请使用支持JavaScript的浏览器! +,Mannosylated Fluorescent-DiA Macrophage Depletion Kit - Encapsula NanoSciences- Manufacturer of liposome based kits and formulations for research laboratories蚂蚁淘商城
商品信息
联系客服
Encapsula/Mannosylated Fluorescent-DiA Macrophage Depletion Kit/20-ml/CLD-8938-20-ml
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
Encapsula/Mannosylated Fluorescent-DiA Macrophage Depletion Kit/20-ml/CLD-8938-20-ml
品牌 / 
Encapsula
货号 / 
CLD-8938-20-ml
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616

Description

Mannose receptor targeting by mannosylated liposomes has been demonstrated for a variety of mannosylated lipid conjugates in a variety of liposome morphologies and compositions in several different in vitro and in vivo models. A very large number of publications is about using a hydrophobic derivative of mannose (4-aminophenyl alpha-D-mannopyranoside) rather than using a mannosylated lipid in clodronate liposomes. This is mainly due to the high cost and complexity of synthesizing and conjugating mannose to lipid. 4-aminophenyl alpha-D-mannopyranoside is commercially available and far less expensive than synthesizing mannose conjugated lipid.

Why mannose? Mannose is one of the carbohydrate components of many bacterial and viral cell surfaces; therefore, the ever-efficient, highly redundant immune system has evolved multiple mechanisms for identifying pathogens based on mannose recognition. The animal and plant kingdoms likewise utilize carbohydrate recognition signaling mechanisms including mannose residues. Many publications evaluate other carbohydrates as targeting mechanisms for various cell types, however mannose targeting to phagocytes appears to be one of the more specific mechanisms identified to date. Mammalian cell surface identification molecules based on mannose binding, such as the ICAM family of leukocyte adhesion molecules, target the SIGN family of mannose receptors to accomplish self-recognition in vivo.

A well-known and cited study by Umezawa & Eto [1] demonstrates that liposomes containing aminophenyl mannoside were most efficiently incorporated into the mouse brain across the blood brain barrier. The radiolabeled liposomes bearing aminophenyl-alpha-D-mannopyranoside were maximally incorporated into the mouse brain after 48 hours, whereas in the spleen and liver, these radioactivities were maximum after 12 hours. The studies also showed that liposomes were most incorporated was glial cells rather than neuronal cell. The subcellular fractionation study indicates that mannose labeled liposomes are incorporated into lysosomes rich fraction both in liver and brain.

There are five mannosylated fluorescent control liposome products (m-Fluoroliposome®) for m-Clodrosome® (mannosylated clodronate liposomes). All five mannosylated fluorescent liposomes incorporate a lipophilic dye inside their membranes. They are insoluble in water; however, their fluorescence is easily detected when incorporated into membranes. DiI, DiO, DiD, DiR and DiA cover a wide range of excitation and emission wavelengths from 300s to 900s. DiI and DiO have fluorescence excitation and emission maxima separated by about 65 nm, facilitating two-color labeling. The emission spectrum of DiA is very broad, allowing it to be detected as green, orange, or even red fluorescence depending on the optical filter used. DiI, DiO, DiD and DiR belong to the dialkylcarbocyanines family of compounds. The spectral properties of the dialkylcarbocyanines are largely independent of the lengths of the alkyl chains but are instead determined by the heteroatoms in the terminal ring systems and the length of the connecting bridge. They have extremely high extinction coefficients, moderate fluorescence quantum yields, and short excited state lifetimes in lipid environments (~1 ns). The fluorescence spectrum of the dye is shown below.

You can choose the m-Fluoroliposome® based on the type of the fluorescent equipment and filters that you use in your lab. Mannosylated clodronate liposomes cannot be made fluorescent simply due to the potential for inaccurate and/or uninterpretable data being generated by labelled m-Clodrosome®. For more information, please refer to the technical note section.

Fluorescence excitation and emission spectra of DiA.
Macrophage uptake of fluorescent liposome containing DiA.

