Overview:
TRIM37 or tripartite motif containing 37 is a member of the tripartite motif (TRIM) family whose members are involved in diverse cellular functions such as developmental patterning and oncogenesis (1). The TRIM motif includes zinc-binding domains, a RING finger region, a B-box motif and a coiled-coil domain. The RING finger and B-box domains chelate zinc and might be involved in protein-protein and/or protein-nucleic acid interactions. Mutations in TRIM37 are associated with mulibrey (muscle-liver-brain-eye) nanism, an autosomal recessive disorder that involves several tissues of mesodermal origin (2).
Gene Aliases:
MUL; POB1; TEF3
Genbank Number:
BC036012
References:
1. Avela, K. et.al: Gene encoding a new RING-B-box-coiled-coil protein is mutated in mulibrey nanism. Nature Genet. 25: 298-301, 2000. 2. Kallijarvi, J.et.al: The TRIM37 gene encodes a peroxisomal RING-B-box-coiled-coil protein: classification of mulibrey nanism as a new peroxisomal disorder. Am. J. Hum. Genet. 70: 1215-1228, 2002.
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
>
将EntransterTM-invivo与AmbioninvivosiRNA(作用于凝血因子VII)和阴性siRNA通过尾静脉注射成年小鼠,2天后,取动物肝脏检测。在mRNA水平和蛋白水平观察干扰效果。见上图,图中最左侧组为对照组注射阴性siRNA为3mg/kg,后边3组为每kg动物注射阳性siRNA量分别为1mg/kg,2mg/kg和3mg/kg情况。
根据推荐用量注射EntransterTM-invivo和siRNA(作用于LaminA/C)和阴性siRNA到成年小鼠。注射后2天收集相应的组织,分离RNA,用qRT-PCR分析LaminA/C基因的表达水平。图4为尾静脉结果,图5为各器官分别局部注射结果。
英格恩生物体内转染试剂,3天可完成动物体内转染实验,让动物干扰,基因敲除实验变得简单、快速有效!
域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ和PIWI两个结构域,对于siRNA和目标mRNA相互作用,从而导致目标mRNA的切割或者翻译抑制过程,是必不可少的。同时,不同的AGO蛋白质有着不同的生物学功能。例如,在人当中,AGO2“筹划”了RISCs对于目标mRNA的切割过程;而AGO1 和AGO3则不具备这个功能。
Core RISC:是介导目标mRNA切割过程或者翻译抑制的最小的RNA-蛋白质复合物。在人和果蝇身上发现的分子量少于200kDa的RISCs可能就是core RISC的重要代表。AGO蛋白质和Core RISC密切相关。
Dicer (DCR):是RNAase Ⅲ家族中的一员,主要切割dsRNA或者茎环结构的RNA前体成为小RNAs分子。对应地,我们将这种小RNAs分子命名为siRNAs和miRNA。Dicer有着较多的结构域,最先在果蝇中发现,并且在不同的生物体上表现出很高的保守性。
Holo RISC:是在果蝇中发现的有着RISC活性的最大的RNA-蛋白质复合物(80S)。Holo RISC的生物学活性牵涉到几乎所有的RISC的成员,RLC成员,和一些其他通路上的蛋白质分子。Holo RISC的存在,表明了RISC组装不是孤立的,同时还是一个有序的过程。以RISC为中心的RNAi和miRNA通路与一些其他的通路密切联系,很可能借此调控生物体的生长发育过程。
Microprocessor:一种核内的复合物,主要由Drosha和Pasha两者组成,在miRNA的生物合成中促使原始的miRNA成为miRNA前体。
MicroRNA (miRNA):是含有茎环结构的miRNA前体,经过Dicer加工之后的一类非编码的小RNA分子(~21-23个核苷酸)。MiRNA,以及miRISCs(RNA-蛋白质复合物)在动物和植物中广泛表达。因之具有破坏目标特异性基因的转录产物或者诱导翻译抑制的功能,miRNA被认为在调控发育过程中有重要作用。
RISC loading complex (RLC):是一种促使RISC形成的复合物。RLC有方向性地调节小RNA双螺旋,为以后的RISC组装作好铺垫。siRISC loading complexes (siRLCs)在果蝇中研究最多。有研究者认为在果蝇中的siRLCs包含DCR2-R2D2异型二聚体和siRNA双螺旋;R2D2部分是非对称性的感受器,为RISC组装调整好siRNA的方向。miRISC loading complexes (miRLCs)的研究尚未报导,因为它的过程更为复杂,而且体外研究miRLCs的方法还没有建立。
