
870273 | 18:1 Biotinyl Cap PE
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (sodium salt)

18:1 Biotinyl Cap PE
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (sodium salt)
- ChemDraw File
- 3D Structure
- Structure
- Safety Data Sheet
Olżyńska A, Kulig W, Mikkolainen H, Czerniak T, Jurkiewicz P, Cwiklik L, Rog T, Hof M, Jungwirth P, Vattulainen I. Tail-Oxidized Cholesterol Enhances Membrane Permeability for Small Solutes. Langmuir. 2020 Aug 28. doi: 10.1021/acs.langmuir.0c01590. Epub ahead of print. PMID: 32804507.
PubMed ID: 32804507Alberdi L, Vergnes A, Manneville JB, Tembo DL, Fang Z, Zhao Y, Schroeder N, Dumont A, Lagier M, Bassereau P, Redondo-Morata L, Gorvel JP, Méresse S. Regulation of kinesin-1 activity by the Salmonella enterica effectors PipB2 and SifA. J Cell Sci. 2020 May 14;133(9):jcs239863. doi: 10.1242/jcs.239863. PMID: 32409568.
PubMed ID: 32409568Cao F, Zhou Y, Liu X, Yu CH. Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane. Commun Biol. 2020 Mar 13;3(1):117. doi: 10.1038/s42003-020-0843-2. PMID: 32170110; PMCID: PMC7070051.
PubMed ID: 32170110Lamichhane R, Liu JJ, White KL, Katritch V, Stevens RC, Wüthrich K, Millar DP. Biased Signaling of the G-Protein-Coupled Receptor β2AR Is Governed by Conformational Exchange Kinetics. Structure. 2020 Jan 23:S0969-2126(20)30001-0. doi: 10.1016/j.str.2020.01.001. Epub ahead of print. PMID: 31978323.
PubMed ID: 31978323Zhang DKY, Cheung AS, Mooney DJ. Activation and expansion of human T cells using artificial antigen-presenting cell scaffolds. Nat Protoc. 2020 Jan 13:10.1038/s41596-019-0249-0. doi: 10.1038/s41596-019-0249-0. Epub ahead of print. PMID: 31932772.
PubMed ID: 31932772Pyrpassopoulos S, Shuman H, Ostap EM. Modulation of Kinesin"s Load-Bearing Capacity by Force Geometry and the Microtubule Track. Biophys J. 2020 Jan 7;118(1):243-253. doi: 10.1016/j.bpj.2019.10.045. Epub 2019 Dec 12. PMID: 31883614; PMCID: PMC6952184.
PubMed ID: 31883614Tsemperouli M, Amstad E, Sakai N, Matile S, Sugihara K. Black Lipid Membranes: Challenges in Simultaneous Quantitative Characterization by Electrophysiology and Fluorescence Microscopy. Langmuir. 2019 Jul 2;35(26):8748-8757. doi: 10.1021/acs.langmuir.9b00673. Epub 2019 Jun 20.
PubMed ID: 31244250Scarborough EA, Davis TN, Asbury CL. Tight bending of the Ndc80 complex provides intrinsic regulation of its binding to microtubules. Elife. 2019 May 2;8. pii: e44489. doi: 10.7554/eLife.44489.
PubMed ID: 31045495Kubicek-Sutherland JZ, Vu DM, Noormohamed A, Mendez HM, Stromberg LR, Pedersen CA, Hengartner AC, Klosterman KE, Bridgewater HA, Otieno V, Cheng Q, Anyona SB, Ouma C, Raballah E, Perkins DJ, McMahon BH, Mukundan H. Direct detection of bacteremia by exploiting host-pathogen interactions of lipoteichoic acid and lipopolysaccharide. Sci Rep. 2019 Apr 17;9(1):6203. doi: 10.1038/s41598-019-42502-5.
PubMed ID: 30996333Coker HLE, Cheetham MR, Kattnig DR, Wang YJ, Garcia-Manyes S, Wallace MI. Controlling Anomalous Diffusion in Lipid Membranes. Biophys J. 2019 Mar 19;116(6):1085-1094. doi: 10.1016/j.bpj.2018.12.024. Epub 2019 Jan 16.
