请使用支持JavaScript的浏览器! +,BMS 181339-01; BMS181339-01; BMS-181339-01; Brand name: Taxol; Anzatax; Asotax; Bristaxol; Praxel; Taxol Konzentrat. TAX. chemical structure; synthesis, bioactivity, IC50, in vitro activity, in vivo activity; formulation, solubility, stability, toxicity, 蚂蚁淘商城
商品信息
联系客服
MedKoo/Paclitaxelfeatured/1g/100690
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
MedKoo/Paclitaxelfeatured/1g/100690
品牌 / 
美帝药库
货号 / 
100690
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616

Paclitaxel
featured

WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#:100690

CAS#:33069-62-4

Description:Paclitaxel is a compound with antineoplastic activity extracted from the Pacific yew tree Taxus brevifolia. Paclitaxel binds to tubulin and inhibits the disassembly of microtubules, thereby inhibiting cell division. This agent also induces apoptosis by binding to and blocking the function of the apoptosis inhibitor protein Bcl-2 (B-cell Leukemia 2).

Price and Availability

SizePriceShipping out timeQuantity
1gUSD 150Same day
2gUSD 250Same day
5gUSD 550Same day
10gUSD 950Same day
20gUSD 1750Same day
50gUSD 3650Same day
100gUSD 5850Same day
Inquire bulk and customized quantity

Pricing updated 2021-01-23.Prices are subject to change without notice.

Paclitaxel, purity > 98%, is in stock. The same day shipping out after order is received.

Chemical Structure

img

Theoretical Analysis

MedKoo Cat#: 100690Name: PaclitaxelCAS#: 33069-62-4Chemical Formula: C47H51NO14Exact Mass: 853.33096Molecular Weight: 853.91Elemental Analysis:C, 66.11; H, 6.02; N, 1.64; O, 26.23

Related CAS #:33069-62-4117527-50-1

Synonym:BMS 181339-01; BMS181339-01; BMS-181339-01; Brand name: Taxol; Anzatax; Asotax; Bristaxol; Praxel; Taxol Konzentrat. TAX.

IUPAC/Chemical Name:(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-9-(((2R,3S)-3-benzamido-2-hydroxy-3-phenylpropanoyl)oxy)-12-(benzoyloxy)-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-1H-7,11-methanocyclodeca[3,4]benzo[1,2-b]oxete-6,12b-diyl diacetate

InChi Key:RCINICONZNJXQF-MZXODVADSA-N

InChi Code:InChI=1S/C47H51NO14/c1-25-31(60-43(56)36(52)35(28-16-10-7-11-17-28)48-41(54)29-18-12-8-13-19-29)23-47(57)40(61-42(55)30-20-14-9-15-21-30)38-45(6,32(51)22-33-46(38,24-58-33)62-27(3)50)39(53)37(59-26(2)49)34(25)44(47,4)5/h7-21,31-33,35-38,40,51-52,57H,22-24H2,1-6H3,(H,48,54)/t31-,32-,33+,35-,36+,37+,38-,40-,45+,46-,47+/m0/s1

SMILES Code:O=C1[C@H](OC(C)=O)C(C2(C)C)=C(C)[C@@H](OC([C@H](O)[C@@H](NC(C3=CC=CC=C3)=O)C4=CC=CC=C4)=O)C[C@@]2(O)[C@@H](OC(C5=CC=CC=C5)=O)[C@@]6([H])[C@@]1(C)[C@@H](O)C[C@@]7([H])OC[C@]76OC(C)=O

Technical Data

Appearance:
white solid powder

Purity:
>98% (or refer to the Certificate of Analysis)

Certificate of Analysis:
View CoA: current batch, Lot#A8T09K11

QC Data:
View QC data: current batch, Lot#A8T09K11

Safety Data Sheet (SDS):
View Safety Data Sheet (SDS)

Shipping Condition:
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition:
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility:
Soluble in DMSO, not in water

