请使用支持JavaScript的浏览器! +,Liquid Waveguide Capillary蚂蚁淘商城
商品信息
联系客服
WPI/Liquid Waveguide Capillary Cell, 100 cm pathlength, 2 mm ID/normal/LWCC-4100
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
WPI/Liquid Waveguide Capillary Cell, 100 cm pathlength, 2 mm ID/normal/LWCC-4100
品牌 / 
wpiinc
货号 / 
LWCC-4100
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616
Overview

Long pathlengths for small sample volumes

  • 100 cm pathlength, 3.1 mL Internal Sample Volume
  • 50–500 fold sensitivity improvement in comparison to 1cm cuvette
  • 2 mm ID for unfiltered liquid samples
  • SMA 905 fiber optic connections
  • 250-720nm wavelength range with MilliPore water
  • Extends into the NIR by switching from water to methanol 
Details

Click here to view the current Data Sheet.  

For more information or help choosing an appropriate flow cell, see the LWCC Details page.

Benefits

  • Adapts to most fiber optic detection systems
  • 20 years of manufacturing experience
  • Low UV drift

Applications

  • Trace detection of nutrients (nitrite, nitrate, phosphate, iron) in seawater
  • Environmental and oceanographic monitoring
  • Drinking water analysis
  • Colored dissolved organic matter (CDOM)
  • Process control

UV/VIS/NIR absorbance spectroscopy is governed by Beer’s Law, where the absorbance signal is proportional to chemical concentration, light path length and the compound’s specific molar absorption coefficient. Typical optical pathlengths of cuvettes and flow cells are between 0.2cm and 10 cm. Longer pathlengths are difficult to achieve due to mechanical constraints. Liquid Waveguide Capillary Cells (LWCCs) fill this gap. LWCCs are fiber optic flow cells that combine an increased optical pathlength (10–500 cm) with small sample volumes ranging from 2.4 µL to about 3mL. Compared with a standard 1cm cell, a 1 mAU signal is enhanced one hundred fold with a 100 cm flowcell to 100 mAU, using WPI’s patented aqueous waveguide technology.*

They can be connected via optical fibers to a spectrophotometer with fiber optic capabilities. Ultra-sensitive absorbance measurements can be performed in the ultraviolet (UV), visible (VIS) and near-infrared (NIR) to detect low sample concentrations in a laboratory or process control environment.

Your sample is the core of a light guide

WPI’s Liquid Waveguide Capillary Cells are made of fused silica tubing with an outer coating of a low refractive index polymer. Your liquid sample is guided through the capillary and represents the core of the waveguide. The hydrophilic character of the fused silica capillary inner wall results in high signal stability and easy removal of air bubbles trapped in the flow cell. However, the transmission of the LWCC is mainly dependent on the intrinsic attenuation of the sample liquid.

Transmission into the NIR is possible when switiching water to methanol as a solvent.  

Connections

The LWCC-3xxx series of flow cells uses traditional HPLC type 10-32 coned port fittings with 1/32 inch tubing for liquid connection and 500 µm SMA fiber optic adapters for light input and output. The LWCC-4xxx series of flow cells uses 1/4-28 flangless flat bottom fittings with 0.125" tubing 600 µm SMA fiber optic adapters.

Liquid can be pumped into the flow cells using (in the simplest case) a sample injector (58006) and a ministar peristaltic pump (MINISTAR). The LWCC may be connected directly to a fluid injection analysis (FIA) system or to a gas segmented fluid injection analysis (GFIA) system via a debubbler.

For routing discrete measurements, WPI’s LWCC Injection system (89372) may be used when the sample is injected into a constant flow via an injection loop of 3–4 times the internal flow cell volume to ensure a stable baseline and avoid the introduction of micro air bubbles into the flow cell.

Example LWCC Measurement Setup  and Order code                                                  

TIDAS E Photo Diode Array Spectrometer UV/VIS (504718)           

Deuterium/Halogen Fiber Light Source (D4H)                               

Liquid Waveguide Capillary Cell, 100 cm pathlength(LWCC-4100)            

WVLUXUVIS-S-600-SMA x2 (505195)                                                   

*LWCC Start-up Kit (KITLWCC)                                                            

*includes two fiber cables, sample injector attachement, MiniStar Peristaltic Pump and Waveguide Cleaning Kit.

