请使用支持JavaScript的浏览器! Dojindo/Mitophagy Detection Kit/Mtphagy/MD01_蚂蚁淘,【正品极速】生物医学科研用品轻松购|ebiomall 蚂蚁淘商城
商品信息
联系客服
Dojindo/Mitophagy Detection Kit/Mtphagy/MD01
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
Dojindo/Mitophagy Detection Kit/Mtphagy/MD01
品牌 / 
Dojindo
货号 / 
MD01
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616
DescriptionFCM & Microplate ReaderReferencesQ & AManual(MD01)Manual(MT02)S.D.S(MD01)S.D.S(MT02)

Mitophagy Detection Kit is optimized for mammalian cells.

Fluorescence of Mtphagy DyeMitochondria is one of the cytoplasmic organelle that plays a crucial role in cells such as production of energy for cell viability. Recently, Mitophagy appears to be related to Alzheimer and Parkinson disease induced by the accumulation of depolarized mitochondria. Mitophagy serves as a specific elimination system that dysfunctional mitochondria caused by oxidative stress and DNA damage are sequestered into autophagosome, fused to lysosome and degraded by digestion.This kit is composed of Mtphagy Dye, reagent for detection of mitophagy, and Lyso Dye. Mtphagy Dye accumulates in intact mitochondria, is immobilized on it with chemical bond and exhibits a weak fluorescence from the influence of surrounding condition. When Mitophagy is induced, the damaged mitochondria fuses to lysosome and then Mtphagy Dye emits a high fluorescence. To confirm the fusion of Mtphagy Dye–labeled mitochondria and lysosome, Lyso Dye included in this kit can be used.

E. Fang etc. detected tomatidine induced mitophagy in HeLa cells by using mt-mKeima. Mitophagy was also detected in both primary rat cortical neurons and human SH-SY5Y neural cells using our Mitophagy Detection Kit.3 Mitophagy Detection Kit would be a valid alternative method if protein expression/transfection is not ideal for the experiment.

For more information on Mtphagy Dye compositions and examples, please refer to the publication below:Iwashita H, Torii S, Nagahora N, Ishiyama M, Shioji K, Sasamoto K, Shimizu S, Okuma K. “Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule.“ACS Chem Biol, 2017, doi: 10.1021/acschembio.7b00647.Notes: Mtphagy Dye and Lyso Dye are Patent Pending.

Simple Procedure

Transfection procedure is not needed for mitophagy imaging.

Procedure of Mitophagy Detection Kit

Comparison with Autophagy Marker

Comparison with Autophagy Marker

CCCP(carbonyl cyanide m-chlorophenyl hydrazone) has been added to normal and Parkin expressed cells. The strong fluorescence was not observed in normal HeLa cells(A)(B). On the other hand, the trong fluorescence was shown in Parkin expressed cells in 18 hours after additon of CCCP(C). Some of the puncta are co-localized with the autophagy marker(GFP-LC3). In addition, suppressed fluorescence of Mtphagy dye was observed when autophagy inhibitor, bafilomycin was added to Parking expressed cells(D). Because lysosomal pH was increased by the additon of bafilomycin.

Mitophagy Detection in Starved Cells

Living HeLa cells are co-stained with Mtphagy Dye and Lyso Dye under mitophagy induced condition.Mitophagy Detection in Starved CellsMtphagy Dye was added to HeLa cells and the cells were incubated for 6 hours under starved condition. Before observation of the cells, lysosomal staining dye, Lyso Dye was added to HeLa cells. The fluorescent intensity of Mtphagy Dye was increased in the starved HeLa cells but not in normal cells. In addition, Mtphagy Dye was co-localized with Lyso Dye in the starved cells.

Experimental Example: Induction of Mitophagy by CCCP

Induction of mitophagy by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) as a mitochondrial-uncoupling reagent with Parkin expressed HeLa cells

HeLa cells were seeded on μ-slide 8 well (Ibidi) and cultured at 37oC overnight in a 5%-CO2 incubator. The cells were transfected with Parkin plasmid vector by HilyMax transfection reagent (Code#:H357), and incubated at 37oC overnight. The Parkin expressed HeLa cells were washed with Hanks’ HEPES buffer twice and then incubated at 37oC for 30 minutes with 250 μl of 100 nmol/l Mtphagy Dye working solution containing 100 nmol/l MitoBright Deep Red (Code#:MT08). After the washing of the cells with Hanks’ HEPES buffer twice, the culture medium containing 10 μmol/l CCCP was added to the well. After 24 hours incubation, mitophagy was observed by a fluorescence microscopy. After removing the supernatant, 250 μl of 1 μmol/l Lyso Dye working solution were added to the cells and incubated at 37oC for 30 minutes. The cells were washed with Hanks’ HEPES buffer twice and then co-localization of Mtphagy, Lyso Dye and MitoBright Deep Red was observed by confocal fluorescence microscopy.