PubMed ID: 30846364Colin-York H, Javanmardi Y, Skamrahl M, Kumari S, Chang VT, Khuon S, Taylor A, Chew TL, Betzig E, Moeendarbary E, Cerundolo V, Eggeling C, Fritzsche M. Cytoskeletal Control of Antigen-Dependent T Cell Activation. Cell Rep. 2019 Mar 19;26(12):3369-3379.e5. doi: 10.1016/j.celrep.2019.02.074.
PubMed ID: 30893608Emilsson G, Röder E, Malekian B, Xiong K, Manzi J, Tsai FC, Cho NJ, Bally M, Dahlin A. Nanoplasmonic Sensor Detects Preferential Binding of IRSp53 to Negative Membrane Curvature. Front Chem. 2019 Feb 4;7:1. doi: 10.3389/fchem.2019.00001. eCollection 2019.
PubMed ID: 30778383Di Iorio D, Verheijden ML, van der Vries E, Jonkheijm P, Huskens J. Weak Multivalent Binding of Influenza Hemagglutinin Nanoparticles at a Sialoglycan-Functionalized Supported Lipid Bilayer. ACS Nano. 2019 Mar 12. doi: 10.1021/acsnano.8b09410. [Epub ahead of print]
PubMed ID: 30844236Chen A, Yang D, Xuan X, Miller H, Luo X, Yu J, Yang G, Wang H, Liu C. Dock5 controls the peripheral B cell differentiation via regulating BCR signaling and actin reorganization. Cell Immunol. 2019 Mar;337:15-21. doi: 10.1016/j.cellimm.2019.01.001. Epub 2019 Jan 11.
PubMed ID: 30661670Wan Z, Shao X, Ji X, Dong L, Wei J, Xiong Z, Liu W, Qi H. Transmembrane domain-mediated Lck association underlies bystander and costimulatory ICOS signaling. Cell Mol Immunol. 2018 Dec 6. doi: 10.1038/s41423-018-0183-z. [Epub ahead of print]
PubMed ID: 30523347Sathyanarayanan G, Haapala M, Sikanen T. Interfacing Digital Microfluidics with Ambient Mass Spectrometry Using SU-8 as Dielectric Layer. Micromachines (Basel). 2018 Dec 8;9(12). pii: E649. doi: 10.3390/mi9120649.
PubMed ID: 30544772Yu Y, Gao Y, Yu Y. "Waltz" of Cell Membrane-Coated Nanoparticles on Lipid Bilayers: Tracking Single Particle Rotation in Ligand-Receptor Binding. ACS Nano. 2018 Nov 13. doi: 10.1021/acsnano.8b04880. [Epub ahead of print]
PubMed ID: 30421608Amadei F, Fröhlich B, Stremmel W, Tanaka M. Non-Classical Interactions of Phosphatidylcholine with Mucin Protect Intestinal Surfaces: A Microinterferometry Study. Langmuir. 2018 Oct 25. doi: 10.1021/acs.langmuir.8b03035. [Epub ahead of print]
PubMed ID: 30359036Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano. 2018 Jul 10. doi: 10.1021/acsnano.8b02053. [Epub ahead of print]
PubMed ID: 29975503Wang M, Liu Z, Zhan W. Janus Liposomes: Gel-Assisted Formation and Bioaffinity-Directed Clustering. Langmuir. 2018 Jun 12. doi: 10.1021/acs.langmuir.8b00798. [Epub ahead of print]
PubMed ID: 29852065Liu, C., H. Miller, K.L. Hui, B. Grooman, S. Bolland, A. Upadhyaya, and W. Song. (2011). A balance of Bruton"s tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodeling. J Immunol 187:230-9.
PubMed ID: 21622861Liu, C., H. Miller, G. Orlowski, H. Hang, A. Upadhyaya, and W. Song. (2012). Actin reorganization is required for the formation of polarized B cell receptor signalosomes in response to both soluble and membrane-associated antigens. J Immunol 188:3237-46.
PubMed ID: 22387556Phase Composition Control in Microsphere-Supported Biomembrane Systems Eric S. Fried, Yue-ming Li, and Malcolm Lane Gilchrist Langmuir, Just Accepted Manuscript DOI: 10.1021/acs.langmuir.6b04150 Publication Date (Web): February 15, 2017 Copyright © 2017 American Chemical Society
PubMed ID: 28198634Maria J. Sarmento, Ana Coutinho, Aleksander Fedorov, Manuel Prieto, and Fabio Fernandes. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P2 and PI(4,5)P2. Langmuir. Article ASAP.