Accessory: LWCC Injection System(89372)  for flow analysis and simple fluid injection analysis (FIA) setups, 

Applications

LWCCs have been used in a variety of applications such as liquid chromatography, stopped-flow and colormetric detection, drinking water analysis, as well as environmental and oceanographic monitoring systems.

Related Patents

Micro Chemical Analysis Employing Flow Through Detectors, 1995, U.S. Patent No. 5,444,807.

Aqueous Fluid Core Waveguide, 1996, U.S. Patent No. 5,507,447.

Long Capillary Waveguide Raman Cell, 1997, U.S. Patent No. 5,604,587.

Chemical Sensing Techniques Employing Liquid-Core Optical Fibers, U.S. Patent No. 6,016,372

efficiencycurvelwcc3000.jpg

These spectra show the optimal detection limits for LWCCs of varying pathlength. 

For more information or help choosing an appropriate flow cell, see the LWCC Details page.

Benefits

  • Adapts to most fiber optic detection systems
  • 20 years of manufacturing experience
  • Low UV drift

Applications

  • Trace detection of nutrients (nitrite, nitrate, phosphate, iron) in seawater
  • Environmental and oceanographic monitoring
  • Drinking water analysis
  • Colored dissolved organic matter (CDOM)
  • Process control

UV/VIS/NIR absorbance spectroscopy is governed by Beer’s Law, where the absorbance signal is proportional to chemical concentration, light path length and the compound’s specific molar absorption coefficient. Typical optical pathlengths of cuvettes and flow cells are between 0.2cm and 10 cm. Longer pathlengths are difficult to achieve due to mechanical constraints. Liquid Waveguide Capillary Cells (LWCCs) fill this gap. LWCCs are fiber optic flow cells that combine an increased optical pathlength (10–500 cm) with small sample volumes ranging from 2.4 µL to about 3mL. Compared with a standard 1cm cell, a 1 mAU signal is enhanced one hundred fold with a 100 cm flowcell to 100 mAU, using WPI’s patented aqueous waveguide technology.* They can be connected via optical fibers to a spectrophotometer with fiber optic capabilities. Ultra-sensitive absorbance measurements can be performed in the ultraviolet (UV), visible (VIS) and near-infrared (NIR) to detect low sample concentrations in a laboratory or process control environment.

Your sample is the core of a light guide

WPI’s Liquid Waveguide Capillary Cells are made of fused silica tubing with an outer coating of a low refractive index polymer. Your liquid sample is guided through the capillary and represents the core of the waveguide. The hydrophilic character of the fused silica capillary inner wall results in high signal stability and easy removal of air bubbles trapped in the flow cell. However, the transmission of the LWCC is mainly dependent on the intrinsic attenuation of the sample liquid. In case of water, a usable wavelength range from 250 nm to 720 nm wavelength can be observed in a 100 cm pathlength LWCC. Using a 500 cm pathlength LWCC will reduce that transmission range from 300 nm to about 700 nm. However, when switching from water to methanol as a solvent, transmission into the NIR are possible with suitable light sources and detectors.

Connections

The LWCC-3xxx series of flow cells uses traditional HPLC type 10-32 coned port fittings with 1/32 inch tubing for liquid connection and 500 µm SMA fiber optic adapters for light input and output. The LWCC-4xxx series of flow cells uses 1/4-28 flangless flat bottom fittings with 0.125" tubing 500 µm SMA fiber optic adapters. Liquid can be pumped into the flow cells using (in the simplest case) a sample injector (58006) and a ministar peristaltic pump (MINISTAR). The LWCC may be connected directly to a fluid injection analysis (FIA) system or to a gas segmented fluid injection analysis (GFIA) system via a debubbler. Finally, for routing discrete measurements, WPI’s LWCC Injection system (89372) may be used when the sample is injected into a constant flow via an injection loop of 3–4 times the internal flow cell volume to ensure a stable baseline and avoid the introduction of micro air bubbles into the flow cell.

Applications

WPI’s LEDSpec detection system can be used for monochromatic light detection. For example, you may use it for nitrite analysis at 540 nm with up to four (4) LWCCs per instrument. When the entire spectral shape of an absorbance curve is required for analysis, WPI’s TIDAS E Base spectrometer with a D4H or a FO-6000, or the TIDAS S300 spectrophotometer can be used. LWCCs have been used in a variety of applications, such as liquid chromatography, stopped-flow and colormetric detection, drinking water analysis, as well as environmental and oceanographic monitoring systems. Accessory: LWCC Injection System For flow analysis, including simple fluid injection analysis (FIA) setups, add WPI’s LWCC injection system (89372). A selection valve provides baseline or cleaning solutions to the sample stream. The injection valve injects a sample into the stream, avoiding the introduction of air bubbles or changes of flow rate.

