
100500 | E. coli Extract Total
E. coli Total Lipid Extract
E. coli Extract Total
E. coli Total Lipid Extract

This product is an extract of E. coli B (ATCC 11303) grown in Kornberg Minimal media at 37°C and taken at 3/4 log growth phase.Total E. coli lipid extract is a chloroform:methanol extract of the respective tissue. This extract is partitioned against deionized water and the chloroform phase is concentrated. Polar lipid extract is the total lipid extract precipitated with acetone and then extracted with diethyl ether. Avanti does not perform any analytical procedures on this extract.
- Phospholipid Profile
- Safety Data Sheet
Roussel G, White SH. The SecA ATPase motor protein binds to Escherichia coli liposomes only as monomers. Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183358. doi: 10.1016/j.bbamem.2020.183358. Epub 2020 May 19. PMID: 32416191.
PubMed ID: 32416191Kotapati HK, Bates PD. Normal phase HPLC method for combined separation of both polar and neutral lipid classes with application to lipid metabolic flux. J Chromatogr B Analyt Technol Biomed Life Sci. 2020 May 15;1145:122099. doi: 10.1016/j.jchromb.2020.122099. Epub 2020 Apr 3. PMID: 32305707.
PubMed ID: 32305707Mercier E, Wintermeyer W, Rodnina MV. Co-translational insertion and topogenesis of bacterial membrane proteins monitored in real time. EMBO J. 2020 Apr 20:e104054. doi: 10.15252/embj.2019104054. Epub ahead of print. PMID: 32311161.
PubMed ID: 32311161Cancelarich NL, Wilke N, Fanani MAL, Moreira DC, Pérez LO, Alves Barbosa E, Plácido A, Socodato R, Portugal CC, Relvas JB, de la Torre BG, Albericio F, Basso NG, Leite JR, Marani MM. Somuncurins: Bioactive Peptides from the Skin of the Endangered Endemic Patagonian Frog Pleurodema somuncurense. J Nat Prod. 2020 Apr 24;83(4):972-984. doi: 10.1021/acs.jnatprod.9b00906. Epub 2020 Mar 5. PMID: 32134261.
PubMed ID: 32134261Hesketh SJ, Klebl DP, Higgins AJ, Thomsen M, Pickles IB, Sobott F, Sivaprasadarao A, Postis VLG, Muench SP. Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation. Biochim Biophys Acta Biomembr. 2020 Jan 13:183192. doi: 10.1016/j.bbamem.2020.183192. Epub ahead of print. PMID: 31945320.
PubMed ID: 31945320Knyazev DG, Kuttner R, Bondar AN, Zimmerman M, Siligan C, Pohl P. Voltage Sensing in Bacterial Protein Translocation. Biomolecules. 2020 Jan 3;10(1):E78. doi: 10.3390/biom10010078. PMID: 31947864.
PubMed ID: 31947864Nguyen PH, Sigdel KP, Schaefer KG, Mensah GAK, King GM, Roberts AG. The effects of anthracycline drugs on the conformational distribution of mouse P-glycoprotein explains their transport rate differences. Biochem Pharmacol. 2020 Jan 16;174:113813. doi: 10.1016/j.bcp.2020.113813. Epub ahead of print. PMID: 31954717.
PubMed ID: 31954717Brams M, Govaerts C, Kambara K, Price KL, Spurny R, Gharpure A, Pardon E, Evans GL, Bertrand D, Lummis SC, Hibbs RE, Steyaert J, Ulens C. Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT3 receptor via a common vestibule site. Elife. 2020 Jan 28;9:e51511. doi: 10.7554/eLife.51511. PMID: 31990273; PMCID: PMC7015668.
PubMed ID: 31990273Shi C, Öster C, Bohg C, Li L, Lange S, Chevelkov V, Lange A. Structure and Dynamics of the Rhomboid Protease GlpG in Liposomes Studied by Solid-State NMR. J Am Chem Soc. 2019 Oct 30;141(43):17314-17321. doi: 10.1021/jacs.9b08952. Epub 2019 Oct 16.
PubMed ID: 31603315Entova S, Guan Z, Imperiali B. Investigation of the conserved reentrant membrane helix in the monotopic phosphoglycosyl transferase superfamily supports key molecular interactions with polyprenol phosphate substrates. Arch Biochem Biophys. 2019 Oct 30;675:108111. doi: 10.1016/j.abb.2019.108111. Epub 2019 Sep 26.