Download Product InsertDownload Safety Datasheet (SDS)

Formulation Information

Clodrosome® Liposomal Clodronate Suspension

Lipid CompositionConcentration (mg/ml)Concentration (mM)Molar Ratio Percentage
Total23 mg/ml35.1 mM100
L-alpha-Phosphatidylcholine18.824.370
Cholesterol4.210.930
Encapsulated DrugConcentration
Clodronate ((Dichloro-phosphono-methyl)phosphonate), Disodium Salt18.4* mM
* Depending on the type of the clodronate salt, itsconcentration (mg/ml) varies. If tetra hydrate salt is used, the concentration of the encapsulated drug will be ~7 mg/ml, and if a non-hydrated salt is used, the concentration will be ~5 mg/ml.

Fluoroliposome®-DiA

Lipid CompositionConcentration (mg/ml)Concentration (mM)Molar Ratio Percentage
Total23 mg/ml35.1 mM100
L-alpha-Phosphatidylcholine18.824.370
Cholesterol4.210.930
MannosylationConcentration
4-Aminophenyl-alpha-D-mannopyranoside9.53 mol%
Fluorescent DyeExcitation/Emission (nm)Concentration (mg/ml)Concentration (mM)
4-(4-(Dihexadecylamino)styryl)-N-methylpyridinium Iodide (DiA)456/5900.06250.0794
Buffer and Liposome SizeSpecification
BufferPhosphate Buffered Saline
pH7.4
Liposome Size1.5-2 µm

