
Description
Macrophage depletion kits are composed of two vials; one vial of Clodrosome® (Clodronate liposomes) and one vial of Encapsome® (control liposomes containing no drug). The volume of the macrophage depletion kit represents the volume of each reagent individually. For example, the 5-ml macrophage depletion kit means 5 ml of Clodrosome® and 5 ml of Encapsome®. Each reagent in the kit can also be purchased individually.
Clodrosome® is a multilamellar liposome suspension in which clodronate is encapsulated in the aqueous compartments of the liposomes. Encapsome® is formulated and prepared identically to Clodrosome® except that clodronate is not added to the liposomes. The liposomes are filtered through 2 μm polycarbonate membranes to ensure that the larger particles, which may be toxic to animals, are removed from the suspension. Both are prepared and packaged under sterile conditions. When animals or cells are treated with Clodrosome®, phagocytic cells recognize the liposomes as invading foreign particles and proceed to remove the liposomes from the local tissue or serum via phagocytosis. The liposomes then release clodronate into the cytosol, resulting in cell death. Non-encapsulated clodronate cannot cross the cell membrane to initiate cell death.
Control liposomes (Encapsome®) are recognized and phagocytosed by the same mechanism as Clodrosome®. Since the control liposomes do not contain clodronate, the phagocytic cells are not killed. However, phagocytes do respond to the ingestion of control liposomes by cytokine secretion, temporary suspension of phagocytic activity and other responses described in the literature.
m-Clodrosome® and m-Encapsome® are mannosylated reagents that are specifically formulated to efficiently target the macrophages in central nervous systems and macrophages that contain more mannose receptors. For more information about these reagent see here.
Fluorescent liposomes (Fluoroliposome®) suitable for macrophage targeting and tracking are available. They can contain five different fluorescent dyes (DiA, DiD, DiI, DiO and DiR), which covers the entire spectrum. Fluorescent liposomes come in standard and mannosylated form. For more information see here.


Technical Information
Clodrosome® Liposomal Clodronate Suspension
Lipid Composition | Concentration (mg/ml) | Concentration (mM) | Molar Ratio Percentage |
---|---|---|---|
Total | 23 mg/ml | 35.1 mM | 100 |
L-alpha-Phosphatidylcholine | 18.8 | 24.3 | 70 |
Cholesterol | 4.2 | 10.9 | 30 |
Encapsulated Drug | Concentration |
---|---|
Clodronate ((Dichloro-phosphono-methyl)phosphonate), Disodium Salt | 18.4* mM |
* Depending on the type of the clodronate salt, itsconcentration (mg/ml) varies. If tetra hydrate salt is used, the concentration of the encapsulated drug will be ~7 mg/ml, and if a non-hydrated salt is used, the concentration will be ~5 mg/ml. |
Encapsome® Control Liposome Suspension
Lipid Composition | Concentration (mg/ml) | Concentration (mM) | Molar Ratio Percentage |
---|---|---|---|
Total | 23 mg/ml | 35.1mM | 100 |
L-alpha-Phosphatidylcholine | 18.8 | 24.3 | 70 |
Cholesterol | 4.2 | 10.9 | 30 |
Fluoroliposome®-DiA
Lipid Composition | Concentration (mg/ml) | Concentration (mM) | Molar Ratio Percentage |
---|---|---|---|
Total | 23 mg/ml | 35.1 mM | 100 |
L-alpha-Phosphatidylcholine | 18.8 | 24.3 | 70 |
Cholesterol | 4.2 | 10.9 | 30 |
Fluorescent Dye | Excitation/Emission (nm) | Concentration (mg/ml) | Concentration (mM) |
---|---|---|---|
4-(4-(Dihexadecylamino)styryl)-N-methylpyridinium Iodide (DiA)![]() | 456/590 | 0.0625 | 0.0794 |
Buffer and Liposome Size | Specification |
---|---|
Buffer | Phosphate Buffered Saline |
pH | 7.4 |
Liposome Size | 1.5-2 µm |
Technical Notes
- The issue with fluorescent Clodrosome® has to do with the potential for inaccurate and/or uninterpretable data being generated by labelled Clodrosome®. When Clodrosome® induces macrophage apoptosis, the fluorescent lipid incorporated into the Clodrosome® that is disrupted and metabolized in the phagolysosome will be dispersed among the residual apoptotic bodies which are subsequently phagocytosed by other macrophages. Therefore, fluorescent lipid may be detected in phagocytic cells which never phagocytosed Clodrosome® especially when FACS or fluoroscopy are utilized to detect fluorescent cells (FACS) or fluorescence levels in a tissue homogenate (fluoroscopy). Another potential artifact arises from fluorescent lipid remaining in the extracellular “garbage”, which has not yet been cleared by other phagocytes, generating