PubMed ID: 31563509Pang SS, Bayly-Jones C, Radjainia M, Spicer BA, Law RHP, Hodel AW, Parsons ES, Ekkel SM, Conroy PJ, Ramm G, Venugopal H, Bird PI, Hoogenboom BW, Voskoboinik I, Gambin Y, Sierecki E, Dunstone MA, Whisstock JC. The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1. Nat Commun. 2019 Sep 19;10(1):4288. doi: 10.1038/s41467-019-12279-2.
PubMed ID: 31537793Deng X, Gonzalez Llamazares A, Wagstaff JM, Hale VL, Cannone G, McLaughlin SH, Kureisaite-Ciziene D, Löwe J. The structure of bactofilin filaments reveals their mode of membrane binding and lack of polarity. Nat Microbiol. 2019 Sep 9. doi: 10.1038/s41564-019-0544-0. [Epub ahead of print]
PubMed ID: 31501539Vernen F, Harvey PJ, Dias SA, Veiga AS, Huang YH, Craik DJ, Lawrence N, Troeira Henriques S. Characterization of Tachyplesin Peptides and Their Cyclized Analogues to Improve Antimicrobial and Anticancer Properties. Int J Mol Sci. 2019 Aug 26;20(17). pii: E4184. doi: 10.3390/ijms20174184.
PubMed ID: 31455019Öster C, Hendriks K, Kopec W, Chevelkov V, Shi C, Michl D, Lange S, Sun H, de Groot BL, Lange A. Sci Adv. 2019 Jul 31;5(7):eaaw6756. doi: 10.1126/sciadv.aaw6756. eCollection 2019 Jul. The conduction pathway of potassium channels is water free under physiological conditions.
PubMed ID: 31392272Wilson JS, Churchill-Angus AM, Davies SP, Sedelnikova SE, Tzokov SB, Rafferty JB, Bullough PA, Bisson C, Baker PJ. Identification and structural analysis of the tripartite α-pore forming toxin of Aeromonas hydrophila. Nat Commun. 2019 Jul 1;10(1):2900. doi: 10.1038/s41467-019-10777-x.
PubMed ID: 31263098Hsu ET, Vervacke JS, Distefano MD, Hrycyna CA. A Quantitative FRET Assay for the Upstream Cleavage Activity of the Integral Membrane Proteases Human ZMPSTE24 and Yeast Ste24. Methods Mol Biol. 2019;2009:279-293. doi: 10.1007/978-1-4939-9532-5_21.
PubMed ID: 31152411Aurora Pinazo, Ramon Pons, Marta Bustelo, María Ángeles Manresa, Carmen Morán, Miriam Raluy, Lourdes Pérez. Gemini histidine based surfactants: Characterization; surface properties and biological activity. Journal of Molecular Liquids. 2019 September 1; 289:111156. doi: 10.1016/j.molliq.2019.111156
Grāve K, Bennett MD, Högbom M. Structure of Mycobacterium tuberculosis phosphatidylinositol phosphate synthase reveals mechanism of substrate binding and metal catalysis. Commun Biol. 2019 May 8;2:175. doi: 10.1038/s42003-019-0427-1. eCollection 2019.
PubMed ID: 31098408Hossain F, Moghal MMR, Islam MZ, Moniruzzaman M, Yamazaki M. Membrane potential is vital for rapid permeabilization of plasma membranes and lipid bilayers by the antimicrobial peptide lactoferricin B. J Biol Chem. 2019 Jul 5;294(27):10449-10462. doi: 10.1074/jbc.RA119.007762. Epub 2019 May 22.
PubMed ID: 31118274Blevins MS, Klein DR, Brodbelt JS. Localization of Cyclopropane Modifications in Bacterial Lipids via 213 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem. 2019 May 21;91(10):6820-6828. doi: 10.1021/acs.analchem.9b01038. Epub 2019 May 3.
PubMed ID: 31026154Blevins MS, Klein DR, Brodbelt JS. Localization of Cyclopropane Modifications in Bacterial Lipids via 213 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem. 2019 May 3. doi: 10.1021/acs.analchem.9b01038. [Epub ahead of print]
PubMed ID: 31026154Nandigama K, Lusvarghi S, Shukla S, Ambudkar SV. Large-scale purification of functional human P-glycoprotein (ABCB1). Protein Expr Purif. 2019 Jul;159:60-68. doi: 10.1016/j.pep.2019.03.002. Epub 2019 Mar 6.
PubMed ID: 30851394Wilhelm MJ, Sharifian Gh M, Dai HL. Influence of molecular structure on passive membrane transport: A case study by second harmonic light scattering. J Chem Phys. 2019 Mar 14;150(10):104705. doi: 10.1063/1.5081720.