PubMed ID: 28961003Shindell O, Mica N, Cheng KH, Wang E, Gordon VD. Dynamic Fingering in Adhered Lipid Membranes. Langmuir. 2018 Feb 7. doi: 10.1021/acs.langmuir.7b03708. [Epub ahead of print]
PubMed ID: 29363972- Certificate of Analysis(Lot No. 870273C-200MG-A-064and 6177PNA064)
- Certificate of Analysis(Lot No. 870273C-25MG-A-063and 6177CJA063)
- Certificate of Analysis(Lot No. 870273P-200MG-A-064and 6177PNA064)
- Certificate of Analysis(Lot No. 870273P-25MG-A-063and 6177PJA063)
- Certificate of Analysis(Lot No. 870273C-25MG-A-064and 6177CJA064)
- Certificate of Analysis(Lot No. 870273P-200MG-B-064and 6177PNB064)
- Certificate of Analysis(Lot No. 870273P-25MG-A-064and 6177PJA064)
- Certificate of Analysis(Lot No. 870273P-25MG-A-065and 6177PJA065)
- Certificate of Analysis(Lot No. 870273C-25MG-A-065and 6177CJA065)
- Certificate of Analysis(Lot No. 870273P-25MG-B-065and 6177PJB065)
- Certificate of Analysis(Lot No. 870273P-25MG-C-065and 6177PJC065)
- Certificate of Analysis(Lot No. 870273C-25MG-B-065and 6177CJB065)
- Certificate of Analysis(Lot No. 870273C-25MG-B-064and 6177CJB064)
- Certificate of Analysis(Lot No. 870273P-25MG-D-065and 6177PJD065)
- Certificate of Analysis(Lot No. 870273P-25MG-E-065and 6177PJE065)
- Certificate of Analysis(Lot No. 870273C-25MG-A-066and 6177CJA066)
- Certificate of Analysis(Lot No. 870273C-25MG-D-066and 6177CJD066)
- Certificate of Analysis(Lot No. 870273C-25MG-E-066and 6177CJE066)
- Certificate of Analysis(Lot No. 870273P-25MG-B-066and 6177PJB066)
- Certificate of Analysis(Lot No. 870273C-25MG-F-066and 6177CJF066)
AvantiPolarLipids公司是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至吨级的磷脂类和甾体类中间体和试剂。为世界范围内的研究机构和制药公司提供1000种以上脂类产品,由于其产品的高纯度而享誉全球。40年来,AvantiPolarLipids公司为世界各地的研究人员和制药公司提供脂类产品。公司的产品不仅范围日益扩大,其纯度之高也是无人能及。 AvantiPolarLipids,Inc.,hasalonghistoryof50yearscreatingthehighestpuritylipidsavailable.Ourpassionforhighqualityanduniqueproductsisonlyexceededbyourexcellentreputationinthemarketplace. Althoughweareknownforourlipids,weareMorethanLipids.Weoffersolutionsfortheentireproductcycle…ResearchtoCommercialization. AvantiPolarLipids公司的主要产品和服务包括:(1)ResearchProductsHighestPurityLipidReagents(2)cGMPManufacturingAPI&ContractManufacturing(3)AdjuvantsImmunotherapy&VaccineDevelopment(4)AnalyticalServicesLipidAnalysis(5)LipidomicsMassSpecStandards,Antibodies&LipidToolbox(6)Formulationsliposomes&Nanoparticles(7)EquipmentLiposomeProductionTools(8)CustomServicesSynthesis&Beyond
