请使用支持JavaScript的浏览器! Dojindo/Cellular Senescence Detection Kit – SPiDER-ßGal/10/SG04_蚂蚁淘,【正品极速】生物医学科研用品轻松购|ebiomall 蚂蚁淘商城
商品信息
联系客服
Dojindo/Cellular Senescence Detection Kit – SPiDER-ßGal/10/SG04
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
Dojindo/Cellular Senescence Detection Kit – SPiDER-ßGal/10/SG04
品牌 / 
Dojindo
货号 / 
SG04
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616
DescriptionDataPositive ControlQ & ATrouble ShootingReferencesManualS.D.S
Product Description

Fluorescence of SA-βGal using Dojindo

DNA damages of the normal cells are caused by repeated cell division and oxidative stress. Cellular Senescence, a state of irreversible growth arrest, can be triggered in order to prevent DNA-damaged cells from growing. Senescence-associated β-galactosidase (SA-β-gal), which is overexpressed in senescent cells, has been widely used as a marker of cellular senescence. Although X-gal is a well known reagent to detect SA-β-gal, these are following disadvantages: 1) requirement of fixed cells due to the poor cell-permeability, 2) low quantitative capability because of the difficulty of the determination of visual difference between stained cells and not stained cells, 3) requirement of a long time of staining.

Cellular Senescence Detection Kit – SPiDER-βGal allows to detect SA-β-gal with high sensitivity and ease of use. SPiDER-βGal is a new reagent to detect β-galactosidase which possesses a high cell-permeability and a high retentivity inside cells. SA-β-gal are detected specifically not only in living cells but also fixed cells by using a reagent (Bafilomycin A1) to inhibit endogenous β-galactosidase activity. Therefore, SPiDER-βGal can be applied to quantitative analysis by flow cytometry.

Recent work from Dr. Kim et al. at Mayo Clinic used our Cellular Senescence Detection Kit – SPiDER-βGal to evaluate cellular senescence in endothelial cells. They did staining of SA-βGal in cells in atherosclerotic renal artery stenosis (ARAS) and co-stained the cells with CD31 which is a marker of endothelilal cells. They showed that ARAS + Elamipretide* treatment slightly improved endothelial cell senescence. Unlike commercial available probes used for detection of β-Galactosidase, SPiDER-βGal contained in the kit possesses high intracellular retention. The key feature of this product is that it can be used to co-stain SA-β-Gal and other markers. Our kit is a useful tool for cellular senescence research.*Elamipretide: mitochondria-targeted peptide

For more information on data, please refer to the publication below:S. R. Kim, A. Eirin, X. Zhang, A. Lerman and L. O. Lerman, “Mitochondrial Protection Partly Mitigates Kidney Cellular Senescence in Swine Atherosclerotic Renal Artery Stenosis.”, Cell. Physiol. Biochem. ., 2019, 52, 617.


Simple Procedure

Procedure of Dojindo

After Bafilomycin A1 Working Solution is added, SPiDER-βGal Working Solution is added without removing Bafilomycin A1 Working Solution.


Difference between X-Gal method and Cellular Senescence Detection Kit – SPiDER-βGal IOur kit is applicable to both living and fixed cells. However, X-Gal method is only applicable to dead cells as shown below:

Comparison of Cellular Senescence Detection Kits with competitors

Why is Bafilomycin A1 added?Endogenous β-galactosidase existing in living cells interfere with selective detection of SA-β-Gal. Bafilomycin A1 is an inhibitor of ATPase in lysosome. pH in lysosome is kept neutral by adding Bafilomycin A1. Cellular Senescence Detection Kit – SPiDER-βGal contains Bafilomycin A1 which allows to detect SA-β-Gal selectively. Bafilomycin A1 is utilized for living cell assays only. Bafilomycin A1 is not used in fixed cells because intracellular pH is controlled with the buffer.