PubMed ID: 30876365Reif MM, Fischer M, Fredriksson K, Hagn F, Zacharias M. The N-Terminal Segment of the Voltage-Dependent Anion Channel: A Possible Membrane-Bound Intermediate in Pore Unbinding. J Mol Biol. 2019 Jan 18;431(2):223-243. doi: 10.1016/j.jmb.2018.09.015. Epub 2018 Oct 17.
PubMed ID: 30339869Haruyama T, Sugano Y, Kodera N, Uchihashi T, Ando T, Tanaka Y, Konno H, Tsukazaki T. Single-Unit Imaging of Membrane Protein-Embedded Nanodiscs from Two Oriented Sides by High-Speed Atomic Force Microscopy. Structure. 2019 Jan 2;27(1):152-160.e3. doi: 10.1016/j.str.2018.09.005. Epub 2018 Oct 11.
PubMed ID: 30318467Overall SA, Zhu S, Hanssen E, Separovic F, Sani MA. In Situ Monitoring of Bacteria under Antimicrobial Stress Using 31P Solid-State NMR. Int J Mol Sci. 2019 Jan 6;20(1). pii: E181. doi: 10.3390/ijms20010181.
PubMed ID: 30621328Young J, Duong F. Investigating the stability of the SecA-SecYEG complex during protein translocation across the bacterial membrane. J Biol Chem. 2019 Mar 8;294(10):3577-3587. doi: 10.1074/jbc.RA118.006447. Epub 2019 Jan 2.
PubMed ID: 30602566Berry T, Dutta D, Chen R, Leong A, Wang H, Donald WA, Parviz M, Cornell B, Willcox M, Kumar N, Cranfield CG. The lipid membrane interactions of the cationic antimicrobial peptide chimeras melimine and cys-melimine. Langmuir. 2018 Aug 17. doi: 10.1021/acs.langmuir.8b01701. [Epub ahead of print]
PubMed ID: 30119612Stuart, L.J., Buck, J.P., Tremblay, A.E., Buist, P.H. (2006) Configurational analysis of cyclopropyl fatty acids isolated from Escherichia coli. Org Lett. 8:79-81
PubMed ID: 16381572Newman, M.J. & Wilson, T.H. (1980) Solubilization and Reconsitution of the Lactose Transport System from Escherichia coli.J. Biol. Chem. 255:10583-10586.Kagawa, Y. & Rackeer E. (1971)Partial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation. J. Biol. Chem. 246:5477-5487.Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry, Giuseppe Paglia & Giuseppe Astarita Nature Protocols 12, 797-813 (2017) doi:10. 1038/nprot.2017.013
PubMed ID: 28301461- Certificate of Analysis(Lot No. 100500P-100MG-A-181and 5001PLA181)
- Certificate of Analysis(Lot No. 100500P-1G-A-181and 5001PQA181)
- Certificate of Analysis(Lot No. 100500C-100MG-A-182and 5001CLA182)
- Certificate of Analysis(Lot No. 100500P-500MG-A-182and 5001PPA182)
- Certificate of Analysis(Lot No. 10500C-500MG-A-182and 5001CPA182)
- Certificate of Analysis(Lot No. 100500C-1G-A-183and 5001CQA183)
- Certificate of Analysis(Lot No. 100500P-1G-A-182and 5001PQA182)
- Certificate of Analysis(Lot No. 100500P-1G-A-184and 5001PQA184)
- Certificate of Analysis(Lot No. 100500C-100MG-A-183and 5001CLA183)
- Certificate of Analysis(Lot No. 100500P-1G-B-184and 5001PQB184)
- Certificate of Analysis(Lot No. 100500P-100MG-A-186and 5001PLA186)
- Certificate of Analysis(Lot No. 100500P-500MG-A-186and 5001PPA186)
- Certificate of Analysis(Lot No. 100500C-1G-A-188and 5001CQA188)