Technical Notes

  • To reach bloodstream-accessible, mannose-receptor positive cells outside the liver, a significant number of liposomes will have to escape first-pass uptake by the liver and spleen, so that the target cells are exposed to a higher concentration of mannosylated liposomes from the blood. One strategy that has been used to ensure that liposomes escape the liver and spleen is known as reticuloendothelial system (RES) blockade in which animals are pre-dosed with a sufficient quantity of liposomes to temporarily saturate the phagocytic cells of the blood, liver and spleen, also known as the reticuloendothelial system (RES) or the mononuclear phagocyte system (MPS). This sufficient quantity is dependent upon the liposome type and composition as well as the species being dosed; the pre-dosed liposomes do not necessarily need to be the same type or composition as the therapeutic or diagnostic liposomes avoiding the RES. Soon after this pre-dose is cleared from the bloodstream (usually within a couple of hours), the liposomes of interest are dosed. Since the RES is involved in digesting the previous dose of liposomes, the subsequently dosed liposomes will remain in the circulation much longer thus be much more likely to bind to their target site outside the RES including those phagocytic cells which are accessible, but are not usually exposed to a higher concentration of liposomes.
  • While RES blockade is usually thought of as saturating phagocytic cells, it has been shown that opsonin-binding by liposomes is a saturable phenomenon. Therefore, part of RES blockade may involve serum depletion of complement and other opsonins known to coat liposomes. In the current application, removal or reduction in the concentration of soluble mannose-receptors may further increase the probability of a mannosylated liposome being able to interact with mannose receptors on the target cell. Therefore, if the goal is to deplete a target subset of mannose-receptor + cells which may not normally be exposed to a substantial number of mannosylated liposomes, pre-dosing with mannosylated clodronate liposomes, in order to both saturate the blood, liver and spleen phagocytes and reduce the concentration of opsonins including soluble mannose receptors, should increase the number of subsequently dosed mannosylated clodronate liposomes available to this target subset hypothetically resulting in increased uptake and depletion by these targeted cells.
  • The issue with fluorescent Clodrosome® has to do with the potential for inaccurate and/or uninterpretable data being generated by labelled Clodrosome®. When Clodrosome® induces macrophage apoptosis, the fluorescent lipid incorporated into the Clodrosome® that is disrupted and metabolized in the phagolysosome will be dispersed among the residual apoptotic bodies which are subsequently phagocytosed by other macrophages. Therefore, fluorescent lipid may be detected in phagocytic cells which never phagocytosed Clodrosome® especially when FACS or fluoroscopy are utilized to detect fluorescent cells (FACS) or fluorescence levels in a tissue homogenate (fluoroscopy). Another potential artifact arises from fluorescent lipid remaining in the extracellular “garbage”, which has not yet been cleared by other phagocytes, generating a high background fluorescence. However, experienced confocal microscopist may be able to differentiate between the punctate fluorescence resulting from fluorescent intact liposomes versus the more diffuse fluorescence characteristic of disrupted liposomes and some have successfully used fluorescent clodronate liposomes to visualize the cellular location of these liposomes by confocal microscopy in vivo [2]. A further complicating factor is that published data varies widely as to exactly when clodronate liposomes begin to induce apoptosis in macrophages. Mönkönnnen et al. show that macrophage death is measurable within the first hour after clodronate liposome treatment on RAW264 cells in vitro [3], while others have reported no signs of macrophage apoptosis until several hours after treatment in vivo. The variability in the data is likely due to different liposomal formulations of clodronate as well as the vastly different experimental conditions. Therefore, as with most biological studies, especially those involving liposomes, the amount of time between treating the animal or cells with clodronate liposomes and the onset of apoptosis will need to be established in each experimental model. If the nature of the research demands that Clodrosome® be tracked rather than the control, Encapsula can provide DiI-labelled Clodrosome® upon request, and assuming that the Clodrosome® distribution can definitively be assessed prior to the onset of apoptosis, clear and valid data on the biodistribution of fluorescent Clodrosome® should be obtainable. Still, for most purposes, Fluoroliposome® (fluorescent control liposomes) will provide the required data with far fewer potential artifacts.
  • When monitoring monocyte uptake in vivo in normal animals, the circulating monocytes may “disappear” or show reduced counts within the first 2 h post-injection due to margination of the monocytes post-liposome phagocytosis. These cells will re-enter the circulation within a few hours. Sunderkötter et al. demonstrate this phenomenon and discuss the behavior in detail. Also consider that circulating monocytes have a lifetime of about 24 h so labeled monocytes will be continually leaving the circulation, even in normal animals, due to aging of the monocytes [4].
  • When animals or cells are treated with Clodrosome®, phagocytic cells recognize the liposomes as invading foreign particles and proceed to remove the liposomes from the local tissue or serum via phagocytosis. The liposomes then release clodronate into the cytosol resulting in cell death. Unencapsulated clodronate cannot cross the cell membrane to initiate cell death.
  • Encapsome® control liposomes are recognized and phagocytosed by the same mechanism as Clodrosome®. Since the control liposomes do not contain clodronate, the phagocytic cells are not killed. However, phagocytes do respond to the ingestion of the control liposomes by cytokine secretion, temporary suspension of phagocytic activity and other responses described in the literature.
  • The product must be removed from the vial using sterile technique. Do not use if sterility is compromised. This is particularly important if a single vial is accessed multiple times over several weeks. The product should not be used more than 60 days after receipt, even if unopened.
  • Liposomes may settle when left undisturbed for more than a few hours. Immediately prior to use, in order to ensure a homogeneous liposome suspension, slowly invert the vial several times until the suspension appears homogeneous by visual inspection. Vigorous or erratic shaking will not damage the liposomes but may induce foaming and bubble formation making it more difficult to accurately measure the desired dosage.
  • If the personnel performing intravenous injections are not experienced in or familiar with, precautions for injecting larger volumes (~10% animal weight in ml), viscous liquids or particulate suspensions, consider having extra animals available in case serious injection-related adverse events occur. Dose control animals first to become familiar with large volume injections.
  • Within hours after systemic administration of Clodrosome®, animals begin to lose important components of their immune system. Standard animal handling and housing protocols are not suitable for immunocompromised animals. Even when such precautions are taken, monitor the general health of each animal for opportunistic infections unrelated to the experimental protocol. There is no inherent toxicity to the product at the recommended dose levels.
  • When dosing intravenously, use standard precautions for dosing larger volumes to animals including the following: a) warm product to room temperature prior to dosing; b) ensure that all air bubbles are removed from the syringe prior to dosing. Intravenous injection of air bubbles may result in air emboli which can kill or seriously injure animals; c) inject product at a slow, steady rate of no more than 1 ml/min; d) decrease infusion rate if animals display any atypical reactions such as unusual agitation.
  • Infusion-related adverse reactions usually involve the animal gasping for air or other seizure-like movements. Animals often recover with no apparent permanent injury, but any potential effects on experimental results must be assessed by the researcher.
  • Liposomes should be kept at 4°C and NEVER be frozen.