Difference between X-Gal method and Cellular Senescence Detection Kit – SPiDER-βGalOur kit allows quantification of SA-β-Gal using flow cytometry.

Difference between X-Gal method and Cellular Senescence Detection Kit - SPiDER-βGal


Markers of Senescent Cells

Markers of Senescent Cells


Co-staining of SA- β-gal and DNA Damage marker in WI-38 cells

Co-staining of SA-β-gal and DNA Damage marker in WI-38 cells

Procedure:1. Passage 1 and 10 of WI-38 were used. The procedure was followed as the manual within the kit.2. Add 4% PFA/PBS to the cells and incubate for 15 minutes at room temperature3. Wash the cells 3 times with PBS4. Add 0.1% Triton X-100/PBS to cells and incubate for 30 minutes at room temperature5. Wash the cells 3 times with PBS6. Add 1% BSA/PBS to the cells and incubate for 1 hour at the room temperature7. Add anti- γ-H2AX antibody (rabbit) diluted with 1% BSA/PBS to the cells and incubate at 4℃ overnight8. Wash the cells 3 times with PBS9. Add Anti- rabbit secondary antibody (Alexa Fluor 647) diluted with 1% BSA/PBS to the cells and incubate at room temperature for 2 hours10. Wash cells 3 times with PBS11. Add 2 μg/ml DAPI (code: D523) diluted with PBS to the cells and incubate for 10 minutes at room temperature12. Wash cells 3 times with PBS and observe under a confocal microscope


Co-staining of SA- β-gal and DNA Damage marker in fixed WI-38 cells

Co-staining of SA-β-gal and DNA Damage marker in fixed WI-38 cells

Preparation of SPiDER-βGal working solutionDilute the SPiDER-βGal DMSO stock solution 2,000 times *1 with McIlvaine buffer (pH 6.0).*1 Fixation and permeablization could leads to lower sensitivity (Figure 1), if you need higher signals,dilute the SPiDER-βGal DMSO stock solution 500 – 1,000 times with the McIlvaine buffer (Figure 2).

Preparation of McIlvaine buffer (pH 6.0)Mix 0.1 mol/l citric acid solution (3.7 ml) and 0.2 mol/l sodium phosphate solution (6.3 ml). Confirm the pH is 6.0. If the pH is not 6.0, adjust the pH by adding either citric acid solution or sodium phosphate solution. Dilute this buffer 5 times with ultrapure water.

Staining procedure (35 mm dish)1. Prepare cells on 35 mm dish for assay and culture the dish at 37℃ overnight in a 5% CO2 incubator.2. Remove the culture medium. Add 2 ml of 4% paraformaldehyde (PFA) /PBS solution to the cells and incubate at room temperature for 3 minutes *2.*2 Avoid a longer treatment period, which leads to decrease in SA-β-gal activity.3. Remove the supernatant, and wash the cells 3 times with 2 ml of PBS.4. Add 2 ml of SPiDER-βGal working solution and incubate at 37℃ for 30 minutes*3.*3 We recommend not to use a 5% CO2 incubator for fixed cell experiments. If incubation is done in a 5% CO2 incubator, the pH of the buffer may become acidic. Acidic pH results in higher background from the endogenous β-galactosidase activity and it would be difficult to distinguish between normal cells and senescent cells.5. After removing the supernatant, wash the cells twice with PBS.6. Add 0.1% Triton X-100/PBS to cells and incubate for 30 minutes at room temperature.7. Wash the cells twice with PBS.8. Add 1% BSA/PBS to the cells and incubate for 1 hour at the room temperature9. Add anti- γ-H2AX antibody (mouse) diluted with 1% BSA/PBS to the cells and incubate at 4℃ overnight.10. Wash the cells 3 times with PBS.11. Add anti- mouse secondary antibody (Cy5) diluted with 1% BSA/PBS to the cells and incubate at room temperature for 1 hour.12. Wash cells twice with PBS and observe under a fluorescence microscope.


