
Overview
Additional reagents for your QuantiMir Studies
Everyone’s studies are different, which means that sometimes you run out of only one of the reagents in a kit. Which is why SBI offers many kit components as stand-alone products. For the QuantiMir™ Kit, we offer additional 3’ Universal Primer, to keep your QuantiMir studies moving forward.
The QuantiMir Kit:
- Simple and robust procedure
- Rapidly and efficiently convert all small RNAs into cDNAs for qPCR
- Suitable for high-throughput screening of clinical samples
- Sensitive and accurate (see the data in the Supporting Data section below)
- Versatile—design your own miRNA assays
How It Works
The QuantiMir Kit enables robust miRNA quantitation through a simple and efficient workflow
Highly efficient poly-A tailing and reverse transcription in a single reaction tube provides uniform cDNA synthesis of miRNAs. The optimized reaction conditions and buffer components maximize cDNA yield when starting with several micrograms down to picograms of input total RNA. The universal 3′ tag sequence incorporated during reverse transcription enables easily scalable and accurate miRNA expression analysis by qPCR—profile thousands of different miRNAs from a single reverse transcription reaction.
- Tag all small RNAs with a poly-A tail
- Anneal an oligo-dT adaptor
- Reverse transcribe to create first-strand cDNA
The result is a cDNA pool of anchor-tailed miRNAs that are ready for qPCR.
Create custom miRNA assays
To design your own miRNA assays, simply synthesize an oligo using the sequence of the mature miRNA you’d like to profile as the forward primer in your miRNA qPCR assay, and use with the universal reverse primer included in the QuantiMir Kit.
Supporting Data
Converting miRNA into cDNA for accurate qPCR profiling and quantitation
The QuantiMir Kit is sensitive
Figure 1. The QuantiMir Kit is highly sensitive and enables measurement across a wide dynamic range. (A) Starting with total, Trizol-extracted RNA or fractionated small RNA samples you can measure from several micrograms down to picograms of input RNA with excellent accuracy. (B) You can also detect differential miRNA expression across a dynamic range of at least 6 logs.
The QuantiMir Kit is accurate
Figure 2. The QuantiMir Kit is accurate. We used the QuantiMir Kit to synthesize first strand cDNAs from 18 different human tissues: adipose, bladder, brain, cervix, colon, esophagus, heart, kidney, liver, lung, ovary, placenta, prostate, skeletal muscle, small intestine, spleen, testes, and thymus. The cDNAs were balanced to yield equal Ct values for the U6 snRNA normalizing transcript (bottom left plot, green bars). Real-time PCR results demonstrate that the normalizing snRNA is uniformly expressed across the 18 tissues examined. As expected, assays for miR-1 are show specific expression in heart and musculoskeletal tissues (top left plot, red bars) whereas assays for miR-122 show specific expression in the liver (top right plot, blue bar).
Use the QuantiMir Kit to profile miRNAs from cancerous and normal tissues
Figure 3. Use the QuantiMir Kit to profile miRNAs from cancerous and normal tissues. Example of quantitative miRNA profiling of nine miRNAs in five different normal and tumor-derived samples.
Measure both siRNA and mRNA knockdown in a single QuantiMir cDNA sample
Figure 4. Measure both siRNA and mRNA knockdown in a single QuantiMir cDNA sample. A time-course using anti-p53 shRNA-directed knockdown of the endogenous p53 mRNA transcript demonstrates how the QuantiMir Kit can be used to measure both p53 siRNA (orange bars) and p53 mRNA (blue line) via qPCR.