a high background fluorescence. However, experienced confocal microscopist may be able to differentiate between the punctate fluorescence resulting from fluorescent intact liposomes versus the more diffuse fluorescence characteristic of disrupted liposomes and some have successfully used fluorescent clodronate liposomes to visualize the cellular location of these liposomes by confocal microscopy in vivo [1]. A further complicating factor is that published data varies widely as to exactly when clodronate liposomes begin to induce apoptosis in macrophages. Mönkönnnen et al. show that macrophage death is measurable within the first hour after clodronate liposome treatment on RAW264 cells in vitro [2], while many others have reported no signs of macrophage apoptosis until several hours after treatment in vivo. The variability in the data is likely due to different liposomal formulations of clodronate as well as the vastly different experimental conditions. Therefore, as with most biological studies, especially those involving liposomes, the amount of time between treating the animal or cells with clodronate liposomes and the onset of apoptosis will need to be established in each experimental model. If the nature of the research demands that Clodrosome® be tracked rather than the control, Encapsula can provide DiI-labelled Clodrosome® upon request, and assuming that the Clodrosome® distribution can definitively be assessed prior to the onset of apoptosis, clear and valid data on the biodistribution of fluorescent Clodrosome® should be obtainable. Still, for most purposes, Fluoroliposome® (fluorescent control liposomes) will provide the required data with far fewer potential artifacts.
- When monitoring monocyte uptake in vivo in normal animals, the circulating monocytes may “disappear” or show reduced counts within the first 2 h post-injection due to margination of the monocytes post-liposome phagocytosis. These cells will re-enter the circulation within a few hours. Sunderkötter et al. demonstrate this phenomenon and discuss the behavior in detail. Also consider that circulating monocytes have a lifetime of about 24 h so labeled monocytes will be continually leaving the circulation, even in normal animals, due to aging of the monocytes [3].
- When animals or cells are treated with Clodrosome®, phagocytic cells recognize the liposomes as invading foreign particles and proceed to remove the liposomes from the local tissue or serum via phagocytosis. The liposomes then release clodronate into the cytosol resulting in cell death. Unencapsulated clodronate cannot cross the cell membrane to initiate cell death.
- Encapsome® control liposomes are recognized and phagocytosed by the same mechanism as Clodrosome®. Since the control liposomes do not contain clodronate, the phagocytic cells are not killed. However, phagocytes do respond to the ingestion of the control liposomes by cytokine secretion, temporary suspension of phagocytic activity and other responses described in the literature.
- The product must be removed from the vial using sterile technique. Do not use if sterility is compromised. This is particularly important if a single vial is accessed multiple times over several weeks. The product should not be used more than 60 days after receipt, even if unopened.
- Liposomes may settle when left undisturbed for more than a few hours. Immediately prior to use, in order to ensure a homogeneous liposome suspension, slowly invert the vial several times until the suspension appears homogeneous by visual inspection. Vigorous or erratic shaking will not damage the liposomes but may induce foaming and bubble formation making it more difficult to accurately measure the desired dosage.
- If the personnel performing intravenous injections are not experienced in or familiar with, precautions for injecting larger volumes (~10% animal weight in ml), viscous liquids or particulate suspensions, consider having extra animals available in case serious injection-related adverse events occur. Dose control animals first to become familiar with large volume injections.
- Within hours after systemic administration of Clodrosome®, animals begin to lose important components of their immune system. Standard animal handling and housing protocols are not suitable for immunocompromised animals. Even when such precautions are taken, monitor the general health of each animal for opportunistic infections unrelated to the experimental protocol. There is no inherent toxicity to the product at the recommended dose levels.