Comparison of Mtphagy Dye, Lyso Dye and MitoBright Deep Red

Observation of mitophagy using Parkinexpressed HeLa cells (upper panel) and normal HeLa cells (Lower)A, E) Fluorescent images of Mtphagy Dye; B, F) Fluorescent images of Lyso Dye;C, G) Fluorescent images of MitoBright Deep Red; D, H) Merged images

Mitophagy Induction and Detection of Mitochondrial Membrane Potential Changes

Mitochondrial condition in the carbonyl cyanide m-chlorophenyl hydrazine (CCCP) treated Parkin-expressing HeLa cells was compared with untreated cells using Mitophagy Detection Kit (MD01, MT02) and JC-1 MitoMP Detection Kit (MT09).

Result:Mitophagy was not detected in untreated cells and the membrane potential was normal. However, reduction of membrane potential and mitophagy were observed in treated cells.

Comparison of Mitophagy Detection Kit and JC-1 MitoMP Detection KitExperimental ConditionTransfection of Parkin plasmid to HeLa cells– HileyMax (H357) was used to transfect Parkin plasmid to HeLa cells (Parkin plasmid/HilyMax reagent: 0.1μg/0.2 μL) by incubating overnight.Detection of Mitophagy1. Add 0.1 μmol/L Mtphagy working solution to Parkin expressing HeLa cells and incubated for 30 minutes at 37 ℃2. Wash cells with HBSS3. Add 10 μg/mL CCCP/MEM solution and inclubate for 2 hours at 37 ℃4. Observe under fluorescence microscopeDetection of Mitochondrial Membrane Potential1. Add 10 μg/mL CCCP/MEM solution to Parkin expressing HeLa cells and incubate for 1.5 hours at 37 ℃2. Add 4 μmol/L JC-1 working solution (final concentration: 2 μmol/L) and incubate for 30 minutes at 37 ℃3. Wash with HBSS and add Imaging Buffer Solution.4. Observe under fluorescence microscope

Detecting Condition:

Mitophagy DetectionEx: 561 nm, Em: 570-700 nm

Mitochondrial Membrane Potential DetectionGreen Ex: 488 nm, Em: 500-550 nmRed Ex: 561 nm, Em: 560-610 nm

FCM

Mitochondrial contribution to lipofuscin formation

Procedure (Adherent cell):

1.Cells were washed twice with DMEM and afterwards incubated at 37 °C for 30 min with 100 nmol Mtphagy Dye diluted in DMEM.

2.After this incubation cells were again washed twice with DMEM followed by the addition of complete DMEM.

3.The induction of mitophagy was then accomplished by the addition of 20 µM carbonyl cyanide 3-chlorophenylhydrazone (CCCP) for 24 h. Subsequently, fibroblasts were trypsinized and fluorescence intensity of Mtphagy Dye was measured by flow cytometry at 488 nm excitation and 655–730 nm emission.

Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy

Procedure (Suspension cell):

  1. Briefly, 2×106 CD4+ T cells were divided into four tubes containing serum-free RPMI.
  2. Tube #1 was for unstained cells that followed all washing and media changing processes.
  3. 100 nmol/l Mtphagy Dye working solution was added to tubes #2, 3, 4 and then all tubes were incubated at 37°C for 30 minutes.
  4. The cells were then washed with serum-free medium. After discarding the supernatant, complete medium (RPMI 1640, 10% FBS, 1% P/S/G) was added to all the tubes.
  5. Ten μmol/l CCCP (Sigma-Aldrich) mitophagy-inducer was then added to tube #3, 100 nmol/l Bafilomycin A1 (Sigma-Aldrich) autophagy inhibitor was added to tube #4.
  6. All tubes were then incubated at 37 °C for 18 hours.
  7. After 18 hours, cells were washed with FACS buffer.
  8. Mtphagy Dye fluorescence detection by flow cytometry (BD FACSCANTO II) was performed using 488 nm for excitation and 695 nm for emission (this corresponds to the PerCP cy5.5 channel). Data were analyzed using FLOWJO software (version 10).

