canada, please contact your distributor.
34g Flexible Quartz Tubing for fillingNFQ34-5For pricing, Customers outside of the US and Canada, please contact your distributor.
Nanofil Application KitsMultiple SKUs
SilFlex tubingSILFLEX-2For pricing, Customers outside of the US and Canada, please contact your distributor.
1.0 mm Glass Pipette Holder for NANOFIL SyringeNFINHLD-G10For pricing, Customers outside of the US and Canada, please contact your distributor.
In the video below, you can see how to front fill an Nanofil syringe.
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
>
抗体(Antibody),又称免疫球蛋白(Immunoglobulin,简称 Ig),是一种由B细胞分泌,被免疫系统用来鉴别与中和外来物质如细菌、病毒等的大型Y形蛋白质,仅被发现存在于脊椎动物的血液等体液中,及其B细胞的细胞膜表面。
抗体是具有4条多肽链的对称结构,其中2条较长、相对分子量较大的相同的重链(H链);2条较短、相对分子量较小的相同的轻链(L链)。链间由二硫键和非共价键联结形成一个由4条多肽链构成的单体分子。轻链有κ和λ两种,重链有μ、δ、γ、ε和α五种。 整个抗体分子可分为恒定区和可变区两部分。在给定的物种中,不同抗体分子的恒定区都具有相同的或几乎相同的氨基酸序列。可变区位于"Y"的两臂末端。在可变区内有一小部分氨基酸残基变化特别强烈,这些氨基酸的残基组成和排列顺序更易发生变异区域称高变区。高变区位于分子表面,最多由17个氨基酸残基构成,少则只有2 —— 3个。高变区氨基酸序列决定了该抗体结合抗原抗原的特异性。一个抗体分子上的两个抗原结合部位是相同的,位于两臂末端称抗原结合片段(antigen-binding fragment, Fab)。"Y"的柄部称结晶片段(crystalline fragment,FC),糖结合在FC 上。
(2)激活补体:IgM、IgG1、IgG2和IgG3可通过经典途径激活补体,凝聚的IgA、IgG4和IgE可通过替代途径激活补体。
(3)结合细胞:不同类别的免疫球蛋白,可结合不同种的细胞,参与免疫应答。
(4)可通过胎盘及粘膜:免疫球蛋白G(IgG)能通过胎盘进入胎儿血流中,使胎儿形成自然被动免疫。免疫球蛋白A(IgA)可通过消化道及呼吸道粘膜,是粘膜局部抗感染免疫的主要因素。
(5)具有抗原性:抗体分子是一种蛋白质,也具有刺激机体产生免疫应答的性能。不同的免疫球蛋白分子,各具有不同的抗原性。
(6)抗体对理化因子的抵抗力与一般球蛋白相同:不耐热,60~70℃即被破坏。各种酶及能使蛋白质凝固变性的物质,均能破坏抗体的作用。抗体可被中性盐类沉淀。在生产上常可用硫酸铵或硫酸钠从免疫血清中沉淀出含有抗体的球蛋白,再经透析法将其纯化。
(7)通过与细胞Fc受体结合发挥多种生物效应
①调理作用
IgG、IgM的Fc段与吞噬细胞表面的FcγR、FcμR结合,增强其吞噬能力,通常将抗体促进吞噬细胞吞噬功能的作用称为抗体的调理作用 (opsonization)。
②发挥抗体依赖的细胞介导的细胞毒作用向左转|向右转
免疫荧光(IF)
IHC-P=Immunohistochemistry (Paraffin)
IHC-F=Immunohistochemistry (Frozen)
p代表石蜡切片
f代表冰冻切片
二抗:二抗是在其它宿主体内制备的能与一抗或一抗片段结合的抗体,上面通常连有酶或荧光素等标签。由于二抗所具备的优点使得其在免疫学实验中得以应用广泛,如western blot(通过与特异性抗体结合来鉴定蛋白质),ELISA(以耦联有酶的抗体或抗原为标记来检测特异性的蛋白质,尤其是相应的抗原或抗体),免疫组织化学(检测组织中的特异性抗原),免疫细胞化学(通过免疫学方法检测细胞的抗原组成),流式细胞术(通过检测激光所激发荧光来鉴定分离不同类型的细胞)及免疫沉淀(通过抗原与抗体的特异性结合作用来分离相应抗原)。二抗针对某一特定物种(如小鼠)的所有抗体均具有特异性,因而使用标记的二抗可以免去对每一个一抗进行标记,大大节省了时间和费用;此外,一个一抗分子可以同时结合几个二抗分子,从而使信号大大增强,提高了实验灵敏度。