Shelf Life:
>2 years if stored properly

Drug Formulation:
This drug may be formulated in DMSO

Stock Solution Storage:
0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code:
2934.99.9001

Additional Information

Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific Yew tree, Taxus brevifolia and named it "taxol". When it was developed commercially by Bristol-Myers Squibb (BMS) the generic name was changed to "paclitaxel" and the BMS compound is sold under the trademark "TAXOL". In this formulation, paclitaxel is dissolved in Cremophor EL and ethanol, as a delivery agent. A newer formulation, in which paclitaxel is bound to albumin, is sold under the trademark Abraxane. Paclitaxel is now used to treat patients with lung, ovarian, breast cancer, head and neck cancer, and advanced forms of Kaposi"s sarcoma. Paclitaxel is also used for the prevention of restenosis. Paclitaxel stabilizes microtubules and as a result, interferes with the normal breakdown of microtubules during cell division. Together with docetaxel, it forms the drug category of the taxanes. It was the subject of a notable total synthesis by Robert A. Holton. As well as offering substantial improvement in patient care, paclitaxel has been a relatively controversial drug. There was originally concern because of the environmental impact of its original sourcing, no longer used, from the Pacific yew. In addition, the assignment of rights, and even the name itself, to Bristol-Myers Squibb were the subject of public debate and Congressional hearings. HistoryAccording to http://en.wikipedia.org/wiki/Paclitaxel, In 1955 the National Cancer Institute (NCI) set up the Cancer Chemotherapy National Service Center (CCNSC) to act as a public screening center for anti-cancer activity in compounds submitted by external institutions and companies. Although the majority of compounds screened were of synthetic origin, one chemist, Jonathan Hartwell, who was employed there from 1958 onwards, had had experience of natural product derived compounds and began a plant screening operation. After some years of informal arrangements, in July 1960 the NCI commissioned USDA botanists to collect samples from about 1000 plant species per year. On August 21, 1962, one of those botanists, Arthur S. Barclay, collected bark from a single Pacific yew tree, Taxus brevifolia, in a forest north of the town of Packwood, Washington as part of a four month trip collecting material from over 200 different species. The material was then processed by a number of specialist CCNSC subcontractors and one of the Taxus samples was found to be cytotoxic in a cellular assay on May 22, 1964. Accordingly, in late 1964 or early 1965, the fractionation and isolation laboratory run by Monroe E. Wall in Research Triangle Park, North Carolina, began work on fresh Taxus samples, isolating the active ingredient in September 1966 and announcing their findings at an April 1967 American Chemical Society meeting in Miami Beach. They named the pure compound "taxol" in June 1967.  Wall and his colleague Wani published their results, including the chemical structure, in 1971. The NCI continued to commission work to collect more Taxus bark and to isolate increasing quantities of taxol. By 1969 28 kg of crude extract had been isolated from almost 1,200 kg of bark, although this ultimately yielded only 10g of pure material.But for several years no use was made of the compound by the NCI. In 1975 it was shown to be active in another in vitro system ; two years later a new department head reviewed the data and finally recommended that taxol be moved on to the next stage in the discovery process. This required increasing quantities of purified taxol, up to 600g, and in 1977 a further request for 7,000 lbs of bark was made. In 1978, two NCI researchers published a report showing that taxol was mildly effective in leukaemic mice. In November 1978, taxol was shown to be effective in xenograft studies.Meanwhile taxol began to be well known in the cell biology, as well as the cancer community, with a publication in early 1979 by Susan B. Horwitz, a molecular pharmacologist at Albert Einstein College of Medicine, that showed that taxol had a previously unknown mechanism of action involving the stabilization of microtubules. Together with formulation problems, this increased interest from researchers meant that by 1980 the NCI envisaged needing to collect 20,000 lbs of bark. Animal toxicology studies were complete by June 1982, and in November NCI applied for the IND necessary to begin clinical trials in humans. Production of PaclitaxelFrom 1967 to 1993, almost all paclitaxel produced was derived from bark from the Pacific yew, the harvesting of which kills the tree in the process. The processes used were descendants of