Microplate Reader

PINK1 depletion sensitizes non-small cell lung cancer to glycolytic inhibitor 3-bromopyruvate: involvement of ROS and mitophagy

No.SampleInstrumentsPublications
1)Cell(HeLa, MEF)FluorescencemicroscopeH. Iwashita, H. T. Sakurai, N. Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, K. Okuma, S. Shimizu, and Y. Ueno, “Small fluorescent molecules for monitoring autophagic flux.”, FEBS Letters., 2018592, (4), 559–567.
2)Cell(HeLa)FluorescencemicroscopeT. Sakata, A. Saito and H. Sugimoto, “In situ measurement of autophagy under nutrient starvation based on interfacial pH sensing.”, Scientific Reports., 20188, 8282.
3)Cell(HS-MM)FluorescencemicroscopeY. Egawa, C. Saigo, Y. Kito, T. Moriki and T. Takeuchi , “Therapeutic potential of CPI-613 for targeting tumorous mitochondrial energy metabolism and inhibiting autophagy in clear cell sarcoma.”, PLoS One., 201813, (6), e0198940.
4)Cell(HaCaT)FluorescencemicroscopeS. Abe, S. Hirose, M. Nishitani, I. Yoshida, M. Tsukayama, A. Tsuji and K. Yuasa , “Citrus peel polymethoxyflavones, sudachitin and nobiletin, induce distinct cellular responses in human keratinocyte HaCaT cells.“, Biosci. Biotechnol. Biochem. ., 201882, (12), 1347.
5)Cell(KGN)FluorescencemicroscopeW. Yuping, M. Congshun, Z. Huihui, Z. Yuxia, C. Zhenguo and W. Liping, “Alleviation of endoplasmic reticulum stress protects against cisplatin-induced ovarian damage.”, Reprod. Biol. Endocrinol., 2018,doi: 10.1186/s12958-018-0404-4.
6)Cell(BmN)FluorescencemicroscopeS. Xue, F. Mao, D. Hu, H. Yan, J. Lei, E. Obeng, Y. Zhou, Y. Quan, and W. Yu, “Acetylation of BmAtg8 inhibits starvation-induced autophagy initiation.”, Mol. Cell Biochem., 2019,doi: 10.1007/s11010-019-03513-y.
7)Cell(HeLa)Fluorescence microscopeF. Hongbao,Y. Shankun, C. Qixin, L. Chunyan, C. Yuqi, G. Shanshan, B. Yang, T. Zhiqi, L. Z. Amanda, T. Takanori, C.Yuncong, G. Zijian, H. Weijiang and D. Jiajie , “De Novo-Designed Near-Infrared Nanoaggregates for Super-Resolution Monitoring of Lysosomes in Cells, in Whole Organoids, and in Vivo.”, ACS Nano201913, (12), 1446.
8)Cell(RT-7)FlowCytometerE. Sasabe, A. Tomomura, N. Kitamura and T. Yamamoto, “Metal nanoparticles-induced activation of NLRP3 inflammasome in human oral keratinocytes is a possible mechanism of oral lichenoid lesions.”, Toxicol In Vitro., 202062, 104663.
9)Cell(multiple myeloma)Fluorescence microscopeJ. Xia, Y. He, B. Meng, S. Chen, J. Zhang, X. Wu, Y. Zhu, Y. Shen, X. Feng, Y. Guan, C. Kuang, J. Guo, Q. Lei, Y. Wu, G. An, G. Li, L. Qiu, F. Zhan and W. Zhou, “NEK2 induces autophagy-mediated bortezomib resistance by stabilizing Beclin-1 in multiple myeloma.”, Mol Oncol2020, DOI: 10.1002/1878-0261.12641.
10)Cell(Human L2)Fluorescence microscopeQ. Xu, W. Shi, P. Lv, W. Meng, G. Mao, C. Gong, Y. Chen, Y. Wei, X. He, J. Zhao, H. Han, M. Sun and K. Xiao, “Critical role of caveolin-1 in aflatoxin B1-induced hepatotoxicity via the regulation of oxidation and autophagy.”, Cell Death Dis.202011(1), 6.
11)Cell(Cardiomyocytes)Fluorescence microscopeL Cui, LP Zhao, JY Ye, L Yang, Y Huang, X.P. Jiang, Q. Zhang, JZ. Jia, DX. Zhang and Y. Huang, “The Lysosomal Membrane Protein Lamp2 Alleviates Lysosomal Cell Death by Promoting Autophagic Flux in Ischemic Cardiomyocytes.“, Front Cell Dev Biol2020,DOI:10.3389/fcell.2020.00031.
12)Cell(IPEC-J2)Fluorescence microscopeY Yang, J Huang, J Li, H Yang and Y. Yin, “The Effects of Butyric Acid on the Differentiation, Proliferation, Apoptosis, and Autophagy of IPEC-J2 Cells..”, Curr. Mol. Med.202020(4), 307.
13)Cell(Fibroblasts, Kidney epithelial cells)Fluorescence microscopeM. M. Ivanova, J. Dao, N. Kasaci, B. Adewale, J. Fikry and O. G. Alpan  , “Rapid Clathrin-Mediated Uptake of Recombinant α-Gal-A to Lysosome Activates Autophagy”, Biomolecules 2020,  10(6), 837.
14)Cell(NHEKs)Fluorescence microscopeS. Ikeoka and A. Kiso  , “The Involvement of Mitophagy in the Prevention of UV-B-Induced Damage in Human Epidermal Keratinocytes “, J. Soc. Cosmet. Chem. Jpn., 2020,  54(3), 252.