- When dosing intravenously, use standard precautions for dosing larger volumes to animals including the following: a) Warm product to room temperature prior to dosing. b) Ensure that all air bubbles are removed from the syringe prior to dosing; intravenous injection of air bubbles may result in air emboli which can kill or seriously injure animals. c) Inject product at a slow, steady rate of no more than 1 ml/min; decrease infusion rate if animals display any atypical reactions such as unusual agitation.
- Infusion-related adverse reactions usually involve the animal gasping for air or other seizure-like movements. Animals often recover with no apparent permanent injury, but any potential effects on experimental results must be assessed by the researcher.
- Liposomes should be kept at 4°C and NEVER be frozen.
Dosage
Appearance
Clodrosome® and Encapsome® are both white milky suspensions, and Fluoroliposome®-DiA is a yellow liquid suspension, all made of large micro size multilamellar liposomes. Due to their large size, some liposomes might settle to the bottom of the vial. If left sitting idle in the refrigerator, Encapsome® and Fluoroliposome®-DiA will phase separate and form pellets in the bottom of the vial leaving a clear solution on top. Clodrosome® might do the same only not as severely. Therefore, both should be gently shaken not to form bubbles but to form a homogeneous solution prior to use.
Educational Videos
Ordering/Shipping Information
- All liposome based formulations are shipped on blue ice at 4°C in insulated packages using overnight shipping or international express shipping.
- Liposomes should NEVER be frozen. Ice crystals that form in the lipid membrane can rupture the membrane, change the size of the liposomes and cause the encapsulated drug to leak out. Liposomes in liquid form should always be kept in the refrigerator.
- Clients who order from outside of the United States of America are responsible for their government import taxes and customs paperwork. Encapsula NanoSciences is NOT responsible for importation fees to countries outside of the United States of America.
- We strongly encourage the clients in Japan, Korea, Taiwan and China to order via a distributor. Tough customs clearance regulations in these countries will cause delay in custom clearance of these perishable formulations if ordered directly through us. Distributors can easily clear the packages from customs. To see the list of the distributors click here.
- Clients ordering from universities and research institutes in Australia should keep in mind that the liposome formulations are made from synthetic material and the formulations do not require a “permit to import quarantine material”. Liposomes are NOT biological products.
- If you would like your institute’s FedEx or DHL account to be charged for shipping, then please provide the account number at the time of ordering.
- Encapsula NanoSciences has no control over delays due to inclement weather or customs clearance delays. You will receive a FedEx or DHL tracking number once your order is confirmed. Contact FedEx or DHL in advance and make sure that the paperwork for customs is done on time. All subsequent shipping inquiries should be directed to Federal Express or DHL.
Storage and Shelf Life
Storage
Clodrosome®, Encapsome® and Fluoroliposome® should always be stored at in the dark at 4°C, except when brought to room temperature for brief periods prior to animal dosing. DO NOT FREEZE. If the suspension is frozen, clodronate can be released from the liposomes thus limiting its effectiveness in depleting macrophages. ENS is not responsible for results generated by frozen product.
Shelf Life
Clodrosome®, Encapsome® and Fluoroliposome® are made on daily basis. The batch that is shipped is manufactured on the same day. It is advised to use the products within 60 days of the manufacturing date.
References and background reading
1. Polfliet MM, Goede PH, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK. A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system. J. Neuroimmunol. 2001 Jun 1;116(2):188–95.
2. Mönkkönen J, Liukkonen J, Taskinen M, Heath TD, Urtti A. Studies on liposome formulations for intra-articular delivery of clodronate. Journal of Controlled Release. 1995 Aug;35(2–3):145–54.
3. Sunderkötter C, Nikolic T, Dillon MJ, van Rooijen N, Stehling M, Drevets DA, Leenen P. Subpopulations of Mouse Blood Monocytes Differ in Maturation Stage and Inflammatory Response. J Immunol. 2004 Apr 1;172(7):4410–7.