the original isolation method of Wall and Wani; by 1987 the NCI had contracted Hauser Chemical Research of Boulder, Colorado to handle bark on the scale needed for Phase II and III trials. While there was considerable uncertainty about how large the wild population of Taxus brevifola was and what the eventual demand for taxol would be, it had been clear for many years that an alternative, sustainable source of supply would be needed. Initial attempts used needles from the tree, or material from other related Taxus species, including cultivated ones. But these attempts were bedevilled by the relatively low and often highly variable yields obtained. It was not until the early 1990s, at a time of increased sensitivity to the ecology of the forests of the Pacific Northwest, that taxol was successfully extracted on a clinically useful scale from these sources. From the late 1970s, chemists in the US and France had been interested in taxol. A number of US groups, including one led by Robert A. Holton, attempted a total synthesis of the molecule, starting from petrochemical-derived starting materials. This work was primarily motivated as a way of generating chemical knowledge, rather than with any expectation of developing a practical production technique. By contrast the French group of Pierre Potier at the CNRS quickly recognized the problem of yield. His laboratory was on a campus populated by the related yew Taxus baccata, so that needles were available locally in large quantity. By 1981 he had shown that it was feasible to isolate relatively large quantities of the compound 10-deacetylbaccatin, a plausible first step for a semi-synthetic production route to taxol. By 1988 he co-published such a semi-synthetic route from needles of Taxus baccata. The view of the NCI, however, was that even this route was not practical. By 1988, and particularly with Potier"s publication, it was clear to Holton as well that a practical semi-synthetic production route would be important. By late 1989, Holton"s group had developed a semi-synthetic route to paclitaxel with twice the yield of the Potier process. Florida State University, where Holton worked, signed a deal with Bristol-Myers Squibb to license this and future patents. In 1992, Holton patented an improved process with an 80% yield. BMS took the process in-house and started to manufacture paclitaxel in Ireland from 10-deacetylbaccatin isolated from the needles of the European yew. In early 1993, BMS were able to announce that they would cease reliance on Pacific yew bark by the end of 1995, effectively terminating the ecological controversy over its use. This announcement also made good their commitment to develop an alternative supply route, made to the NCI in their CRADA application of 1989. Currently, all paclitaxel production for BMS uses plant cell fermentation (PCF) technology developed by the biotechnology company Phyton Biotech, Inc and carried out at their plant in Germany. This starts from a specific taxus cell line propagated in aqueous medium in large fermentation tanks. Paclitaxel is then extracted directly, purified by chromatography and isolated by crystallization. Compared to the semi-synthesis, PCF eliminates the need for many hazardous chemicals and saves a considerable amount of energy. In 1993 it was discovered that taxol was coincidentally produced in a newly described fungus living in the yew tree.  It has since been found in a number of other endophytic fungi, including Nodulisporium sylviforme, opening the possibility of taxol production by culturing one of these fungal species. The initial motivation for synthetic approaches to paclitaxel included the opportunity to create closely related compounds. Indeed this approach led to the development of docetaxel. DRUG DESCRIPTIONTAXOL (paclitaxel) Injection is a clear, colorless to slightly yellow viscous solution. It is supplied as a nonaqueous solution intended for dilution with a suitable parenteral fluid prior to intravenous infusion. TAXOL is available in 30 mg (5 mL), 100 mg (16.7 mL), and 300 mg (50 mL) multidose vials. Each mL of sterile nonpyrogenic solution contains 6 mg paclitaxel, 527 mg of purified Cremophor® EL* (polyoxyethylated castor oil) and 49.7% (v/v) dehydrated alcohol, USP. Paclitaxel is a natural product with antitumor activity. TAXOL (paclitaxel) is obtained via a semi-synthetic process from Taxus baccata. The chemical name for paclitaxel is 5β,20-Epoxy-1,2α,4,7β,10β,13α-hexahydroxytax-11-en-9-one 4,10-diacetate 2-benzoate 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine.  Paclitaxel is a white to off-white crystalline powder with the empirical formula C47H51NO14 and a molecular weight of 853.9. It is highly lipophilic, insoluble in water, and melts at around 216-217° C. 

