| Hemin chlorideeukaryotic translation initiation factor 2α kinase 1 (eIF2αK1) inhibitor |

Sample solution is provided at 25 µL, 10mM.
Nature.2017 Jan 19;541(7637):417-420.
Nature.2018 Nov;563(7731):407-411.
Nature.2018 Jun 13.
Nature.2018 Jun 27.
Nature.2018 Mar 29;555(7698):673-677.
Nature.2017 Sep 7;549(7670):96-100.
Nature.2016 Apr 21;532(7599):398-401.
Science.2016 Aug 5;353(6299)594-8
Nat Nanotechnol.2017 Dec;12(12):1190-1198.
Nature Biotechnology.2017 Jun;35(6):569-576
Nat Med.2018 Sep 17.
Cell.2018 Dec 21. pii: S0092-8674(18)31561-7.
Cell.Available online 25 October 2018.
Cell.2018 Sep 27. pii: S0092-8674(18)31183-8.
Cell.2018 Jun 28;174(1):172-186.e21.
Cell.2018 Feb 22;172(5):1007-1021.e17.
Cell.2017 Nov 30;171(6):1284-1300.e21.
Cell.2017 Aug 17. pii: S0092-8674(17)30869-3.
Cell.2017 Jul 13;170(2):312-323
Nat Med.2018 Jan 29.
Nat Med.2017 Nov;23(11):1342-1351.
Cell.2017 Apr 6;169(2):286-300.
Cell.2015 Aug 27;162(5):987-1002.
Cell.2015 Feb 12;160(4):729-44.
Nature Medicine.2017 Apr;23(4):493-500.
Cancer Cell.2018 May 14;33(5):905-921.e5.
Cancer Cell.2018 Apr 9;33(4):752-769.e8.
Cancer Cell.2018 Mar 12;33(3):401-416.e8.
Cancer Cell.2017 Aug 14;32(2):253-267.e5.
Nat Methods.2018 Jul;15(7):523-526.
Cell Stem Cell.2018 May 3;22(5):769-778.e4.
Cell Stem Cell.2017 Nov 20. pii: S1934-5909(17)30375-2.Quality Control & MSDS
- View current batch:
- Purity ≥96.00%
- COA (Certificate Of Analysis)
- MSDS (Material Safety Data Sheet)
- Datasheet
Chemical structure