Related Patents

Micro Chemical Analysis Employing Flow Through Detectors, 1995, U.S. Patent No. 5,444,807.

Aqueous Fluid Core Waveguide, 1996, U.S. Patent No. 5,507,447.

Long Capillary Waveguide Raman Cell, 1997, U.S. Patent No. 5,604,587.

Chemical Sensing Techniques Employing Liquid-Core Optical Fibers, U.S. Patent No. 6,016,372

efficiencycurvelwcc3000.jpg

These spectra show the optimal detection limits for LWCCs of varying pathlength. 

An illustration of a complete WPI long pathlength liquid absorbance system for trace detection.

An illustration of a complete WPI long pathlength liquid absorbance system for trace detection. 

lwcc_schematic.jpg

Typical LWCC setup includes an injection system, a pump, and a spectrophotometer.

Resources

LWCC 4000 Instruction Manual

Measure Colored Dissolved Organic Matter (CDOM) Manual

Specifications
 LWCC-3050LWCC-3100LWCC-3250LWCC-3500 LWCC-4010LWCC-4050LWCC-4100
Optical Pathlength 50 cm 100 cm 250 cm 500 cm10 cm50 cm100 cm
Internal Volume 125 µL 250 µL 625 µL 1250 µL0.31 mL1.57 mL3.1 mL
Fiber Connection 500 µm SMA600µm SMA
Transmission @254nm* 20 10 5 -432
Transmission @540nm* 35 30 25 20543
Noise [mAU]** <0.1 <0.2 <0.1 <1.0<0.1<0.2<0.5
Maximum Pressure 100 PSI
Wetted Material PEEK, Fused Silica, PTFE
Liquid Input Standard 10-32 Coned Port Fitting

* Referenced using coupled 500µm fibers        ** Measured using ASTM E685-93            *** A one-meter waveguide of 550µm internal diameter requires approximately 1.5PSI for water flow of 1.0mL/min.

foefficiency_color.jpg

When comparing light throughput versus wavelength of three fiber optic cables, the greater the diameter of the cable, the better the LWCC performance up to 500µm which is the input diameter of the SMA connector.

References

Lefering, I., Röttgers, R., Utschig, C., & McKee, D. (2017). Uncertainty budgets for liquid waveguide CDOM absorption measurements. Applied Optics, 56(22), 6357. https://doi.org/10.1364/AO.56.006357

Miranda, J. L. A., Mesquita, R. B. R., Nunes, A., Rangel, M., & Rangel, A. O. S. S. (2016). Iron speciation in natural waters by sequential injection analysis with a hexadentate 3-hydroxy-4-pyridinone chelator as chromogenic agent. Talanta, 148, 633–640. https://doi.org/10.1016/j.talanta.2015.05.062

Ehama, M., Hashihama, F., Kinouchi, S., Kanda, J., & Saito, H. (2016). Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry. Talanta, 153, 66–70. https://doi.org/10.1016/j.talanta.2016.02.058

Violaki, K., Fang, T., Mihalopoulos, N., Weber, R., & Nenes, A. (2016). Real-Time, Online Automated System for Measurement of Water-Soluble Reactive Phosphate Ions in Atmospheric Particles. Analytical Chemistry, 88(14), 7163–7170. https://doi.org/10.1021/acs.analchem.6b01264

Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., … Knote, C. (2016). Rapid cycling of reactive nitrogen in the marine boundary layer. Nature, 532(7600), 489–491. https://doi.org/10.1038/nature17195

Hashihama, F., Kanda, J., Tauchi, A., Kodama, T., Saito, H., & Furuya, K. (2015). Liquid waveguide spectrophotometric measurement of nanomolar ammonium in seawater based on the indophenol reaction with o -phenylphenol (OPP). Talanta, 143, 374–380. https://doi.org/10.1016/j.talanta.2015.05.007

Wise, M., Shilling, J., Imholt, F., & Caylor, R. (2015). Determination of the Optical Properties of Secondary Organic Aerosol Particles. Faculty Research. Retrieved from https://commons.cu-portland.edu/msfacultyresearch/2