References

1: Carbognin L, Sperduti I, Nortilli R, Brunelli M, Vicentini C, Pellini F, Pollini GP, Giannarelli D, Tortora G, Bria E. Balancing activity and tolerability of neoadjuvant paclitaxel- and docetaxel-based chemotherapy for HER2-positive early stage breast cancer: sensitivity analysis of randomized trials. Cancer Treat Rev. 2015 Mar;41(3):262-70. doi: 10.1016/j.ctrv.2015.02.003. Epub 2015 Feb9. Review. PubMed PMID: 25683304.

2: Onishi Y, Eshita Y, Ji RC, Onishi M, Kobayashi T, Mizuno M, Yoshida J, KubotaN. Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl-dextran-MMA graft copolymer and paclitaxel used as an artificial enzyme. Beilstein J Nanotechnol. 2014 Dec 1;5:2293-307. doi: 10.3762/bjnano.5.238. eCollection 2014. Review. PubMed PMID: 25551057; PubMed Central PMCID: PMC4273266.

3: Liu H, Chen X, Sun J, Gao P, Song Y, Zhang N, Lu X, Xu H, Wang Z. The efficacy and toxicity of paclitaxel plus S-1 compared with paclitaxel plus 5-FU for advanced gastric cancer: a PRISMA systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2014 Nov;93(25):e164. doi: 10.1097/MD.0000000000000164. Review. PubMed PMID: 25437030.

4: Slaughter KN, Moore KN, Mannel RS. Anti-angiogenic therapy versus dose-dense paclitaxel therapy for frontline treatment of epithelial ovarian cancer: review of phase III randomized clinical trials. Curr Oncol Rep. 2014 Nov;16(11):412. doi: 10.1007/s11912-014-0412-2. Review. PubMed PMID: 25292279.

5: Blais N, Hirsh V. Chemotherapy in Metastatic NSCLC - New Regimens (Pemetrexed, Nab-Paclitaxel). Front Oncol. 2014 Jul 21;4:177. doi: 10.3389/fonc.2014.00177. eCollection 2014. Review. Erratum in: Front Oncol. 2014;4:300. PubMed PMID: 25101242; PubMed Central PMCID: PMC4104641.

6: Tofthagen C, McAllister RD, Visovsky C. Peripheral neuropathy caused by Paclitaxel and docetaxel: an evaluation and comparison of symptoms. J Adv Pract Oncol. 2013 Jul;4(4):204-15. Review. PubMed PMID: 25032002; PubMed Central PMCID: PMC4093436.

7: Litsky J, Chanda A, Stilp E, Lansky A, Mena C. Critical evaluation of stents in the peripheral arterial disease of the superficial femoral artery - focus on the paclitaxel eluting stent. Med Devices (Auckl). 2014 May 28;7:149-56. doi: 10.2147/MDER.S45472. eCollection 2014. Review. PubMed PMID: 24920940; PubMed Central PMCID: PMC4045256.

8: Borazanci E, Von Hoff DD. Nab-paclitaxel and gemcitabine for the treatment ofpatients with metastatic pancreatic cancer. Expert Rev Gastroenterol Hepatol. 2014 Sep;8(7):739-47. doi: 10.1586/17474124.2014.925799. Epub 2014 May 31. Review. PubMed PMID: 24882381.

9: Li P, Liu JP. Long-term risk of late and very late stent thrombosis in patients treated with everolimus against paclitaxel-eluting stents: an updated meta-analysis. Coron Artery Dis. 2014 Aug;25(5):369-77. doi: 10.1097/MCA.0000000000000109. Review. PubMed PMID: 24818639.