- Certificate of Analysis(Lot No. 100500P-500MG-A-188and 5001PPA188)
- Certificate of Analysis(Lot No. 100500P-100MG-A-188and 5001PLA188)
- Certificate of Analysis(Lot No. 100500P-100MG-B-188and 5001PLB188)
- Certificate of Analysis(Lot No. 100500C-500MG-A-188and 5001CPA188)
- Certificate of Analysis(Lot No. 100500C-100MG-B-188and 5001CLB188)
- Certificate of Analysis(Lot No. 100500C-100MG-C-188and 5001CLC188)
- Certificate of Analysis(Lot No. 100500P-100MG-C-188and 5001PLC188)
- Certificate of Analysis(Lot No. 100500P-1G-A-188and 5001PQA188)
- Certificate of Analysis(Lot No. 100500P-500MG-B-188and 5001PPB188)
- Certificate of Analysis(Lot No. 100500C-1G-A-189and 5001CQA189)
- Certificate of Analysis(Lot No. 100500C-100MG-A-189and 5001CLA189)
- Certificate of Analysis(Lot No. 100500P-100MG-A-189and 5001PLA189)
- Certificate of Analysis(Lot No. 100500P-500MG-A-189and 5001PPA189)
- Certificate of Analysis(Lot No. 100500P-100MG-B-189and 5001PLB189)
- Certificate of Analysis(Lot No. 100500P-500MG-A-190and 5001PPA190)
- Certificate of Analysis(Lot No. 100500C-100MG-A-190and 5001CLA190)
- Certificate of Analysis(Lot No. 100500P-100MG-A-190and 5001PLA190)
- Certificate of Analysis(Lot No. 100500P-100MG-A-191and 5001PLA191)
- Certificate of Analysis(Lot No. 100500C-500MG-A-191and 5001CPA191)
- Certificate of Analysis(Lot No. 100500P-100MG-B-191and 5001PLB191)
- Certificate of Analysis(Lot No. 100500P-1G-A-192and 5001PQA192)
- Certificate of Analysis(Lot No. 100500C-100MG-A-191and 5001CLA191)
- Certificate of Analysis(Lot No. 100500P-1G-A-193and 5001PQA193)
- Certificate of Analysis(Lot No. 100500P-1G-A-194and 5001PQA194)
- Certificate of Analysis(Lot No. 100500P-1G-B-194and 5001PQB194)
- Certificate of Analysis(Lot No. 100500C-500MG-A-194and 5001CPA194)
- Certificate of Analysis(Lot No. 100500P-1G-C-194and 5001PQC194)
- Certificate of Analysis(Lot No. 100500P-1G-A-197and 5001PQA197)
- Certificate of Analysis(Lot No. 100500P-1G-A-195and 5001PQA195)
- Certificate of Analysis(Lot No. 100500P-1G-B-197and 5001PQB197)
- Certificate of Analysis(Lot No. 100500C-500MG-A-199and 5001CPA199)
- Certificate of Analysis(Lot No. 100500P-1G-C-201and 5001PQC201)
- Certificate of Analysis(Lot No. 100500P-1G-B-201and 5001PQB201)
- Certificate of Analysis(Lot No. 100500P-1G-A-201and 5001PQA201)
- Certificate of Analysis(Lot No. 100500P-100MG-A-204and 5001PLA204)
- Certificate of Analysis(Lot No. 100500P-500MG-A-205and 5001PPA205)
- Certificate of Analysis(Lot No. 100500C-100MG-A-204and 5001CLA204)
- Certificate of Analysis(Lot No. 100500 P 100 MG A 205and 5001PLA205)