Quantification with confocal quantitative image cytometerIn the conventional method of X-gal, SA-β-gal-positive cells are counted under microscope and calculate the percent of the senescent cells by compared with total cells. The SA-β-gal-positive cells were stained with this kit and analyzed using confocal quantitative image cytometer CQ1(Yokogawa Electric Corporation).

Quantification with confocal quantitative image cytometer

The difference of SA-β-gal-positive cells ratio were shown in WI-38 cells depending on the number of passage. The data was quickly analysed with the confocal quantitative image cytometer compared with the manually counting procedure with X-gal staining method.


Recommended Filter

Recommended Filter Levels from wavelengths

Comparison with other product

Comparison between other Cellular Senescence Detection Kits

Doxorubicin-treatment A549 cells stained with each reagent were incubated for 30 min or 120 min and the resulting fluorescence images were compared. SPiDER-ßGal (Item# SG04) had higher fluorescent intensity than other product.

・Epifluorescence Microscope (Fixed A549 cells)Epifluorescence Microscope

・Confocal Microscopy (Fixed A549 cells)Confocal Microscopy

Fluorescence imaging of SA-β-gal1. WI-38 cells (5×104 cells/dish, MEM, 10% fetal bovine serum, 1% penicillin-streptmycin) of passage number 0 and 12 were seeded respectively in a µ-dish 35 mm (ibidi) and cultured overnight in a 5% CO2 incubator.2. The cells were washed with 2 ml of HBSS once.3. Bafilomycin A1 working solution (1 ml) was added to the culture dish, and the cells were incubated for 1 hour in a 5% CO2 incubator.4. SPiDER-βGal working solution (1 ml) and 1 mg/ml Hoechst 33342 (1 µl) were mixed. Then the mixture solution was added to the culture dish, and the cells were incubated for 30 minutes in a 5% CO2 incubator.5. After the supernatant was removed, the cells were washed with 2 ml of HBSS twice.6. HBSS (2 ml) were added and the cells were observed by confocal fluorescence microscopy (Excitation: 488 nm Emission (wavelength/band pass): 550/50 nm).

Fluorescence imaging of SA-β-gal

Fig.4 Fluorescence imaging of SA-β-Gal in WI-38 cellsA. Passage 0, B. Passage 12(green: SPiDER-βGal, blue: Hoehst 33342)

Quantitative analysis of SA-β-gal positive cells by flow cytometry1. WI-38 cells (1×105 cells/dish, MEM, 10% fetal bovine serum, 1% penicillin-streptmycin) of passage number 1 and 12 were seeded respectively in a µ-dish 35 mm (ibidi) and cultured overnight in a 5%CO2 incubator.2. The cells were washed with 2 ml of HBSS once.3. Bafilomycin A1 working solution (1 ml) was added to the culture dish, and the cells were incubated for 1 hour in a 5%CO2 incubator.4. SPiDER-βGal working solution (1 ml) was added to the culture dish, and the cells were incubated at for 30 minutes in a 5%CO2 incubator.5. After the supernatant was removed, the cells were washed with 2 ml of HBSS twice.6. The cells were harvested by trypsin and resuspended in MEM (10% fetal bovine serum, 1% penicillin-streptmycin). 7. The cells were observed by a flow cytometer (Excitation: 488 nm, Emission: 515-545 nm).