Resources
Citations
- Bhome, R, et al. (2017) Profiling the MicroRNA Payload of Exosomes Derived from Ex Vivo Primary Colorectal Fibroblasts. Methods Mol. Biol..2017 Nov 9; 1509:115-122. PM ID:27826922
- Dluzen, DF, et al. (2017) MicroRNAs Modulate Oxidative Stress in Hypertension through PARP-1 Regulation. Oxid Med Cell Longev.2017 Jun 29; 2017:3984280. PM ID:28660007
- Su, YK, et al. (2017) Antrodia cinnamomea sensitizes radio-/chemo-therapy of cancer stem-like cells by modulating microRNA expression. J Ethnopharmacol.2017 Jun 8;. PM ID:28602756
- Min, KW, et al. (2017) AUF1 facilitates microRNA-mediated gene silencing. Nucleic Acids Res..2017 Jun 2; 45(10):6064-6073. PM ID:28334781
- Zheng, H, et al. (2017) Alcohol-dysregulated microRNAs in hepatitis B virus-related hepatocellular carcinoma. PLoS ONE.2017 May 31; 12(5):e0178547. PM ID:28562643
- Paul, D, et al. (2017) A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Sci Rep.2017 May 26; 7(1):2466. PM ID:28550310
- Reeves, ME, et al. (2017) Identification and characterization of RASSF1C piRNA target genes in lung cancer cells. Oncotarget.2017 May 23; 8(21):34268-34282. PM ID:28423657
- Brodie, S, et al. (2017) The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells. Oncotarget.2017 May 9; 8(19):31785-31801. PM ID:28423669
- Gao, S, et al. (2017) Identification and characterization of miRNAs in two closely related C4 and C3 species of Cleome by high-throughput sequencing. Sci Rep.2017 Apr 19; 7:46552. PM ID:28422166
- Yang, Y, Bai, YS & Wang, Q. (2017) CDGSH Iron Sulfur Domain 2 Activates Proliferation and EMT of Pancreatic Cancer Cells via Wnt/β-Catenin Pathway and Has Prognostic Value in Human Pancreatic Cancer. Oncol. Res..2017 Apr 14; 25(4):605-615. PM ID:27983920
- Tsai, HC, et al. (2017) WISP-1 positively regulates angiogenesis by controlling VEGF-A expression in human osteosarcoma. Cell Death Dis.2017 Apr 13; 8(4):e2750. PM ID:28406476
- Ramachandran, M, et al. (2017) Safe and Effective Treatment of Experimental Neuroblastoma and Glioblastoma Using Systemically Delivered Triple MicroRNA-Detargeted Oncolytic Semliki Forest Virus. Clin. Cancer Res..2017 Mar 15; 23(6):1519-1530. PM ID:27637889
- Fafián-Labora, J, et al. (2017) Effect of age on pro-inflammatory miRNAs contained in mesenchymal stem cell-derived extracellular vesicles. Sci Rep.2017 Mar 6; 7:43923. PM ID:28262816
- Chen, S, et al. (2017) H19 Overexpression Induces Resistance to 1,25(OH)2D3 by Targeting VDR Through miR-675-5p in Colon Cancer Cells. Neoplasia.2017 Mar 1; 19(3):226-236. PM ID:28189050
- Maeda, Y, et al. (2017) Synovium-Derived MicroRNAs Regulate Bone Pathways in Rheumatoid Arthritis. J. Bone Miner. Res..2017 Mar 1; 32(3):461-472. PM ID:27676131