RNA-induced initiation of transcriptional gene silencing (RITS):是一种组织染色质变型的复合物。RITS复合物也包含Dicer加工形成的siRNA和AGO蛋白质,通过结合到异染色质的基因池上来促使异染色质上基因的沉默。
RNA-induced silencing complex (RISC):一种RNA-蛋白质复合物,通过与目标mRNA完全或者部分的互补配对来实施切割或者翻译抑制功能。SiRNA组装siRISC,miRNA组装miRISC。RISCs(无论siRISC还是miRISC)包括两种类型:切割型和不切割型。研究表明,RISC当中的AGO蛋白质决定了RISC是切割型的还是不切割型的。
Slicer:在切割型RISC中的内切酶的另外一种表述方法。
Small interfering RNA (siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。向左转|向右转
转录抑制
与RNAi有关的dsRNA及蛋白质可参与染色质的修饰作用,使其中的组蛋白和DNA发生甲基化作用,使相应基因不能被转录,从而导致受阻基因不能表达。这种在转录水平上阻断基因功能,使基因沉默的RNAi方式被称为转录基因沉默(Transcriptional gene silencing,TGS)。这种现象先在植物中得到证实,但是在哺乳动物中是否存在仍有争议。2004年Svoboda等研究表明,在小鼠卵母细胞中,通过RNAi引起靶基因表达沉默的长dsRNA不能引起相应DNA区域从头合成DNA的甲基化。Morris等也于同年得出实验结论,针对内源基因启动子的siRNA能够引起其区域内CG岛以及组蛋白H3K9的甲基化,从而在转录水平抑制基因的表达。
转录后抑制
不同来源的dsRNA通过各种转基因技术转入植物、线虫或哺乳动物细胞内,、被切割产生siRNA片断,再由合成的RISC切割靶mRNA从而阻断基因表达。这种基因能正常转录成mRNA,但mRNA因被降解使基因功能被阻断,这种RNAi方式叫做转录后沉默(Post transcriptional gene silencing,PTGS)。siRNA对靶mRNA降解具有序列特异性,只能引起同源mRNA降解,如果siRNA与mRNA有一个bp不配对,RNAi作用就极大降低,如果两者有4个bp不配对,就不能产生RNAi。
翻译抑制
Grishok等在研究RNAi时,发现在细胞中在细胞中存在内源性小片段单链RNA(ssRNA),其长度也在21~25 nt之间,这种ssRNA可与mRNA的3′非翻译区(3′UTR)特异性地结合,从而抑制mRNA的翻译和相应的功能蛋白质合成。这种小片段的ssRNA叫做stRNA(small temporal RNA)。ssRNA的形成是因为当RNA的大小为70~80 nt时,容易形成双链的茎环状结构,其双链茎的长度正好在21~25 nt之间,这样的双链结构易被Dicer酶识别并切割成stRNA,由stRNA抑制翻译。这种方式的RNAi也作用于转录后形成的mRNA,它在调节生物细胞内基因的表达、自身的发育方面起着重要的作用。
⒉特异性:Elbashir等和Brummel kamp等发现在21~23个碱基对中有1~2个碱基错配会大大降低对靶mRNA的降解效果。
⒊位置效应:Holen等根据人TF(tissue factor)不同的位置各合成了4组双链RNA来检测不同位置的双链RNA对基因沉默效率的影响。在不同浓度和不同类型的细胞中,hTF167i和hTF372i能够抑制85%~90%的基因活性,hTF562i只能抑制部分基因活性,而hTF478i则几乎没有抑制基因的活性。他们还以hTF167为中心依次相差3个碱基对在其左右各合成了几组双链RNA,有趣的是它们所能抑制该基因活性的能力以hTF167为中心依次递减。特别是hTF158i和 hTF161i只与hTF167i相距9个和6个碱基,但它们几乎没有抑制该基因活性的能力。结果还表明双链RNA对mRNA的结合部位有碱基偏好性,相对而言,GC含量较低的mRNA被沉默效果较好。
⒋竞争效应:Hoten等将10 nmol/L和30 nmol/L的hTF167i相比,两者的沉默基因效果无差异,但将20 nmol/L基因抑制效果很差的PSK314i和10 nmol/L的hTF167i相混和后,hTF167i产生的抑制效果明显降低。
⒌可传播性:在线虫中,双链RNA可以从起始位置传播到远的地方,甚至于全身。Feinberg 和Hunter在线虫细胞膜上发现一种跨膜蛋白SID1,它可以将双链RNA转运出细胞,因此系统性的RNAi包括了SID1介导的双链 RNA在细胞间的运输。但在果蝇上并未发现有此基因的同源物,因此在果蝇上通过注射产生的RNAi不能扩散。向左转|向右转
dsRNA(double-stranded RNA)介导基沉默作用dsRNA基点研究基沉默机制热点dsRNA指于30碱基RNA哺乳物细胞至少2条路径竞争双链RNA(dsRNA)其特异性路径:特殊dsRNA序列用于RNAi起始阶段dsRNA切siRNA(small interfering RNA 或short interfering RNAs)siRNARNA干扰作用赖发重要间效应能提供定信息允许特定mRNA降解siRNA义链与反义链各21碱基其19碱基配再每条链3’端都2配碱基
另条非特异性路径:要dsRNA存降解所RNA抑制所蛋白质合dsRNA激蛋白激酶PKR激PKR通系列磷酸化关闭翻译起始导致翻译抑制通激2’-5’AS 合激RNase L导致非特异RNA降解
关于特异性RNA作用机制模型包括起始阶段效应阶段起始阶段dsRNADicer酶(RNaseIII家族特异识别双链RNA员属内切核酸酶)作用加工裂解21-23核甘酸干扰RNA片断(siRNA)Dicer含解旋酶性及dsRNA结合域PAZ结构
RNAi 效应阶段siRNA双链结构解旋并形性蛋白/RNA复合物(RNA-induced silencing complex or RISC)siRNA 解双链即RISC激程需ATP由RISCsiRNA反义链与mRNA互补区域结合随切割mRNA达RNA水平干扰基表达RISC由种蛋白组包括核酸酶解旋酶同源RNA链搜索性等