Quantitative analysis of SA-β-gal positive cells by flow cytometry

Fig.5 Quantification of SA-β-Gal positive WI-38 cells

How to Prepare a Positive Control using Drug TreatmentSenescence induction (Doxorubicin-treatment WI-38 cells)1. Seed WI-38 cells (1×106 cells/dish, MEM, 10% fetal bovine serum, 1% penicillin-streptmycin) of passage number 3 in a 10 cm culture dish and culture at 37 ℃ overnight in a 5% CO2 incubator.2. Remove the culture medium, and wash the cells with 10 ml of PBS once.3. Prepare for 0.2 μmol/L of Doxorubicin with serum-free MEM. In case, if serum free media is not available, serum contained media may be used.4. Add Doxorubicin (10 mL) to the dish and culture at 37 ℃ for 3 days in a 5% CO2 incubator.5. Remove the supernatant, and wash the cells with 10 ml of PBS once.6. Add MEM (10% fetal bovine serum, 1% penicillin-streptmycin) to the dish and culture at 37 ℃ for 3 days in a 5% CO2 incubator.7. Remove the culture medium, and wash the cells with 10 ml of PBS once.8. Trypsinize the cells with and without Doxorubicin treatment.

Fixed cell imaging1. Prepare cells in a 8-well ibidi for assay and culture the cells at 37℃ overnight in a 5% CO2 incubator.2. Remove the culture medium. Wash the cells with PBS once. Add 4% paraformaldehyde (PFA) /PBS solution to the cells and incubate at room temperature for 3 minutes.3. Remove the supernatant. Wash the cells with PBS twice.4. Mix SPiDER-βGal working solution (2 mL) and 1mg/mL Hoehst 33342 (2 μl). Add the mixture solution (200 μl) into a well, and incubate at 37℃ for 30 minutes.

We recommend not to use a 5% CO2 incubator for fixed cell experiments.If incubation is done in a 5% CO2 incubator, the pH of the buffer may become acidic. Acidic pH results in higher background from the endogenous β-galactosidase activity and it would be difficult to distinguish between normal cells and senescent cells.

5. Remove the supernatant. Wash the cells with PBS twice.6. Observe the cells under a fluorescence microscope.

ReferenceSenescence induction in serum-free media1. Leontieva, O.V.; Blagosklonny.M.V. “DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of mTOR is associated with conversion to senescence.” Aging (Albany NY). 2010, 2, 924-935.Senescence induction in serum-contained media 2. Demaria, M.; O’Leary, M.N.; Chang, J., et al. “Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse.” Cancer Discov. 2017, 7, 165-176.

Are there any advices when observing the senescent cells?

Lipofuscin is a fluorescent pigment that accumulates in a variety of cell types with age. Lipofuscin consists of autofluorescent granules and may results in high background for fluorescence microscopy. In order to achieve accurate SA-β-gal activity assay in senescent cells, we recommend to prepare samples without SPiDER-βGal staining. Please compare fluorescence intensity of both cells with or without SPiDER-βGal staining.

++ For Flow Cytometry DetectionStep 1. Prepare senescent cells and non-senescent cells. Measure MFI (Mean Fluorescence Intensity) of samples below.[Senescent cells]Sample A: The cells stained with SPiDER-βGalSample B: The cells without SPiDER-βGal staining[Non-senescent cells]Sample A’: The cells stained with SPiDER-βGalSample B’: The cells without SPiDER-βGal staining

Step 2. Calculate SA-β-gal activity (senescent cells) with the following formulaSA-β-gal activity (senescent cells) = MFI of Sample A – MFI of Sample B

Step 3. Calculate SA-β-gal activity (non-senescent cells) with the following formulaSA-β-gal activity (non-senescent cells) = MFI of Sample A’ – MFI of Sample B’-Determine the SA-β-gal activity by comparing the SA-β-gal activity between senescent cells and non-senescent cells.-Change of SA-β-gal activity associated with senescence = (Value from Step 2- value from Step 3)

++ For MicroscopyStep 1. Prepare senescent cells without SPiDER-βGal staining and observe fluorescent image.Step 2. Adjust detection sensitivity in microscopy to reduce background autofluorescence of lipofuscin.Step 3. Observe fluorescent image of senescent cells and non-senescent cells under the settled condition in step 2.