What is an advantage of the kit in comparison to Keima-Red?

Our kit uses a small molecular fluorescent probe and allows detection of Mitophagy phenomenon without expressing fluorescent protein.

Can I use Mitophagy Detection Kit with fixed cells?

No, the kit is suitable for live cells because Mtphagy Dye accumulates in intact mitochondria.

Why it is not allowed to mix Mtphagy dye and Lyso dye together?

Since fluorescence of Lyso dye fades after long periods of staining, if both dyes are added together, Lyso dye does not emit enough fluorescence for double staining. Hence, Lyso dye is added right before the observation.

How many times can I assay with Mitophagy Detection Kit?

For 96 wells plates format (100 ul/well), the kit is sufficient for 5 plates. For 35 mm dish format (2ml), the kit is sufficient for 25 assays.

What are some technical tips for successful assay?

1. Add Mtphagy Dye working solution BEFORE inducing mitophagy (Mtphagy Dye accumulates in the intact mitochondria)2. Use appropriate filter – Mtphagy Dye: Ex.500-560 nm, Em.670-730 nm for microscopy detection3. Use CCCP or FCCP for the positive control*FCCP or CCCP concentration: 10 uM-30 uM, incubation time at 37℃ for 3 hoursFCCP: Carbonyl cyanide 4-(triguoromethoxy)phenylhydrazoneCCCP: Carbonyl cyanide 3-chlorophenylhydrazone4. Use Confocal Microscope if available

Is the serum in the medium susceptible to live cell imaging?

Yes, it is susceptible because both Mtphagy Dye and Lyso Dye interfere with the serum in the medium. Please use Hank’s HEPES buffer or serum-free medium.

What is an effect of Phenol Red?

Figure 1. Background caused by phenol red observed by the fluorescence microscope. However, when using confocal microscope, there is no effect from phenol red.We strongly recommend using confocal microscope when detecting mitophagy.

What is the recommended filter?

Mtphagy Dye: Ex.500~560 nm, Em.670~730 nm, Lyso Dye: Ex.350~450 nm, Em.500~560 nm

Are there any points to be careful of Multi-Staining with MitoBright Deep Red?

The emission of Mtphagy Dye overlap with the emission of MitoBright Deep Red. You need to excite Mtphagy Dye at the wavelength that does not excite MitoBright Deep Red.[Example]After staining MitoBright Deep Red, the cells were observed at the following excitation and emission filters for Mtpahgy dye and MitoBright Deep Red.

Fluorescence from the MitoBright Deep Red was detected in the channel of Mtphagy Dye.Please refer to the following section to reduce spectral overlap to acceptable levels.1. Change an excitation filter

Please change the excitation wavelength of Mtphagy Dye to approximately 500 nm and make sure that MitoBright Deep Red isn’t excited.2. Adjust the excitation intensity and the sensitivity of fluorescent detection

Please adjust the excitation intensity or the sensitivity of the detection until the fluorescent from the other dyes are no longer detected. After that, please double-check that you can detect the fluorescence of Mtphagy Dye.

How to check the spectral overlapExample using Mtphagy Dye, Lyso Dye, and MitoBright Deep Red1. Prepare cells in 3 different dishes or wells (dish/well No.1-3).2. Add Mtphagy Dye to the dish/well No. 1, Add MitoBright Deep Red to dish/well No.2 with serum-free medium.3. Incubate the cells at 37°C for 30 minutes.4. Culture cells under the mitophagy inducing condition (e.g. starvation induced mitophagy)5. Add Lyso Dye to No. 3 (No.3 is dish/well contained in only the cells) with serum-free medium.6. Incubate the cells at 37°C for 30 minutes.7. Detect fluorescence at the appropriate Ex./Em. wavelength for each reagent.Mtphagy Dye: ex. 500-560nm, em. 670-730nmLyso dye: ex. 350-450nm, em. 500-560nmMitoBright Deep Red: ex. 640nm, em. 656-700nm8. Check to see if fluorescent is observed under detection condition of other reagents.(Example: For Dish/well No.1, please check to see the fluorescence under detection condition for Lyso dye and MitoBright Deep Red.)

Related Categories Cell Staining Intracellular Fluorescent Probes Mitochondria Research

蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
品牌分类