- Hou, S, et al. (2017) MicroRNA-939 governs vascular integrity and angiogenesis through targeting γ-catenin in endothelial cells. Biochem. Biophys. Res. Commun..2017 Feb 26; 484(1):27-33. PM ID:28115160
- Yeung, CL, et al. (2017) Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3. Oncotarget.2017 Feb 14; 8(7):12158-12173. PM ID:28077801
- Tsukita, S, et al. (2017) MicroRNAs 106b and 222 Improve Hyperglycemia in a Mouse Model of Insulin-Deficient Diabetes via Pancreatic β-Cell Proliferation. EBioMedicine.2017 Feb 1; 15:163-172. PM ID:27974246
- Monsanto-Hearne, V, et al. (2017) Drosophila miR-956 suppression modulates Ectoderm-expressed 4 and inhibits viral replication. Virology.2017 Feb 1; 502:20-27. PM ID:27960110
- Small, RNA. (2017) QuantiMir RT Kit Small RNA Quantitation System. Product.;. Link:Product
SystemBiosciences,简称SBI,美国加利福尼亚湾区新成立的生技公司,致力于独特,创新生物技术之开发,以研发利于基因及蛋白质功能鉴定,研究之崭新方法和工具为宗旨。
美国SBI代理SystemBiosciences,简称SBI,美国加州湾区新成立的生技公司,致力于独特、创新生物技术之开发,以研发利于基因及蛋白质功能鉴定、研究之崭新方法和工具为宗旨。现阶段研发重心为RNA干扰(RNAi)研究之相关工具。
现阶段研发重心为RNA干扰(RNAi)的研究之相关工具。系统Biosciences公司(SBI)致力于开发独特,革新的技术,为客户研究蛋白组学和基因组学功能提供研究工具.SBI是专业的慢病毒产品公司,提供基于慢病毒的所有相关产品,质粒,试剂盒及相关配套试剂和慢病毒扩展产品,如IPS细胞多功能性诱导试剂盒和RNAi筛选文库。System Biosciences继续创造新的独特产品以及改善我们完善的产品线。我们对提供领先技术的承诺与我们所有研究试剂和研究项目服务的高质量制造和质量控制相匹配。 2009年要寻找的东西:以下是即将推出的新产品。新型miRZips™:基于慢病毒载体的新型技术可永久敲低MicroRNA。双标记shRNA表达载体:SBI将发布新的功能强大的shRNA表达慢病毒载体pGreenPuro™,以便为稳定的RNAi实验选择稳定转导的细胞的GFP和Puro标记。甾醇反应pGreenFire™慢病毒报告子:基于慢病毒载体的转录报告子,用于监测与固醇感应转录因子相关的转录网络活性-心血管疾病途径的关键。诱导型表达慢载体:新的构建体将允许CDNA,shRNA和microRNA的“按需”表达。2007–2008年的新产品新的miR-SNaRE:MicroRNA小型非编码RNA富集系统,该系统使用带有表位标签的microRNA加工因子来提取蛋白质及其相关RNA。识别驱动RISC复合体的信使RNA。新的GeneNet™聚焦的shRNA库:这些聚焦的shRNA库编码一组针对所有与人类激酶,磷酸酶或细胞凋亡相关基因有关的特定功能或类别基因设计的shRNA集合。这些文库可进行有针对性的高通量RNAi筛选。新的miRNomeMicroRNA分析仪:qPCR阵列在预先格式化的板中包括microRNA分析,可用于人类的完全互补或小鼠单个microRNA的完全互补,每块板上带有三个内源参考RNA对照。所有基于SangermiRBasemicroRNA数据库的microRNA分析均已注册。新的Lenti-miR™MicroRNA前体克隆:在基于HIV的慢病毒载体中可获得更多的microRNA前体集合。超过580个单独的microRNA前体克隆可用阵列形式或合并的慢病毒形式用于HT筛选。新的基于慢病毒的干细胞报道者:SBI越来越多的慢病毒载体已被开发为将基因构建体在体内外几乎传递给任何细胞类型的最有效方法。SBI已将我们的慢病毒构建体系列扩展为干细胞报道分子。使用连接到GFP报告基因的细胞和途径特异性启动子,轻松创建转基因细胞系以监测细胞分化。QuantiMir™RT试剂盒:这项流行的新技术可通过一次cDNA合成同时进行实时qPCR定量分析数百种microRNA。设计您自己的microRNA测定法以进行创新性实验。癌症microRNAqPCR分析小组(OncoMir系列):预格式化的microRNA分析小组,用于评估95种已知与癌症有关的microRNA。干细胞microRNA分析小组:介绍了95种参与干细胞分化的microRNA,可同时监测干细胞的自我维持,造血途径和神经分化。SBI完善的产品线FullSpectrum™完整信使RNA扩增试剂盒:利用针对mRNA最常见基序的mRNA特异性引物提供完整的mRNA转录物(5"和3"末端)的无偏见,完整代表。GeneNet™siRNA库:全基因组,即用型,预包装的慢病毒库为筛选与生物学反应相关的基因功能提供了令人兴奋的机会。干扰素反应检测试剂盒:区分真正的RNA干扰和压力相关的细胞反应。PathNet™转录报告基因慢病毒载体:一种独特的方法,可创建各种稳定的报告基因细胞系,用于信号通路的研究。我们感谢您过去的支持,并期待为您提供最佳的新试剂,技术和服务,以加速您成功的研究目标。
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
请有经验的战友指点,若可以最好能提供几篇应用动物进行RNA干扰研究的文章.
非常感谢!
本是小菜鸟,目前研究某个比较新的蛋白对内质网应激的影响,需要抑制这个蛋白的表达看下游信号的表达情况,但是无论如何夜找不到抑制剂,做RNA干扰的话经费就超出预算了!急求各位大神,帮忙出个解决方案吧!非常感谢!