Hemin chloride Dilution Calculator
calculate

Hemin chloride Molarity Calculator
calculate
| Cas No. | 16009-13-5 | SDF | Download SDF |
| Synonyms | N/A | ||
| Chemical Name | (SP-5-13)-chloro[7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-porphine-2,8-dipropanoato(4-)-κN21, κN22, κN23, κN24]-ferrate(2-), dihydrogen | ||
| Canonical SMILES | [O-]C(CCC1=C(C=C2[N]3=C4C(C)=C2CCC([O-])=O)[N-]([Fe+3]35([Cl-])[N]6=C7C=C(C(C=C)=C8C)[N-]5C8=C4)C(C=C6C(C=C)=C7C)=C1C)=O.[H+].[H+] | ||
| Formula | C34H30ClFeN4O4 • 2H | M.Wt | 652.0 |
| Solubility | Soluble in DMSO | Storage | Store at 2-8°C |
| Physical Appearance | A crystalline solid | Shipping Condition | Evaluation sample solution : ship with blue ice.All other available size:ship with RT , or blue ice upon request |
| General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. | ||
Hemin chloride is an oxidized form of heme that inhibits eukaryotic translation initiation factor 2α kinase 1 (eIF2αK1), a repressor of eIF-2α [1].
The eukaryotic initiation factor 1 (eIF1) plays an important role in translation start site specificity. The eIF2α is a key target in translational regulation. Phosphorylation of eIF2α on Ser51 converts eIF2 from a substrate to a competitive inhibitor of its exchange factor, eIF2β[2].
In vitro: The addition of hemin (30 μM) depressed the extent of incorporation of phosphate into eIF-2β by about 50% [1]. Concentrations of 25 μM hemin significantly decreased the rate of incorporation of phosphate into eIF-2α. Concentrations of hemin ranged from 20 to 40 μM maintained an optimal rate of protein synthesis in cell lysates [1].
In vivo: In mice, pretreated with an intraperitoneal injection of hemin displayed a marked induction of HO-1. In hemin-treated mice, thrombus formation was delayed, and the delay was completely blunted by tin protoporphyrin-IX [3].
References:
[1] Tahara S M, Traugh J A, Sharp S B, et al. Effect of hemin on site-specific phosphorylation of eukaryotic initiation factor 2[J]. Proceedings of the National Academy of Sciences, 1978, 75(2): 789-793.[]
[2] Sonenberg N, Dever T E. Eukaryotic translation initiation factors and regulators[J]. Current opinion in structural biology, 2003, 13(1): 56-63.
[3] Lindenblatt N, Bordel R, Schareck W, et al. Vascular heme oxygenase-1 induction suppresses microvascular thrombus formation in vivo[J]. Arteriosclerosis, thrombosis, and vascular biology, 2004, 24(3): 601-606
.
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
最好能说得具体点,小弟对此几乎一窍不通
谢谢
1. 粗纯:将制备抗体的血清或是腹水,细胞上清,直接用盐析法进行处理,这样可以将这些物质里面的其他杂质去掉,获得蛋白的成分,但是由于是粗纯,里面会混有大量的其他蛋白,这样获得的抗体,纯度较低,用于实验中背景比较高。
2.通用型纯化:用抗体结合蛋白Protein A,Protein G或者Protein L。因为不同来源的抗体和这些抗体结合蛋白的结合能力不同,所以需要根据抗体来源选择使用哪种抗体将诶和蛋白最好。对于有一些单链抗体,则多半使用protein L来进行纯化。经过抗体结合蛋白的亲和纯化后,溶液中基本只保留了抗体的成分,其他蛋白都去掉了,抗体纯度可以比较高。相对来说,这种方法是大规模抗体制备中,用得最多的纯化方法,很多抗体公司都采用这种方法来对抗体进行纯化。
3.特异型纯化:但是有些抗体,需要纯度特别高,特异性特别好,就不能简单采用上述两种方法进行纯化了。必须要通过将抗原固定制备成特异的亲和纯化柱,再纯化抗体。这个时候得到的就全是针对一种抗原的抗体了,特异性最好。当然,由于牵涉到抗原固定等操作,成本相应是最高的。
1. 粗纯:将制备抗体的血清或是腹水,细胞上清,直接用盐析法进行处理,这样可以将这些物质里面的其他杂质去掉,获得蛋白的成分,但是由于是粗纯,里面会混有大量的其他蛋白,这样获得的抗体,纯度较低,用于实验中背景比较高。
2.通用型纯化:用抗体结合蛋白Protein A,Protein G或者Protein L。因为不同来源的抗体和这些抗体结合蛋白的结合能力不同,所以需要根据抗体来源选择使用哪种抗体将诶和蛋白最好。对于有一些单链抗体,则多半使用protein L来进行纯化。经过抗体结合蛋白的亲和纯化后,溶液中基本只保留了抗体的成分,其他蛋白都去掉了,抗体纯度可以比较高。相对来说,这种方法是大规模抗体制备中,用得最多的纯化方法,很多抗体公司都采用这种方法来对抗体进行纯化。
3.特异型纯化:但是有些抗体,需要纯度特别高,特异性特别好,就不能简单采用上述两种方法进行纯化了。必须要通过将抗原固定制备成特异的亲和纯化柱,再纯化抗体。这个时候得到的就全是针对一种抗原的抗体了,特异性最好。当然,由于牵涉到抗原固定等操作,成本相应是最高的。