AvantiPolarLipids公司是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至吨级的磷脂类和甾体类中间体和试剂。为世界范围内的研究机构和制药公司提供1000种以上脂类产品,由于其产品的高纯度而享誉全球。40年来,AvantiPolarLipids公司为世界各地的研究人员和制药公司提供脂类产品。公司的产品不仅范围日益扩大,其纯度之高也是无人能及。 AvantiPolarLipids,Inc.,hasalonghistoryof50yearscreatingthehighestpuritylipidsavailable.Ourpassionforhighqualityanduniqueproductsisonlyexceededbyourexcellentreputationinthemarketplace. Althoughweareknownforourlipids,weareMorethanLipids.Weoffersolutionsfortheentireproductcycle…ResearchtoCommercialization. AvantiPolarLipids公司的主要产品和服务包括:(1)ResearchProductsHighestPurityLipidReagents(2)cGMPManufacturingAPI&ContractManufacturing(3)AdjuvantsImmunotherapy&VaccineDevelopment(4)AnalyticalServicesLipidAnalysis(5)LipidomicsMassSpecStandards,Antibodies&LipidToolbox(6)Formulationsliposomes&Nanoparticles(7)EquipmentLiposomeProductionTools(8)CustomServicesSynthesis&Beyond
AvantiPolarLipids是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至吨级的磷脂类和甾体类中间体和试剂。为世界范围内的研究机构和制药公司提供1000种以上脂类产品,由于其产品的高纯度而享誉全球。40年来,AvantiPolarLipids公司为世界各地的研究人员和制药公司提供脂类产品。公司的产品不仅范围日益扩大,其纯度之高也是无人能及。
AvantiPolarLipidsInc,是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至百公斤级的磷脂类和甾体类中间体和试剂。主要产品Naturalsphingolipids天然鞘脂类Naturalphospholipids天然磷脂类Naturallipidsbyextraction天然提取脂类Referencestandards相关标准品Syntheticsphingolipids合成鞘脂类--Sphingosines&S-1-P鞘氨醇和鞘氨醇-1-磷酸盐--Ceramides神经酰胺--Sphingomyelins鞘磷脂--Sphingosine&ceramidederivatives鞘氨醇及神经酰胺衍生物--Sphinganine&derivatives鞘氨醇及其衍生物--C17sphingolipids十七碳鞘脂类--C20sphingolipids二十碳鞘脂类--Phytosphingosine&derivatives植物鞘氨醇及其衍生物Syntheticlipids&phospholipids合成脂质与磷脂--PC卵磷脂--PA磷脂酸--PE脑磷脂--PG磷脂酰甘油--PS磷脂酰丝氨酸--PI,PIP2&PIP3磷脂酰肌醇,磷脂酰肌醇-4,5-二磷酸,磷脂酰-3,4,5-三磷酸--CA胆酸--LysoPC溶源性卵磷脂--LysoPA溶源性磷脂酸--LysoPAAnalogues溶源性磷脂酸类似物--Lysobio-PA溶源性双磷脂酸--LysoPE,PG&PS溶源性脑磷脂,磷脂酰甘油和磷脂酰丝氨酸--AlkylPC烷基卵磷脂--Diether&Diphytanoyletherlipids二醚与二植烷醚脂质--PAF血小板活化因子--AcylPAFAnalog酰化血小板活化因子类似物--Brominatedphosphocholines溴代胆碱磷酸--Alkylphosphatederivatives烷基磷酸盐衍生物--Plasmalogen缩醛磷脂--Functionalizedlipids功能性脂类--Biotinylatedlipids生物素酰化脂质--Bioactivelipids生物活性脂类Syntheticphospholipids合成磷酸--AcylcoenzymeA乙酰辅酶A--Metabolicintermediates代谢中间产物--Adhesivelipid粘合脂质--pHsensitivelipids酸度计用脂质Transfectionreagents转染试剂Sterolderivatives甾酮衍生物Lipidblends混合脂质Glycosylatedphospholipids糖化磷脂Fluorinatedphospholipids氟化磷脂Chelators螯合剂Pre-mixedlipidsforbicelleformation构型分析用预混合脂质Diacylglycerols&analogues甘油二酯与类似物Deuteriumlabeledlipids氘标记脂质C13PC碳-13标记卵磷脂DoxylPC自旋标记卵磷脂TempoPCTempo(4-氧-4-羟-四甲基呱啶氮氧自由基)标记卵磷脂Fluoresecentsphingolipids荧光标记鞘脂类--Omegalabeled欧米加标记物--Fattyacidlabeled脂肪酸标记物Fluoresecentcholesterol荧光标记胆固醇Fluoresecentphospholipids荧光标记磷脂--Fattyacidlabeled脂肪酸标记物--Headgrouplabeled首基标记物Polymerizablelipids聚合脂质Poly(Ethyleneglycol)-lipidconjugates共轭聚脂质FunctionalizedPEGlipids功能PEG脂质Analyticalservices分析服务Drugdeliveryproduct药物运送载体Bulklipidsforpharmaceuticalproduction工业级脂质Equipment设备
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
我们使用了南京建成的胆固醇,甘油三酯和游离脂肪酸的试剂盒,样本为小鼠肝脏,试剂盒提供的步骤为使用生理盐水或者乙醇作为匀浆介质,3500rpm,10min;
然而我们发现生理盐水作为匀浆介质时,按此离心速度无法获得上清液;若加大离心速度以及延长离心时间,获得的上清液为白色,蛋白浓度检测出来浓度很高,效果十分不理想;若改为乙醇作为匀浆介质时,检测结果甘油三酯很高,游离脂肪酸浓度很低,不知是否涉及脂肪酯化的问题;
希望大家能给我提提建议,给点自己的妙招;或者是否有人提供好用的试剂盒?
1.我利用微乳法制备SLN,模型药物、三棕榈酸甘油酯、甘油、泊洛沙姆188,80度下融化,混合均匀,2000rpm搅拌状态下滴加1%PVA水相。冷却至室温时,表面有一层脂质析出。不断增加Lipid:surfacant的比例,当达到1:20时,当冷却至室温时,仍有脂质析出。
新人一枚,想问下各位大侠,有什么好的解决方案不?
在兔子上研究肝脏脂代谢,不知道什么细胞株合适,自己培养的担心不靠谱,不知道有没有做过这方面的,给提一些意见,感谢!