二抗可以耦联有几种不同的标记,可以是酶,荧光素,或生物素。
抗体特异性 产品。
Flag标签可位于蛋白质的C端或N端,该系统已广泛应用于各种细胞类型,包括细菌、酵母和哺乳动物细胞等,相应的Flag标签抗体也被广泛应用。由于Flag标签系统的纯化条件是非变性的,因此可以纯化所有有活性的融合蛋白。Flag标签可以通过加入肠激酶处理去除,肠激酶专一识别该肽序列C末端的5个氨基酸残基。
Flag抗体可以用于检测和Flag标签融合表达蛋白的表达、细胞内定位,以及纯化、定性或定量检测Flag融合表达蛋白等。 融合标签根据其相对分子质量大小可以分为两大类:大的蛋白质分子和小的多肽片段。融合标签的使用可以简化蛋白质的纯化过程、控制蛋白质固定的空间取向及方便检测、使体内生物事件可视化、提高重组蛋白质的产量、增强重组蛋白质的可溶性和稳定性等。
His标签是由6个组氨酸(His-His-His-His-His-His)组成的短肽,专门设计用于重组蛋白质的吸附纯化。由于分子量较小,并且较容易分离和纯化,His融合标签与其他标签相比有很多明显优势,是目前用于纯化的融合标签中使用最为广泛的一种。利用 His标签可以建立一个基于融合蛋白的高效检测和纯化系统。
His抗体可以用于检测和His标签融合表达蛋白的表达、细胞内定位,以及纯化、定性或定量检测His融合表达蛋白等。 随着越来越多的新基因的发现,基因融合蛋白表达体系以其在新发现蛋白研究中的显著优势已得到广泛应用。其中GST标签体系具有蛋白表达产率高、表达产物纯化方便,以及利于GST抗体制备等特点。GST融合蛋白在水溶液中可溶,可从细菌裂解液中提取,在不变性的条件下通过亲和层析得到。GST融合蛋白可被位点特异性蛋白酶裂解,从而除去GST蛋白。融合蛋白又是一个非常好的强免疫原,因此,很容易制备抗新蛋白的抗体。正是由于以上的优点,商品化的GST融合蛋白表达体系以及GST标签抗体系统至今仍被广泛应用。
近年来在原核表达体系中,谷胱甘肽S转移酶GST表达纯化系统的应用更为普遍。用GST融合表达系统表达外源基因时,对融合表达产物的检测和纯化非常重要,这里面就包括了GST标签抗体的应用。 常用的标签包括GFP、HA、Flag、His、GST等。其中绿色萤光蛋白(Green Fluorescent Protein),简称GFP,这种蛋白质最早是由下村脩等人在1962年在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。
GFP或其突变体EGFP等被广泛用于基因表达效率的检测,以及和目的蛋白融合表达用于检测目的蛋白的表达和分布。一般来说,GFP抗体不仅可以检测GFP或其适当的突变体,也可以检测和GFP或其适当的突变体融合表达蛋白的表达、细胞内定位,以及纯化、定性或定量检测GFP融合表达蛋白等。
GFP标签可位于蛋白质的C端或N端,该系统已广泛应用于各种细胞类型,包括细菌、酵母和哺乳动物细胞等,相应的GFP标签抗体也被广泛应用。 随着蛋白质组学的迅猛发展,重组蛋白质的使用在近年来大大增加。重组杂合体含有一个亲和标签如GST、Myc、His等,可用于辅助目标蛋白的纯化,这已经被广泛使用。利用融合蛋白有助于重组蛋白纯化和检测的这个有点被广泛认可。在1985年开发出鼠抗c-myc标签抗体并被作为免疫化学试剂用于细胞生物学和蛋白质工程领域中。Myc标签(序列为:EQKLISEEDL)已成功应用于WB杂交技术、免疫沉淀IP和流式细胞术中。因此可用于检测重组蛋白在细菌、酵母、昆虫细胞和哺乳细胞中的表达情况。
Myc重组蛋白质可通过偶联Myc标签抗体到二乙烯砜活化的琼脂糖上而进行亲和纯化。Myc标签可放在C端或N端,但Myc重组蛋白的低pH洗脱条件往往会降低蛋白质的活力,因此Myc标签系统广泛应用于检测但很少用于纯化。 融合标签,如HA、His等标签的使用可以简化蛋白质的纯化过程、控制蛋白质固定的空间取向及方便检测、使体内生物事件可视化、提高重组蛋白质的产量、增强重组蛋白质的可溶性和稳定性等。常用的标签包括myc、HA、Flag、His、GST等。其中HA标签系统利用一个HA (influenza hemagglutinin epitope: YPYDVPDYA)短肽肽融合到目标蛋白。
HA标签可位于蛋白质的C端或N端,该系统已广泛应用于多种细胞类型,相应的HA标签抗体也被广泛应用。HA标签抗体能特异识别C末端或N末端带有HA标签(HA-tagged)的融合蛋白。向左转|向右转
抗体是人免疫功能自身产生的。当人体感染某种病毒的时候,人体免疫功能自动针对该病毒产生抵制其生存的病毒抗体或抑制病毒的生长 复制 并最终将该病毒杀死。
与同种型相对应的是同种异型和独特型。
【T。SDM】