1. T. Doura, M. Kamiya, F. Obata, Y. Yamaguchi, T. Y. Hiyama, T. Matsuda, A. Fukamizu, M. Noda, M. Miura, Y. Urano, “Detection of LacZ-Positive Cells in Living Tissue with Single-Cell Resolution.”, Angew Chem Int Ed Engl., 2016, doi: 10.1002/anie.2016033282. T. Sugizaki, S. Zhu, G. Guo, A. Matsumoto, J. Zhao, M. Endo, H. Horiguchi, J. Morinaga, Z. Tian, T. Kadomatsu, K. Miyata, H. Itoh & Y. Oike, “Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality”, Nature Partner Journal:Aging and Mechanisms of Disease., doi:10.1038/s41514-017-0012-0.3. A. Park, I. Tsunoda and O. Yoshie, “Heat shock protein 27 promotes cell cycle progression by down-regulating E2F transcription factor 4 and retinoblastoma family protein p130”, J. Biol. Chem.., 2018, doi: 10.1074/jbc.RA118.003310 .4. R. Tanino, Y. Tsubata, N. Harashima, M. Harada and T. Isobe, “Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer”, Oncotarget., 2018, 9, (24), 16807.5. Y. Kitahiro, A. Koike, A. Sonoki, M. Muto, K. Ozaki and M. Shibano. , “Anti-inflammatory activities of Ophiopogonis Radix on hydrogen peroxide-induced cellular senescence of normal human dermal fibroblasts.”, J Nat Med ., 2018, 72, 905.6. R. Uchida, Y. Saito, K. Nogami, Y. Kajiyama, Y. Suzuki, Y. Kawase, T. Nakaoka, T. Muramatsu, M. Kimura and H. Saito , “Epigenetic silencing of Lgr5 induces senescence of intestinal epithelial organoids during the process of aging”, NPJ Aging Mech Dis., 2018,doi:10.1038/s41514-018-0031-5.7. S. R. Kim, A. Eirin, X. Zhang, A. Lerman and L. O. Lerman, “Mitochondrial Protection Partly Mitigates Kidney Cellular Senescence in Swine Atherosclerotic Renal Artery Stenosis.”, Cell. Physiol. Biochem. ., 2019, 52, 617.8. Webber L, Yujra V, Vargas P, et al. “Interference with the bromodomain epigenome readers drives p21 expression and tumor senescence.”, Cancer Letters. 2019; 461: 10-20.9. H. Ise, K. Matsunaga, M. Shinohara and Y. Sakai, “Improved Isolation of Mesenchymal Stem Cells Based on Interactions between N-Acetylglucosamine-Bearing Polymers and Cell-Surface Vimentin “, Stem Cells Int ., 2019, 4341286, 13.10. Wang X, Qu M, Li J, et al. “Induction of Fibroblast Senescence During Mouse Corneal Wound Healing.”, Invest Ophthalmol Vis Sci. 2019; 60: 3669-3679.11. Y. Nakatani, H. Kiyonari and T. Kondo, “Ecrg4 deficiency extends the replicative capacity of neural stem cells in a Foxg1-dependent manner.”, Development., 2019, 146, (4), 18.12. Y. S. Ryu, K. A. Kang, M. J. Piao, M. J. Ahn, J. M. Yi, G. Bossis, Y. M. Hyun, C. O. Park and J. W. Hyun , “Particulate matter-induced senescence of skin keratinocytes involves oxidative stress-dependent epigenetic modifications”, Exp. Mol. Med. ., 2019, 51, 108.13. E. M. Angela Ibler, E. Mohamed, L. N. Kathryn, A. B. Natalia, F. E. K. Sherif and H. Daniel, “Typhoid toxin exhausts the RPA response to DNA replication stress driving senescence and Salmonella infection”, Nat Commun., 2019, 10, 4040

Related Categories Cell Proliferation / Cytotoxicity Intracellular Fluorescent Probes SPiDER-ßGal

蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
品牌分类