AvantiPolarLipids是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至吨级的磷脂类和甾体类中间体和试剂。为世界范围内的研究机构和制药公司提供1000种以上脂类产品,由于其产品的高纯度而享誉全球。40年来,AvantiPolarLipids公司为世界各地的研究人员和制药公司提供脂类产品。公司的产品不仅范围日益扩大,其纯度之高也是无人能及。
AvantiPolarLipidsInc,是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至百公斤级的磷脂类和甾体类中间体和试剂。主要产品Naturalsphingolipids天然鞘脂类Naturalphospholipids天然磷脂类Naturallipidsbyextraction天然提取脂类Referencestandards相关标准品Syntheticsphingolipids合成鞘脂类--Sphingosines&S-1-P鞘氨醇和鞘氨醇-1-磷酸盐--Ceramides神经酰胺--Sphingomyelins鞘磷脂--Sphingosine&ceramidederivatives鞘氨醇及神经酰胺衍生物--Sphinganine&derivatives鞘氨醇及其衍生物--C17sphingolipids十七碳鞘脂类--C20sphingolipids二十碳鞘脂类--Phytosphingosine&derivatives植物鞘氨醇及其衍生物Syntheticlipids&phospholipids合成脂质与磷脂--PC卵磷脂--PA磷脂酸--PE脑磷脂--PG磷脂酰甘油--PS磷脂酰丝氨酸--PI,PIP2&PIP3磷脂酰肌醇,磷脂酰肌醇-4,5-二磷酸,磷脂酰-3,4,5-三磷酸--CA胆酸--LysoPC溶源性卵磷脂--LysoPA溶源性磷脂酸--LysoPAAnalogues溶源性磷脂酸类似物--Lysobio-PA溶源性双磷脂酸--LysoPE,PG&PS溶源性脑磷脂,磷脂酰甘油和磷脂酰丝氨酸--AlkylPC烷基卵磷脂--Diether&Diphytanoyletherlipids二醚与二植烷醚脂质--PAF血小板活化因子--AcylPAFAnalog酰化血小板活化因子类似物--Brominatedphosphocholines溴代胆碱磷酸--Alkylphosphatederivatives烷基磷酸盐衍生物--Plasmalogen缩醛磷脂--Functionalizedlipids功能性脂类--Biotinylatedlipids生物素酰化脂质--Bioactivelipids生物活性脂类Syntheticphospholipids合成磷酸--AcylcoenzymeA乙酰辅酶A--Metabolicintermediates代谢中间产物--Adhesivelipid粘合脂质--pHsensitivelipids酸度计用脂质Transfectionreagents转染试剂Sterolderivatives甾酮衍生物Lipidblends混合脂质Glycosylatedphospholipids糖化磷脂Fluorinatedphospholipids氟化磷脂Chelators螯合剂Pre-mixedlipidsforbicelleformation构型分析用预混合脂质Diacylglycerols&analogues甘油二酯与类似物Deuteriumlabeledlipids氘标记脂质C13PC碳-13标记卵磷脂DoxylPC自旋标记卵磷脂TempoPCTempo(4-氧-4-羟-四甲基呱啶氮氧自由基)标记卵磷脂Fluoresecentsphingolipids荧光标记鞘脂类--Omegalabeled欧米加标记物--Fattyacidlabeled脂肪酸标记物Fluoresecentcholesterol荧光标记胆固醇Fluoresecentphospholipids荧光标记磷脂--Fattyacidlabeled脂肪酸标记物--Headgrouplabeled首基标记物Polymerizablelipids聚合脂质Poly(Ethyleneglycol)-lipidconjugates共轭聚脂质FunctionalizedPEGlipids功能PEG脂质Analyticalservices分析服务Drugdeliveryproduct药物运送载体Bulklipidsforpharmaceuticalproduction工业级脂质Equipment设备
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
我们使用了南京建成的胆固醇,甘油三酯和游离脂肪酸的试剂盒,样本为小鼠肝脏,试剂盒提供的步骤为使用生理盐水或者乙醇作为匀浆介质,3500rpm,10min;
然而我们发现生理盐水作为匀浆介质时,按此离心速度无法获得上清液;若加大离心速度以及延长离心时间,获得的上清液为白色,蛋白浓度检测出来浓度很高,效果十分不理想;若改为乙醇作为匀浆介质时,检测结果甘油三酯很高,游离脂肪酸浓度很低,不知是否涉及脂肪酯化的问题;
希望大家能给我提提建议,给点自己的妙招;或者是否有人提供好用的试剂盒?
1.我利用微乳法制备SLN,模型药物、三棕榈酸甘油酯、甘油、泊洛沙姆188,80度下融化,混合均匀,2000rpm搅拌状态下滴加1%PVA水相。冷却至室温时,表面有一层脂质析出。不断增加Lipid:surfacant的比例,当达到1:20时,当冷却至室温时,仍有脂质析出。
新人一枚,想问下各位大侠,有什么好的解决方案不?
在兔子上研究肝脏脂代谢,不知道什么细胞株合适,自己培养的担心不靠谱,不知道有没有做过这方面的,给提一些意见,感谢!

