
3-Thiatetradecanoic Acidactivator of PPAR |
Sample solution is provided at 25 µL, 10mM.
































Quality Control & MSDS
- View current batch:
- Purity = 98.00%
- COA (Certificate Of Analysis)
- MSDS (Material Safety Data Sheet)
Chemical structure


3-Thiatetradecanoic Acid Dilution Calculator
calculate

3-Thiatetradecanoic Acid Molarity Calculator
calculate
Cas No. | 116296-31-2 | SDF | Download SDF |
Synonyms | 3-TDA | ||
Chemical Name | (undecylthio)-acetic acid | ||
Canonical SMILES | CCCCCCCCCCCSCC(O)=O | ||
Formula | C13H26O2S | M.Wt | 246.4 |
Solubility | ≤30mg/ml in ethanol;30mg/ml in DMSO;30mg/ml in dimethyl formamide | Storage | Store at -20°C |
Physical Appearance | A crystalline solid | Shipping Condition | Evaluation sample solution : ship with blue ice.All other available size:ship with RT , or blue ice upon request |
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. |
3-Thiatetradecanoic Acid is an activator of PPAR.
The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in fatty acid metabolism and energy homeostasis. The PPARs also play crucial roles in the control of cellular growth and differentiation.
In vitro: In BT4Cn cells, 3-thiatetradecanoic acid could activate all PPAR subtypes dose-dependently. In cell culture experiments, the PPARγ-selective ligand BRL49653 moderately inhibited growth of BT4Cn cells, while administration of 3-thiatetradecanoic acid led to a marked growth inhibition. Moreover, the administration of the PPARγ-selective antagonist GW9662 abolished BRL49653-induced growth inhibition, but only marginally reduced the effect of 3-thiatetradecanoic acid [1].
In vivo: Administration of 3-thiatetradecanoic acid increased mitochondrial and peroxisomal beta-oxidative capacity and carnitine palmitoyltransferase activity, but reduced free fatty acid and triacylglycerol levels in plasma compared to palmitic acid-treated rats and controls. 3-Thiatetradecanoic acid administration was able to affect the fatty acid composition in plasma and liver by increasing the amount of monoenes [2].
Clinical trial: A previous study described the clinical, hematological, and biochemical safety of 3-thiatetradecanoic acid. 3-Thiatetradecanoic acid was given as a single oral dose for 7 consecutive days. No significant changes were observed in the hematological or clinical chemical parameters in blood/urine. 3-Thiatetradecanoic acid did not induce significant changes in the blood lipids or free fatty acids, but it did lead to an increase in plasma concentration of Δ9 desaturated 3-thiatetradecanoic acid. 3-thiatetradecanoic acid was found to be safe and well tolerated [3].
References:1. Berge K, Tronstad KJ, Flindt EN, Rasmussen TH, Madsen L, Kristiansen K, Berge RK. Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways. Carcinogenesis. 2001 Nov;22(11):1747-55.2. Asiedu, D.K.,Froyland, L.,Vaagenes, H., et al. Long-term effect of tetradecylthioacetic acid: A study on plasma lipid profile and fatty acid composition and oxidation in different rat organs. Biochimica et Biophysica Acta 1300, 86-96 (1996).3. Pettersen RJ, Salem M, Skorve J, Ulvik RJ, Berge RK, Nordrehaug JE. Pharmacology and safety of tetradecylthioacetic acid (TTA): phase-1 study. J Cardiovasc Pharmacol. 2008 Apr;51(4):410-7.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
逆转录(reverse transcription)是以RNA为模板合成DNA的过程,即RNA指导下的DNA合成。是RNA病毒的复制形式,需逆转录酶的催化。艾滋病病毒(HIV)就是一种典型的逆转录病毒。
逆转录与反转录严格意义上来说没有什么区别,但是逆转录是RNA类病毒自主行为,在整合到宿主细胞内以RNA为模板形成DNA的过程;反转录是进行基因工程过程中,人为地提取出所需要的目的基因的信使RNA,并以之为模板人工合成DNA的过程。二者虽同为RNA→DNA的过程,但地点不同,相对性的来说,逆转录在体内,反转录在体外。
2、取灭过菌且无核酸酶的0.2ml离心管,依次加入2~5μgRNAnμL
3、65℃保温5min,然后冰浴5min;
4、往3步骤中的0.2ml离心管依次加入下列组份
RNase抑制剂(40u/μL)0.5μL
10×M-MLVReactionBuffer2μL
DTT(200mM)1μL
逆转录酶(M-MLV)1μL
5、轻轻混匀后,然后2000rpm离心20s;
6、先在37℃保温1hr,然后70℃保温15min;
7、上述产物可立即进行下一步的PCR反应或-20℃保存。向左转|向右转
在进行RT反应之前,应考虑以下几个方面:
1、RNA
成功的cDNA合成来自高质量的RNA,高质量的RNA至少应保证全长并且不含逆转录酶的抑制剂,如EDTA或SDS。在提取RNA的过程中,要特别防止RNase的污染,同时在逆转录反应中经常加入RNase抑制剂以增加cDNA合成的长度和产量。RNase抑制剂要在第一链cDNA合成反应中,在缓冲液和还原剂(如DTT)存在的条件下加入,因为cDNA合成前的过程会使抑制剂变性,从而释放结合的可以降解RNA的RNase。蛋白RNase抑制剂仅防止RNaseA,B,C对RNA的降解,并不能防止皮肤上的RNase,因此尽管使用了这些抑制剂,也要小心不要从手指上引入RNase,实验过程中经常更换新手套。
2、引物的选择
OligodT
选择OligodT时,要求RNA必须有PolyA,所以真核生物的mRNA都适用。适合长链甚至全长mRNA的RT,所以对RNA样品的质量要求较高,最好不要有明显的DNA污染、RNA降解和RNA断裂。假如想探索新的mRNA进行RT反应,建议推荐使用OligodT引物。使用OligodT引物要比随机引物和特异性引物的稳定性要好。
随机引物
适合各种RNA的RT,尤其适合模板丰度很低的情况(比如某个gene表达量很低)。选择随机引物时,第一链cDNA合成反应中就是以所有的RNA为模板,然后进行PCR反应时设计引物进行特异性扩增。同时要注意随机引物的量和总RNA量之间的关系,一般建议每5μg总RNA的随机引物的用量为50ng,如果每5μg总RNA的随机引物的用量超过250ng,可能会导致小片段产物(<500bp)的增加和长片断、全长产物产物的降低。
特异性引物
特异性引物只能用你设计引物时的下游引物做RT,引物设计质量影响RT的结果,而且不同引物退火温度本来就不相同,所以按照说明书按照一个温度做不是最佳选择,一般不推荐。向左转|向右转