4. Hinson SR, Clift IC, Luo N, Kryzer TJ, Lennon VA. Autoantibody-induced internalization of CNS AQP4 water channel and EAAT2 glutamate transporter requires astrocytic Fc receptor. Proceedings of the National Academy of Sciences. 2017 May 23;114(21):5491-6.
5. Dhupkar P, Gordon N, Stewart J, Kleinerman ES. Anti‐PD‐1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Medicine. 2018 May 7.
6. Xiong Y, Page JC, Narayanan N, Wang C, Jia Z, Yue F, Shi X, Jin W, Hu K, Deng M, Shi R. Peripheral neuropathy and hindlimb paralysis in a mouse model of adipocyte-specific knockout of Lkb1. EBioMedicine. 2017 Oct 1;24:127-36.
7. Crider A, Feng T, Pandya CD, Davis T, Nair A, Ahmed AO, Baban B, Turecki G, Pillai A. Complement component 3a receptor deficiency attenuates chronic stress-induced monocyte infiltration and depressive-like behavior. Brain, behavior, and immunity. 2018 Mar 5.
8. Kocher T, Asslaber D, Zaborsky N, Flenady S, Denk U, Reinthaler P, Ablinger M, Geisberger R, Bauer JW, Seiffert M, Hartmann TN. CD4+ T cells, but not non-classical monocytes, are dispensable for the development of chronic lymphocytic leukemia in the TCL1-tg murine model. Leukemia. 2016 Jun;30(6):1409.
9. Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation. Wound Repair and Regeneration. 2016 Jul 1;24(4):644-56.
10. Haque MR, Lee DY, Ahn CH, Jeong JH, Byun Y. Local co-delivery of pancreatic islets and liposomal clodronate using injectable hydrogel to prevent acute immune reactions in a type 1 diabetes. Pharmaceutical research. 2014 Sep 1;31(9):2453-62.
11. Mayo L, Cunha AP, Madi A, Beynon V, Yang Z, Alvarez JI, Prat A, Sobel RA, Kobzik L, Lassmann H, Quintana FJ. IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation. Brain. 2016 May 31;139(7):1939-57.
12. Kermanizadeh A, Chauché C, Balharry D, Brown DM, Kanase N, Boczkowski J, Lanone S, Stone V. The role of Kupffer cells in the hepatic response to silver nanoparticles. Nanotoxicology. 2014 Aug 31;8(sup1):149-54.
13. Nandi B, Shapiro M, Samur MK, Pai C, Frank NY, Yoon C, Prabhala RH, Munshi NC, Gold JS. Stromal CCR6 drives tumor growth in a murine transplantable colon cancer through recruitment of tumor-promoting macrophages. Oncoimmunology. 2016 Aug 2;5(8):e1189052.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