10: Glück S. nab-Paclitaxel for the treatment of aggressive metastatic breast cancer. Clin Breast Cancer. 2014 Aug;14(4):221-7. doi: 10.1016/j.clbc.2014.02.001. Epub 2014 Feb 20. Review. PubMed PMID: 24806278.

11: Neesse A, Michl P, Tuveson DA, Ellenrieder V. nab-Paclitaxel: novel clinicaland experimental evidence in pancreatic cancer. Z Gastroenterol. 2014 Apr;52(4):360-6. doi: 10.1055/s-0034-1366002. Epub 2014 Mar 31. Review. PubMed PMID: 24687799.

12: Al-Batran SE, Geissler M, Seufferlein T, Oettle H. Nab-paclitaxel for metastatic pancreatic cancer: clinical outcomes and potential mechanisms of action. Oncol Res Treat. 2014;37(3):128-34. doi: 10.1159/000358890. Epub 2014 Feb 7. Review. PubMed PMID: 24685917.

13: De Luca G, Wirianta J, Lee JH, Kaiser C, Di Lorenzo E, Suryapranata H. Sirolimus-eluting versus paclitaxel-eluting stent in primary angioplasty: a pooled patient-level meta-analysis of randomized trials. J Thromb Thrombolysis. 2014 Oct;38(3):355-63. Review. PubMed PMID: 24659172.

14: Roy A, Bhattacharyya M, Ernsting MJ, May JP, Li SD. Recent progress in the development of polysaccharide conjugates of docetaxel and paclitaxel. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 Jul-Aug;6(4):349-68. doi: 10.1002/wnan.1264. Epub 2014 Mar 20. Review. PubMed PMID: 24652678; PubMed Central PMCID: PMC4057951.

15: de Weger VA, Beijnen JH, Schellens JH. Cellular and clinical pharmacology ofthe taxanes docetaxel and paclitaxel--a review. Anticancer Drugs. 2014 May;25(5):488-94. doi: 10.1097/CAD.0000000000000093. Review. Erratum in: Anticancer Drugs. 2015 Feb;26(2):240. PubMed PMID: 24637579.

16: Howat S, Park B, Oh IS, Jin YW, Lee EK, Loake GJ. Paclitaxel: biosynthesis, production and future prospects. N Biotechnol. 2014 May 25;31(3):242-5. doi: 10.1016/j.nbt.2014.02.010. Epub 2014 Mar 11. Review. PubMed PMID: 24614567.

17: Zhang D, Yang R, Wang S, Dong Z. Paclitaxel: new uses for an old drug. Drug Des Devel Ther. 2014 Feb 20;8:279-84. doi: 10.2147/DDDT.S56801. eCollection 2014. Review. PubMed PMID: 24591817; PubMed Central PMCID: PMC3934593.

18: Megerdichian C, Olimpiadi Y, Hurvitz SA. nab-Paclitaxel in combination with biologically targeted agents for early and metastatic breast cancer. Cancer Treat Rev. 2014 Jun;40(5):614-25. doi: 10.1016/j.ctrv.2014.02.001. Epub 2014 Feb 12. Review. PubMed PMID: 24560997.

19: Cecco S, Aliberti M, Baldo P, Giacomin E, Leone R. Safety and efficacy evaluation of albumin-bound paclitaxel. Expert Opin Drug Saf. 2014 Apr;13(4):511-20. doi: 10.1517/14740338.2014.893293. Epub 2014 Feb 22. Review. PubMed PMID: 24559090.

20: Al-Hajeili M, Azmi AS, Choi M. Nab-paclitaxel: potential for the treatment of advanced pancreatic cancer. Onco Targets Ther. 2014 Feb 4;7:187-92. doi: 10.2147/OTT.S40705. eCollection 2014. Review. PubMed PMID: 24523592; PubMed Central PMCID: PMC3921002.