Dosage

Click here to load this Caspio

Appearance

m-Clodrosome® is a white milky suspension, and m-Fluoroliposome®-DiA is a yellow liquid suspension, both made of large micro size multilamellar liposomes. Due to their large size, some liposomes might settle to the bottom of the vial. If left sitting idle in the refrigerator, m-Fluoroliposome®-DiA will phase separate and form pellets in the bottom of the vial, leaving a clear solution on top. m-Clodrosome® might do the same only not as severely. Therefore, both should be gently shaken not to form bubbles but to form a homogeneous solution prior to use.

Educational Videos

Ordering/Shipping Information

  • All liposome based formulations are shipped on blue ice at 4°C in insulated packages using overnight shipping or international express shipping.
  • Liposomes should NEVER be frozen. Ice crystal that form in the lipid membrane can rupture the membrane, change the size of the liposomes and cause the encapsulated drug to leak out. Liposomes in liquid form should always be kept in the refrigerator.
  • Clients who order from outside of the United States of America are responsible for their government import taxes and customs paperwork. Encapsula NanoSciences is NOT responsible for importation fees to countries outside of the United States of America.
  • We strongly encourage the clients in Japan, Korea, Taiwan and China to order via a distributor. Tough customs clearance regulations in these countries will cause delay in custom clearance of these perishable formulations if ordered directly through us. Distributors can easily clear the packages from customs. To see the list of the distributors click here.
  • Clients ordering from universities and research institutes in Australia should keep in mind that the liposome formulations are made from synthetic material and the formulations do not require a “permit to import quarantine material”. Liposomes are NOT biological products.
  • If you would like your institute’s FedEx or DHL account to be charged for shipping then please provide the account number at the time of ordering.
  • Encapsula NanoSciences has no control over delays due to inclement weather or customs clearance delays. You will receive a FedEx or DHL tracking number once your order is confirmed. Contact FedEx or DHL in advance and make sure that the paperwork for customs is done on time. All subsequent shipping inquiries should be directed to Federal Express or DHL.

Storage and Shelf Life

Storage

m-Clodrosome® and m-Fluoroliposome® should always be stored at in the dark at 4°C, except when brought to room temperature for brief periods prior to animal dosing. DO NOT FREEZE. If the suspension is frozen, clodronate can be released from the liposomes thus limiting its effectiveness in depleting macrophages. ENS is not responsible for results generated by frozen product.

Shelf Life

m-Clodrosome® and m-Fluoroliposome® are made on daily basis. The batch that is shipped is manufactured on the same day. It is advised to use the products within 60 days of the manufacturing date.

References and background reading

1. Umezawa FA, Eto Y. Liposome targeting to mouse brain: mannose as a recognition marker. Biochemical and biophysical research communications. 1988 Jun 30;153(3):1038-44.

2. Polfliet MM, Goede PH, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK. A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system. J. Neuroimmunol. 2001 Jun 1;116(2):188–95.

3. Mönkkönen J, Liukkonen J, Taskinen M, Heath TD, Urtti A. Studies on liposome formulations for intra-articular delivery of clodronate. Journal of Controlled Release. 1995 Aug;35(2–3):145–54.

4. Sunderkötter C, Nikolic T, Dillon MJ, van Rooijen N, Stehling M, Drevets DA, Leenen P. Subpopulations of Mouse Blood Monocytes Differ in Maturation Stage and Inflammatory Response. J Immunol. 2004 Apr 1;172(7):4410–7.

5. Nagai H, Kuwahira I, Schwenke DO, Tsuchimochi H, Nara A, Ogura S, Sonobe T, Inagaki T, Fujii Y, Yamaguchi R, Wingenfeld L. Pulmonary macrophages attenuate hypoxic pulmonary vasoconstriction via β3AR/iNOS pathway in rats exposed to chronic intermittent hypoxia. PLoS One. 2015 Jul 1;10(7):e0131923.