dsRNA(double-stranded RNA)介导基沉默作用dsRNA基点研究基沉默机制热点dsRNA指于30碱基RNA哺乳物细胞至少2条路径竞争双链RNA(dsRNA)其特异性路径:特殊dsRNA序列用于RNAi起始阶段dsRNA切siRNA(small interfering RNA 或short interfering RNAs)siRNARNA干扰作用赖发重要间效应能提供定信息允许特定mRNA降解siRNA义链与反义链各21碱基其19碱基配再每条链3’端都2配碱基
另条非特异性路径:要dsRNA存降解所RNA抑制所蛋白质合dsRNA激蛋白激酶PKR激PKR通系列磷酸化关闭翻译起始导致翻译抑制通激2’-5’AS 合激RNase L导致非特异RNA降解
关于特异性RNA作用机制模型包括起始阶段效应阶段起始阶段dsRNADicer酶(RNaseIII家族特异识别双链RNA员属内切核酸酶)作用加工裂解21-23核甘酸干扰RNA片断(siRNA)Dicer含解旋酶性及dsRNA结合域PAZ结构
RNAi 效应阶段siRNA双链结构解旋并形性蛋白/RNA复合物(RNA-induced silencing complex or RISC)siRNA 解双链即RISC激程需ATP由RISCsiRNA反义链与mRNA互补区域结合随切割mRNA达RNA水平干扰基表达RISC由种蛋白组包括核酸酶解旋酶同源RNA链搜索性等
⒉特异性:Elbashir等和Brummel kamp等发现在21~23个碱基对中有1~2个碱基错配会大大降低对靶mRNA的降解效果。
⒊位置效应:Holen等根据人TF(tissue factor)不同的位置各合成了4组双链RNA来检测不同位置的双链RNA对基因沉默效率的影响。在不同浓度和不同类型的细胞中,hTF167i和hTF372i能够抑制85%~90%的基因活性,hTF562i只能抑制部分基因活性,而hTF478i则几乎没有抑制基因的活性。他们还以hTF167为中心依次相差3个碱基对在其左右各合成了几组双链RNA,有趣的是它们所能抑制该基因活性的能力以hTF167为中心依次递减。特别是hTF158i和 hTF161i只与hTF167i相距9个和6个碱基,但它们几乎没有抑制该基因活性的能力。结果还表明双链RNA对mRNA的结合部位有碱基偏好性,相对而言,GC含量较低的mRNA被沉默效果较好。
⒋竞争效应:Hoten等将10 nmol/L和30 nmol/L的hTF167i相比,两者的沉默基因效果无差异,但将20 nmol/L基因抑制效果很差的PSK314i和10 nmol/L的hTF167i相混和后,hTF167i产生的抑制效果明显降低。
⒌可传播性:在线虫中,双链RNA可以从起始位置传播到远的地方,甚至于全身。Feinberg 和Hunter在线虫细胞膜上发现一种跨膜蛋白SID1,它可以将双链RNA转运出细胞,因此系统性的RNAi包括了SID1介导的双链 RNA在细胞间的运输。但在果蝇上并未发现有此基因的同源物,因此在果蝇上通过注射产生的RNAi不能扩散。向左转|向右转
简单来说,Off-target效应就是指干扰shRNA序列进入了microRNA途径,通过microRNA途径,其可以不受完全互补的限制而调控大量靶基因的表达。原本需要19~23nt的RNA序列完全互补才能发生干扰作用,而如果进入microRNA途径,只需要11~15nt互补就可以产生干扰效果,这使得siRNA可能与非靶基因结合而导致非靶基因沉默,造成脱靶。 如果脱靶干扰的部分基因,正好与目的基因位于同一信号通路中,或者与目的基因的生物学功能相似,那么,如果因脱靶而干扰了其它基因,亦会造成和目的基因受到干扰后相同的细胞表型改变。而实际上,可能选择的这条shRNA序列并没有对目的基因造成有效干扰,或者虽然干扰了目的基因,但是并不会引起预期的细胞表型改变。
基于以上原因,自从Off-target效应被发现并被研究者们广泛认同后,越来越多的杂志要求研究者们在投稿时需要有相应的对照来说明Off-target效应。即您需要有相关对照或者实验来说明,您所获得的实验结果,不是由于Off-target效应而产生的。向左转|向右转
两方面的证据提示转座子活性的抑制与siRNA有关
① 发现蠕虫mut-7 基因参与RNAi 并且与转座子的转座抑制有关;
② 在果蝇中, 参与RNAi 的RNA 解螺旋酶Spindle-E 的突变将导致该基因引起的基因沉默的缺失, 同时提高了反转录转座子活性。 RNAi抵御病毒感染
在拟南芥中研究转基因引起基因沉默时发现, sgs2/sde1基因突变的拟南芥对病毒的侵染表现出高度的敏感性 。 RNAi参与异染色质的形成和维持