1、 配制JC-1染色工作液:
取适量JC-1 Stain (200×),按照每50μl JC-1 Stain (200×)加入8ml ddH2O的比例稀释JC-1,剧烈Vortex充分溶解并混匀JC-1。然后再加入2ml JC-1 Buffer(5×),混匀后即为JC-1染色工作液。6孔板每孔所需JC-1染色工作液的量为1ml,其它培养器皿的JC-1染色工作液的用量以此类推。
2、 设置阳性对照:
推荐CCCP(10mM)加入到细胞培养液中处理细胞。随后按照下述方法装载JC-1,进行线粒体膜电位的检测。对于特定的细胞,CCCP的作用浓度和作用时间可能有所不同,需自行参考相关文献资料确定。
3、对于悬浮细胞:
a. 取1~6×105细胞,重悬于0.5ml细胞培养液中,细胞培养液中可以含血清和酚红。
b. 加入0.5ml JC-1染色工作液,颠倒数次混匀。细胞培养箱中37℃孵育。
c. 在孵育期间,按照每1ml JC-1 Buffer(5×)加入4ml蒸馏水的比例,配制适量的JC-1 Buffer(1×),并放置于冰浴。
d. 37℃孵育结束后, 4℃ 600g离心3~4min,沉淀细胞。弃上清,注意尽量不要吸除细胞。
f. 再用JC-1 Buffer(1×)重悬后,用荧光显微镜或激光共聚焦显微镜观察,也可以用荧光分光光度计检测或流式细胞仪分析。
4、对于贴壁细胞:
注意:对于贴壁细胞,如果希望采用荧光分光光度计或流式细胞仪检测,应先收集细胞,重悬后参考悬浮细胞的检测方法。
a.吸除6孔板培养液,根据具体实验如有必要可以用PBS或其它适当溶液洗涤细胞一次,加入1ml细胞培养液。细胞培养液中可以含有血清和酚红。
b. 加入1ml JC-1染色工作液,充分混匀。细胞培养箱中37℃孵育。
c. 在孵育期间,按照每1ml JC-1 Buffer(5×)加入蒸馏水的比例,配制适量的JC-1 Buffer(1×),并放置于冰浴。
d. 37℃孵育结束后, 吸除上清,用JC-1 Buffer(1×)洗涤2次。
e. 加入2ml细胞培养液,培养液中可以含有血清和酚红。
f. 荧光显微镜或激光共聚焦显微镜下观察。
5、对于纯化的线粒体:
a. 把配制好的JC-1染色工作液再用JC-1 Buffer(1×)稀释5倍。
b. 0.9ml 5倍稀释的JC-1染色工作液中加入0.1ml总蛋白量为10~100μg纯化的线粒体。
c. 用荧光分光光度计或荧光酶标仪检测:混匀后直接用荧光分光光度计进行时间扫描,激发波长为485nm,发射波长为590nm。如果使用荧光酶标仪,激发波长不能设置为485nm时,可以在475~520nm范围内设置激发波长。另外,也可以参考下面步骤6中的波长设置进行荧光检测。
d. 用荧光显微镜或激光共聚焦显微镜观察:方法同下面的步骤6。
6、荧光观测和结果分析:
检测JC-1单体时可以把激发光设置为490nm,发射光设置为530nm;检测JC-1聚合物时,可以把激发光设置为525nm,发射光设置为590nm。出现红色荧光说明线粒体膜电位比较正常,细胞的状态也比较正常。
注意事项:
1、 JC-1 Stain(200×)应完全溶解混匀后使用,但应避免反复冻融。必须先把JC-1 Stain(200×)用ddH2O充分溶解混匀后,才可加入JC-1 Buffer(1×)。不可先配制JC-1 Buffer(1×)再加入JC-1 Stain(200×),否则导致JC-1很难充分溶解,严重影响后续的检测。
2、 对于6孔板中的样品,本试剂盒共可以检测100个样品;对于12孔中的样品,本试剂盒共可以检测200个样品。
3、 装载完JC-1后用JC-1 Buffer(1×)洗涤时,尽量使JC-1 Buffer(1×)保持4℃左右,此时的洗涤效果较好。
4、 勿把JC-1 Buffer(5×)全部配制成1×,因为操作过程中需直接使用JC-1 Buffer(5×)。
5、 如JC-1 Buffer(5×)中有沉淀,必须全部溶解后才能使用,为促进溶解可以在37℃加热。
6、 CCCP为线粒体电子传递链抑制剂,有一定毒性,请注意小心防护。
实验室要开展支原体检测,方法是PCR法,先要采购试剂盒,用过的同学给推荐一下好用的品牌呗
公司产品通过ISO9001质量体系认证
公司通过ISO14001环境体系认证
公司产品获得国家多项专利证书
公司产品获得计算机软件著作权
核心科技:自主品牌深芬仪器、中国制造、专利产品、技术保障
运输保证:优质EPE珍珠棉缓冲材料、牛皮瓦楞纸、免熏蒸木箱满足出口及国内运输要求。
售后保证:仪器免费保修一年,终身维护值得信赖!
牛胰岛素,是一种多肽
在1965年9月17日我国完成了结晶牛胰岛素的全合成。经过严格鉴定,它的结构、生物活力、物理化学性质、结晶形状都和天然的牛胰岛素完全一样。这是世界上第一个人工合成的蛋白质,为人类认识生命、揭开生命奥秘迈出了可喜的一大步。这项成果获1982年中国自然科学一等奖。
1953年,英国人F. SangerSanger由于测定了牛胰岛素的一级结构而获得1958年诺贝尔化学奖。