6. Zhu Y, Soderblom C, Krishnan V, Ashbaugh J, Bethea JR, Lee JK. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiology of disease. 2015 Feb 28;74:114-25.

7. Yun MH, Davaapil H, Brockes JP. Recurrent turnover of senescent cells during regeneration of a complex structure. Elife. 2015;4:e05505.

8. Arwert EN, Harney AS, Entenberg D, Wang Y, Sahai E, Pollard JW, Condeelis JS. A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation. Cell reports. 2018 May 1;23(5):1239-48.

9. Ito T, Ishigami M, Matsushita Y, Hirata M, Matsubara K, Ishikawa T, Hibi H, Ueda M, Hirooka Y, Goto H, Yamamoto A. Secreted Ectodomain of SIGLEC-9 and MCP-1 Synergistically Improve Acute Liver Failure in Rats by Altering Macrophage Polarity. Scientific reports. 2017 Mar 8;7:44043.

10. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature neuroscience. 2013 Sep;16(9):1211.

11. Andreou K, Sarmiento Soto M, Allen D, Economopoulos V, de Bernardi A, Larkin J, Sibson NR. Anti-Inflammatory Microglia/Macrophages as a Potential Therapeutic Target in Brain Metastasis. Frontiers in oncology. 2017;7:251.

12. Alishekevitz D, Gingis-Velitski S, Kaidar-Person O, Gutter-Kapon L, Scherer SD, Raviv Z, Merquiol E, Ben-Nun Y, Miller V, Rachman-Tzemah C, Timaner M. Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell reports. 2016 Oct 25;17(5):1344-56.

13. Oh SH, Kim HN, Park HJ, Shin JY, Bae EJ, Sunwoo MK, Lee SJ, Lee PH. Mesenchymal stem cells inhibit transmission of α-synuclein by modulating clathrin-mediated endocytosis in a Parkinsonian model. Cell reports. 2016 Feb 2;14(4):835-49.

14. Kano F, Matsubara K, Ueda M, Hibi H, Yamamoto A. Secreted Ectodomain of Sialic Acid‐Binding Ig‐Like Lectin‐9 and Monocyte Chemoattractant Protein‐1 Synergistically Regenerate Transected Rat Peripheral Nerves by Altering Macrophage Polarity. STEM CELLS. 2017 Mar 1;35(3):641-53.

蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
鱼类白介素1α(IL-1α)定量试剂盒检测样:血清、血浆、组织匀浆液和细胞液等液体检测量:50微升-100微升elisa技术操作简单、快速、敏感性高、特异性强 厂家特色:提供免费鱼类白介素1α(IL-1α)定量试剂盒代测服务试剂盒保存:收到试剂盒后保存于-20℃。试剂盒实验:定性/定量分析 鱼类白介素1α(IL-1α)定量试剂盒里面的酶标板可以拆卸,需要多少拆卸多少。 989-51-5 表没食子儿茶素没食子酸酯标准品115909-22- 查看更多>
人脾脏酪氨酸激酶Syk定量试剂盒检测样:血清、血浆、组织匀浆液和细胞液等液体检测量:50微升-100微升elisa技术操作简单、快速、敏感性高、特异性强 厂家特色:提供免费人脾脏酪氨酸激酶Syk定量试剂盒代测服务试剂盒保存:收到试剂盒后保存于-20℃。试剂盒实验:定性/定量分析 人脾脏酪氨酸激酶Syk定量试剂盒里面的酶标板可以拆卸,需要多少拆卸多少。 人骨保护素OPG,elisa,进口试剂盒大鼠脱氢表雄酮S7(DHEA-S7)试剂盒操作 查看更多>
产品描述1.准确灵敏, 线性范围广,BCA试剂的蛋白质测定范围是20-2000ug/ml。2.快速:45分钟内完成测定,比经典的Lowry法快4倍而且更加方便。3.经济实用:在微孔板中进行测定,可大大节约样品和试剂用量。4.不受样品中离子型和非离子型去污剂影响。5.检测不同蛋白质分子的变异系数远小于考马斯亮蓝法蛋白定量。保存条件: BCA试剂 A, B 室温保存,蛋白标准品-20℃保存... 查看更多>
v:* {behavior:url(#default#VML);}o:* {behavior:url(#default#VML);}w:* {behavior:url(#default#VML);}.shape {behavior:url(#default#VML);}st1:*{behavior:url(#ieoo 查看更多>
人促胰液素/胰泌素(Secretin)定量试剂盒检测样:血清、血浆、组织匀浆液和细胞液等液体检测量:50微升-100微升elisa技术操作简单、快速、敏感性高、特异性强 厂家特色:提供免费人促胰液素/胰泌素(Secretin)定量试剂盒代测服务试剂盒保存:收到试剂盒后保存于-20℃。试剂盒实验:定性/定量分析 人促胰液素/胰泌素(Secretin)定量试剂盒里面的酶标板可以拆卸,需要多少拆卸多少。 小鼠神经营养因子3NT-3ELISA检 查看更多>
2020-03-03
北京百泰克生物技术有限公司在发布的Bradford法蛋白定量试剂盒供应信息,浏览与Bradford法蛋白定量试剂盒相关的产品或在搜索更多与Bradford法蛋白定量试剂盒相关的内容。 查看更多>
v:* {behavior:url(#default#VML);}o:* {behavior:url(#default#VML);}w:* {behavior:url(#default#VML);}.shape {behavior:url(#default#VML);}st1:*{behavior:url(#ieoo 查看更多>
Enzyme-linked Immunosorbent Assays (ELISAs) combine the specificity of antibodies with the sensitivity of simple enzyme assays, by using antibodies or antigens 查看更多>
武汉科昊佳生物科技有限公司在发布的染料法荧光定量试剂盒SYBR Premix Ex Taq;TAKARA:DRR041A供应信息,浏览与染料法荧光定量试剂盒SYBR Premix Ex Taq;TAKARA:DRR041A相关的产品或在搜索更多与染料法荧光定量试剂盒SYBR Premix Ex Taq;TAKARA:DRR041A相关的内容。 查看更多>
v:* {behavior:url(#default#VML);}o:* {behavior:url(#default#VML);}w:* {behavior:url(#default#VML);}.shape {behavior:url(#default#VML);}st1:*{behavior:url(#ieoo 查看更多>
v:* {behavior:url(#default#VML);}o:* {behavior:url(#default#VML);}w:* {behavior:url(#default#VML);}.shape {behavior:url(#default#VML);}st1:*{behavior:url(#ieoo 查看更多>
2019-03-18
BCA(bicinchoninic acid)法蛋白浓度定量试剂盒是在世界上常用的蛋白浓度检测方法BCA法基础上改进而成。众所周知,二价铜离子在碱性的条件下,可以被蛋白质还原成一价铜离子(biuret reaction),一价铜离子和独特的BCA Solution A(含有BCA)相互作用产生敏感的颜色反应。两分子的BCA螯合一个铜离子,形成紫色的反应复合物。该水溶性的复合物在562nm处显示强烈的吸光性,吸光度和蛋白浓度在广泛范围内有... 查看更多>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
蛋白定量 ( BCA)试剂盒123
俺样最高VE2018-03-25
用杭州昊鑫生物独家代理的艾德莱BCA蛋白定量试剂盒比较好
1.步骤简单,45分钟内完成测定,比经典Lowry法快4倍而且更加方便。
2.灵敏度高,检测浓度下限达到25μg/ml,最小检测蛋白量达到0.5μg,待测样品体积为1-20μl 。
3.BCA法测定蛋白浓度不受绝大部分样品中的去污剂等化学物质的影响,可以兼容样品中高达5%的SDS,5%的Triton X-100,5%的Tween 20,60,80。
4.在20-2000μg/ml浓度范围内有良好的线性关系。
5.检测不同蛋白质分子的变异系数远小于考马斯亮蓝法蛋白定量。
请教国产的HBVDNA定量试剂盒1IU等于多少拷贝?到底是5.6还是1?
考虑英骏的荧光染料,不贵价格有点贵。
丙肝的核酸定量检测试剂盒哪个好
两个意义不一样啊,定性是确定你抗体是阴还是阳的,如果阳证明2个情况,一个是你感染了丙肝病毒,另一个是你曾经感染过这个病毒,现在已经好了。但是到底是哪个情况还要进一步做定量测试既病毒RNA检测。如果这个测试值在最低线以下就证明你现在没事,不具有传染性也不是患者只是携带者;如果高于最低线那你就是患者了,就需要治疗
如果你想做荧光定量PCR的根据实验思路来说应该需要一下试剂和仪器
1.模板提取(一般为RNA):Trizol、氯仿、异丙醇、无水乙醇、DEPC处理水