Hall 等研究表明,着丝粒同源重复序列和RNAi 组分一起正负调节着异染色质的形成并共同促使异染色质组装成核;Vople 等在敲除裂殖酵母( S. pombe) 的RNAi 途径基因( 如Argonaute 、Dicer 、RDRP) 时发现异染色质转录得到的dsRNA可以在RNAi 途径的参与下, 加工成si RNA,si RNA 募集异染色质蛋白1( HP1) , 然后靶向性引起相应异染色质区域的转基因沉默。 RNAi参与机体的发育调控及生理代谢
RNAi 只抑制转录后的基因, 所以RNAi 在生物体发育学研究中具有优势。Chuang 等用RNAi 技术进一步证实了AG、CLV3 、AP1 、PAN 等已知功能基因在拟南芥花发育过程中的功能。在RNAi 过程中形成的RISC 复合物可根据不同情况分别利用si RNA 或stRNA 行使不同的功能, 但最终均导致特定基因沉默。向左转|向右转
这种技术,以前曾被用来研究植物和蠕虫等,但直到现在才发现它对哺乳动物细胞也有效。
如果把这个思路用于医疗,使致病的基因“沉默”下来,不就可以治好许多疾病吗?而哈佛医学院的研究人员首次用RNA干扰使活体动物的致病基因“沉默”。美国哈佛医学院的科学家在最新一期英国《自然医学》杂志上报告说,他们已经成功地利用这种核糖核酸干扰技术治愈了实验鼠的肝炎。如果进一步证实这种技术在人体内有效,将为许多疾病和感染提供新疗法。
在研究中,科学家干扰的目标是“凋亡相关蛋白质(FAs)基因”。这种蛋白质存在于细胞表面,它能够启动细胞的自杀程序,据认为,许多肝病是由于病毒、免疫系统失常或慢性酒精中毒激活了FAs基因所导致的。
研究人员给实验鼠尾部的血管注入旨在“沉默”FAs基因的小干扰RNA,发现有90%的肝细胞接收到了这种RNA分子,FAs蛋白质的产量变成原先的十分之一。随后,科学家给实验鼠注入大量FAs抗体,激活细胞自杀程序,模拟实验鼠患有严重肝炎的情形。
结果,未接受RNA干扰治疗的实验鼠有40%在3天内死亡。而40只接受过治疗的实验鼠有33只活了下来,10天后研究人员检查这些实验鼠的肝部,发现完全正常。
对于人来说,身体比老鼠大得多,血液循环系统也庞大。科学家目前正在寻找把小干扰RNA送到人体特定部位的方法,以便验证RNA干扰技术在人体中的效果。
在此,我只是抛砖引玉,向大家简单介绍一种新的技术,希望对其感兴趣的同仁多多发表,也希望版主给予支持。
转录抑制
与RNAi有关的dsRNA及蛋白质可参与染色质的修饰作用,使其中的组蛋白和DNA发生甲基化作用,使相应基因不能被转录,从而导致受阻基因不能表达。这种在转录水平上阻断基因功能,使基因沉默的RNAi方式被称为转录基因沉默(Transcriptional gene silencing,TGS)。这种现象先在植物中得到证实,但是在哺乳动物中是否存在仍有争议。2004年Svoboda等研究表明,在小鼠卵母细胞中,通过RNAi引起靶基因表达沉默的长dsRNA不能引起相应DNA区域从头合成DNA的甲基化。Morris等也于同年得出实验结论,针对内源基因启动子的siRNA能够引起其区域内CG岛以及组蛋白H3K9的甲基化,从而在转录水平抑制基因的表达。
转录后抑制
不同来源的dsRNA通过各种转基因技术转入植物、线虫或哺乳动物细胞内,、被切割产生siRNA片断,再由合成的RISC切割靶mRNA从而阻断基因表达。这种基因能正常转录成mRNA,但mRNA因被降解使基因功能被阻断,这种RNAi方式叫做转录后沉默(Post transcriptional gene silencing,PTGS)。siRNA对靶mRNA降解具有序列特异性,只能引起同源mRNA降解,如果siRNA与mRNA有一个bp不配对,RNAi作用就极大降低,如果两者有4个bp不配对,就不能产生RNAi。
翻译抑制
Grishok等在研究RNAi时,发现在细胞中在细胞中存在内源性小片段单链RNA(ssRNA),其长度也在21~25 nt之间,这种ssRNA可与mRNA的3′非翻译区(3′UTR)特异性地结合,从而抑制mRNA的翻译和相应的功能蛋白质合成。这种小片段的ssRNA叫做stRNA(small temporal RNA)。ssRNA的形成是因为当RNA的大小为70~80 nt时,容易形成双链的茎环状结构,其双链茎的长度正好在21~25 nt之间,这样的双链结构易被Dicer酶识别并切割成stRNA,由stRNA抑制翻译。这种方式的RNAi也作用于转录后形成的mRNA,它在调节生物细胞内基因的表达、自身的发育方面起着重要的作用。


View Products
View Products
View Products