| BAY 41-8543heme-dependent stimulator of soluble guanylate cyclase (sGC) |

Sample solution is provided at 25 µL, 10mM.
Nature.2017 Jan 19;541(7637):417-420.
Nature.2018 Nov;563(7731):407-411.
Nature.2018 Jun 13.
Nature.2018 Jun 27.
Nature.2018 Mar 29;555(7698):673-677.
Nature.2017 Sep 7;549(7670):96-100.
Nature.2016 Apr 21;532(7599):398-401.
Science.2016 Aug 5;353(6299)594-8
Nat Nanotechnol.2017 Dec;12(12):1190-1198.
Nature Biotechnology.2017 Jun;35(6):569-576
Nat Med.2018 Sep 17.
Cell.2018 Dec 21. pii: S0092-8674(18)31561-7.
Cell.Available online 25 October 2018.
Cell.2018 Sep 27. pii: S0092-8674(18)31183-8.
Cell.2018 Jun 28;174(1):172-186.e21.
Cell.2018 Feb 22;172(5):1007-1021.e17.
Cell.2017 Nov 30;171(6):1284-1300.e21.
Cell.2017 Aug 17. pii: S0092-8674(17)30869-3.
Cell.2017 Jul 13;170(2):312-323
Nat Med.2018 Jan 29.
Nat Med.2017 Nov;23(11):1342-1351.
Cell.2017 Apr 6;169(2):286-300.
Cell.2015 Aug 27;162(5):987-1002.
Cell.2015 Feb 12;160(4):729-44.
Nature Medicine.2017 Apr;23(4):493-500.
Cancer Cell.2018 May 14;33(5):905-921.e5.
Cancer Cell.2018 Apr 9;33(4):752-769.e8.
Cancer Cell.2018 Mar 12;33(3):401-416.e8.
Cancer Cell.2017 Aug 14;32(2):253-267.e5.
Nat Methods.2018 Jul;15(7):523-526.
Cell Stem Cell.2018 May 3;22(5):769-778.e4.
Cell Stem Cell.2017 Nov 20. pii: S1934-5909(17)30375-2.Quality Control & MSDS
- View current batch:
- Purity = 98.00%
- COA (Certificate Of Analysis)
- MSDS (Material Safety Data Sheet)
- Datasheet
Chemical structure


BAY 41-8543 Dilution Calculator
calculate

BAY 41-8543 Molarity Calculator
calculate
| Cas No. | 256498-66-5 | SDF | Download SDF |
| Chemical Name | 2-[1-[(2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl]-5-(4-morpholinyl)-4,6-pyrimidinediamine | ||
| Canonical SMILES | FC(C=CC=C1)=C1CN2N=C(C3=NC(N)=C(N4CCOCC4)C(N)=N3)C5=C2N=CC=C5 | ||
| Formula | C21H21FN8O | M.Wt | 420.4 |
| Solubility | ≤3mg/ml in dimethyl formamide | Storage | Store at -20°C |
| Physical Appearance | A crystalline solid | Shipping Condition | Evaluation sample solution : ship with blue ice.All other available size:ship with RT , or blue ice upon request |
| General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. | ||
IC50: 0.09 μM human platelets
BAY 41-8543 is a soluble guanylate cyclase (sGC) stimulator.
Soluble guanylate cyclase (sGC) has been identified as the primary cellular receptor for nitric oxide (NO). NO can bind and activate a heme group in sGC, initiating the conversion of GTP to the second messenger cyclic GMP (cGMP).
In vitro: Previous study found that BAY 41-8543 could concentration-dependently stimulate the recombinant sGC up to 92-fold. Moreover, BAY 41-8543 and NO had synergistic effects over a wide range of concentrations. Similar results were shown that BAY 41-8543 stimulated the sGC directly and further made the enzyme more sensitive to its endogenous activator NO. In addition, BAY 41-8543 was found to be a potent relaxing agent of aortas, saphenous arteries, coronary arteries and veins with IC50-values in the nm range [1].
In vivo: In anaesthetized dogs, i.v. injections of BAY 41-8543 could cause a dose-dependent decrease in blood pressure and cardiac oxygen consumption as well as an increase in coronary blood flow and heart rate. In anaesthetized normotensive rats, BAY 41-8543 produced a dose-dependent and long-lasting blood pressure lowering effect. Moreover, a dose-dependent and long-lasting decrease in blood pressure was also observed in conscious spontaneously hypertensive rats with a threshold dose of 0.1 mg/kg p.o. [2].
Clinical trial: So far, no clinical study has been conducted.
References:1. Stasch, J.P.,Alonso-Alija, C.,Apeler, H., et al. Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: In vitro studies. British Journal of Pharmacology 135, 333-343 (2002).2. Stasch, J.P.,Dembowsky, K.,Perzborn, E., et al. Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vivo studies. British Journal of Pharmacology 135, 344-355 (2002).
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
最好能说得具体点,小弟对此几乎一窍不通
谢谢
1. 粗纯:将制备抗体的血清或是腹水,细胞上清,直接用盐析法进行处理,这样可以将这些物质里面的其他杂质去掉,获得蛋白的成分,但是由于是粗纯,里面会混有大量的其他蛋白,这样获得的抗体,纯度较低,用于实验中背景比较高。
2.通用型纯化:用抗体结合蛋白Protein A,Protein G或者Protein L。因为不同来源的抗体和这些抗体结合蛋白的结合能力不同,所以需要根据抗体来源选择使用哪种抗体将诶和蛋白最好。对于有一些单链抗体,则多半使用protein L来进行纯化。经过抗体结合蛋白的亲和纯化后,溶液中基本只保留了抗体的成分,其他蛋白都去掉了,抗体纯度可以比较高。相对来说,这种方法是大规模抗体制备中,用得最多的纯化方法,很多抗体公司都采用这种方法来对抗体进行纯化。
3.特异型纯化:但是有些抗体,需要纯度特别高,特异性特别好,就不能简单采用上述两种方法进行纯化了。必须要通过将抗原固定制备成特异的亲和纯化柱,再纯化抗体。这个时候得到的就全是针对一种抗原的抗体了,特异性最好。当然,由于牵涉到抗原固定等操作,成本相应是最高的。
1. 粗纯:将制备抗体的血清或是腹水,细胞上清,直接用盐析法进行处理,这样可以将这些物质里面的其他杂质去掉,获得蛋白的成分,但是由于是粗纯,里面会混有大量的其他蛋白,这样获得的抗体,纯度较低,用于实验中背景比较高。
2.通用型纯化:用抗体结合蛋白Protein A,Protein G或者Protein L。因为不同来源的抗体和这些抗体结合蛋白的结合能力不同,所以需要根据抗体来源选择使用哪种抗体将诶和蛋白最好。对于有一些单链抗体,则多半使用protein L来进行纯化。经过抗体结合蛋白的亲和纯化后,溶液中基本只保留了抗体的成分,其他蛋白都去掉了,抗体纯度可以比较高。相对来说,这种方法是大规模抗体制备中,用得最多的纯化方法,很多抗体公司都采用这种方法来对抗体进行纯化。
3.特异型纯化:但是有些抗体,需要纯度特别高,特异性特别好,就不能简单采用上述两种方法进行纯化了。必须要通过将抗原固定制备成特异的亲和纯化柱,再纯化抗体。这个时候得到的就全是针对一种抗原的抗体了,特异性最好。当然,由于牵涉到抗原固定等操作,成本相应是最高的。