2.模板浓度测定:分光光度计或NanoDrop

3.逆转录:逆转录试剂盒(或者一步法试剂盒),这一步可以用普通PCR做,也可以用水域做。

4.荧光定量PCR试剂:通常有用SYBR Green Mix做的,但是这里建议你用EvaGreen做,灵敏度和平行性都要好于SYBR Green,并且如果你那是ABI或者Stratagene的PCR如果用SYBR Green还需要加一步Rox很麻烦。

5.其他:除了以上的那些还需要离心管、PCR管或板(Axygen反应比较好)、移液枪等,暂时就想到这么多。
请问哪里可买到二肽酶DPPIV和GLP-1定量试剂盒.急,
谢谢谢
如果你想做荧光定量PCR的根据实验思路来说应该需要一下试剂和仪器模板提取(一般为RNA):Trizol、氯仿、异丙醇、无水乙醇、DEPC处理水2.模板浓度测定:分光光度计或NanoDrop

3.逆转录:逆转录试剂盒(或者一步法试剂盒),这一步可以用普通PCR做,也可以用水域做。
4.荧光定量PCR试剂:通常有用SYBR Green Mix做的,但是这里建议你用EvaGreen做,灵敏度和平行性都要好于SYBR Green,并且如果你那是ABI或者Stratagene的PCR如果用SYBR Green还需要加一步Rox很麻烦。
5.其他:除了以上的那些还需要离心管、PCR管或板(Axygen反应比较好)、移液枪等,暂时就想到这么多。
如何选择实时荧光定量的试剂盒好加入荧光标记探针,巧妙地把核算扩增、杂交、光谱分析和实时检测技术结合在一起,借助于荧光信号来检测PCR产物。一方面提高了灵敏度,另一方面还可以做到PCR每循环一次就收集一个数据,建立实时扩增曲线,准确地确定CT值,从而根据CT值确定起始DNA的拷贝数,做到真正意义上的DNA定量。另外由于CT值是一个完全客观的参数,CT值越小,模版DNA的起始拷贝数越小。因此,利用CT值确定DNA拷贝数实时PCR方法比普通终点定量方法更加准确
试剂盒组成123
晓_5452018-03-31
完整的ELISA试剂盒包含以下各组分:
(1)已包被抗原或抗体的固相载体(免疫吸附剂);
(2)酶标记的抗原或抗体(结合物);
(3)酶的底物;
(4)阴性对照品和阳性对照品(定性测定中),参考标准品和控制血清(定量测定中);
(5)结合物及标本的稀释液;
(6)洗涤液,在板式ELISA中,常用的稀释液为含0.05%吐温20磷酸缓冲盐水;
(7)酶反应终止液,常用的HRP反应终止液为硫酸,其浓度按加量及比色液的最终体积而异,在板式ELISA中一般采用3mol/L。向左转|向右转
要求定量的试剂盒,由于是本人自己出费用,最好质优价廉的,要是不能还是要保证质量,请大家推荐下!谢谢
中华人民共和国国家卫生和计划生育委员会2013年的《临床实验室对商品定量试剂盒分析性能的验证》,有需要的战友自行下载。

临床实验室对商品定量试剂盒分析性能的验证.pdf(17431.6k)