MedKoo,由化学家和药学家陈清奇博士。北卡罗莱纳州的研究三角区(ResearchTrianglePark,简称RTP),是一家以研发、生产和销售小分子抗癌化合物为主的医药科技公司,该公司的业务范围主要是为全球所有从事抗癌药物研究和开发的制药公司,高校,研究院所,政府相关机构提供与抗癌药物分子相关的产品、试剂和技术服务。


中文名MedKoo中    文美帝药库医药科技公司创立于2008年总部位于美国东海岸



MedKoo 美帝药库公司以药物化学合成技术为核心,密切结合全球抗癌新药研发领域中的新技术、新理论、新趋势和新的发展方向,不断推出抗癌化合物新品种。。
美帝药库MedKoo将在中国建立药物化学合成生产基地和多个现代化药物化合物存储仓库。
美帝药库的药物化合物来源于以下几个渠道:自主合成、委托化学合成、合作伙伴、和从国内外市场上选购。
MedKoo美帝药库的抗癌分子库
MedKoo的目标是打造全球规模最大、品种最多、类别最全和质量最好的小分子抗癌化合物库。MedKoo的抗癌药库将由下列5个分子库组成:
(1)上市抗癌药库:该库将含有大约100个全球已批准上市的小分子抗癌化合物;
(2)抗癌候选药物库:该分子库含有大约400个世界各国正在临床研究中抗癌小分子候选药物;
(3)同系抗癌分子库:该分子库将含有多个化学结构类似或抗癌机制类似的分子包;
(4)抗癌分子预制模块库:该库主要含有用于组建抗癌目标分子的分子模块包;
(5)同位素标记抗癌分子库。


MedKoo是世界领先的供应商之一的抗癌化学试剂和激酶抑制剂。我们制造、销售和分发高质量的抗癌小分子肿瘤学研究试剂。我们的使命是建立世界上最全面的抗癌小分子的集合。我们也为医药行业提供高质量的研究服务、医学研究机构和学术机构。我们致力于提供优质的服务。

MedKoo是世界领先的供应商之一的抗癌化学试剂和激酶抑制剂。我们制造、销售和分发高质量的抗癌小分子肿瘤学研究试剂。我们的使命是建立世界上最全面的抗癌小分子的集合。我们也为医药行业提供高质量的研究服务、医学研究机构和学术机构。我们致力于提供优质的服务和分子有竞争力的价格。MedKoo是您可靠的合作伙伴采购药物发现和药物分子。


MedKoo是世界的抗癌化学试剂和激酶抑制剂供应商之一。我们制造,销售和分销用于肿瘤学研究的高质量抗癌小分子试剂。我们的使命是建立世界上全面的抗癌小分子集合。我们还为制药行业,医学研究组织和学术机构提供高质量的研究服务。我们致力于以具有竞争力的价格提供服务和分子。MedKoo是您可靠的药物发现和药物分子采购合作伙伴。



CRISPR-Cas9是近年兴起的用于靶向基因组特定位置,进行DNA修饰的重要工具。研究发现CRISPR是细菌为了应对病毒的攻击而演化而来的获得性免疫防御机制。具体来说,在CRISPR和Cas9的作用下,经由小RNA分子的引导,靶向并沉默入侵者遗传物质核酸的关键部分。在该系统中,crRNA(CRISPR-derivedRNA)与tracrRNA(trans-activatingRNA)结合形成的复合物能特异性识别靶基因序列,并引导Cas9核酸内切酶在靶定位点剪切双链DNA,随后,细胞的非同源末端连接修复机制(NHEJ)重新连接断裂处的基因组DNA,并引入插入或缺失突变。另外也可以提供一个外源双链供体DNA(Donor)通过同源重组(HR)整合进断裂处的基因组,从而达到对基因组DNA进行修饰的目的。
目前,CRISPR-Cas9系统的高效基因组编辑功能已被应用于多种生物,包括小鼠、大鼠、斑马鱼、秀丽隐杆线虫,也包含多种细菌和植物,甚至在人体上也有应用。
 


蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询