Wise, M. E., Shilling, J., Caylor, R., Wise, M. E. ;, & Shilling, J. ; (2015). Determination of Total Peroxide Content in Secondary Organic Aerosol Particles. Retrieved from http://commons.cu-portland.edu/msfacultyresearchhttp://commons.cu-portland.edu/msfacultyresearch/1

Huang, Y., Yuan, D., Zhu, Y., & Feng, S. (2015). Real-Time Redox Speciation of Iron in Estuarine and Coastal Surface Waters. Environmental Science & Technology, 49(6), 3619–3627. https://doi.org/10.1021/es505138f

Liu, Y., & Lu, K. (2015). In situ Monitoring of Atmospheric Nitrous Acid based on Multi-pumping flow system and Liquid Waveguide Capillary Cell: development and field applications. EGU General Assembly 2015, Held 12-17 April, 2015 in Vienna, Austria.  Id.8298, 17.

Gil-Lozano, C., Losa-Adams, E., F.-Dávila, A., & Gago-Duport, L. (2014). Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants. Beilstein Journal of Nanotechnology, 5(1), 855–864. https://doi.org/10.3762/bjnano.5.97

Ma, J., Yuan, D., & Byrne, R. H. (2014). Flow injection analysis of trace chromium (VI) in drinking water with a liquid waveguide capillary cell and spectrophotometric detection. Environmental Monitoring and Assessment, 186(1), 367–373. https://doi.org/10.1007/s10661-013-3381-2

Imholt, F. (2014). Optical Properties of Secondary Organic Aerosols Using Ultraviolet/Visible Spectroscopy. Math & Science Department (SURI). Retrieved from https://commons.cu-portland.edu/suri_msd/13

Wise, M. E., Imholt, F., Caylor, R., Wise, M. E. ;, & Imholt, F. ; (2014). Composition and Optical Properties of Secondary Organic Aerosol Particles. Retrieved from http://commons.cu-portland.edu/mathscienceresearch/2

Catelani, T. A., Tóth, I. V., Lima, J. L. F. C., Pezza, L., & Pezza, H. R. (2014). A simple and rapid screening method for sulfonamides in honey using a flow injection system coupled to a liquid waveguide capillary cell. Talanta, 121, 281–287. https://doi.org/10.1016/j.talanta.2013.12.034

Wise, M. E., Imholt, F., & Caylor, R. (2014). Composition and Optical Properties of Secondary Organic Aerosol Particles. Retrieved from http://commons.cu-portland.edu/mathscienceresearch

Milani, A. (2013). DEVELOPMENT OF MICROFLUIDIC TECHNOLOGY FOR IN-SITU DETERMINATION OF IRON AND MANGANESE IN NATURAL AQUATIC SYSTEMS. Retrieved from https://eprints.soton.ac.uk/365471/1/A%2520Milani_PhD%2520Thesis.pdf

Zhang, X., Lin, Y.-H., Surratt, J. D., & Weber, R. J. (2013). Sources, Composition and Absorption Ångström Exponent of Light-absorbing Organic Components in Aerosol Extracts from the Los Angeles Basin. Environmental Science & Technology, 47(8), 3685–3693. https://doi.org/10.1021/es305047b

Feng, S., Zhang, M., Huang, Y., Yuan, D., & Zhu, Y. (2013). Simultaneous determination of nanomolar nitrite and nitrate in seawater using reverse flow injection analysis coupled with a long path length liquid waveguide capillary cell. Talanta, 117, 456–462. https://doi.org/10.1016/j.talanta.2013.09.042

Sánchez-Quiles, D., Tovar-Sánchez, A., & Horstkotte, B. (2013). Titanium determination by multisyringe flow injection analysis system and a liquid waveguide capillary cell in solid and liquid environmental samples. Marine Pollution Bulletin, 76(1–2), 89–94. https://doi.org/10.1016/j.marpolbul.2013.09.024

Tóth, I. V, Santos, I. C., Azevedo, C. F. M., Fernandes, J. F. S., Páscoa, R. N. M. J., Mesquita, R. B. R., & Rangel, A. O. S. S. (2013). Flow-injection spectrophotometric determination of bromate in bottled drinking water samples using chlorpromazine reagent and a liquid waveguide capillary cell. Analytical Sciences : The International Journal of the Japan Society for Analytical Chemistry, 29(5), 563–570. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23665631

Zimmer, L. A., Cutter, G. A., & High, ". (2012). High Resolution Determination of Nanomolar Concentrations of Dissolved Reactive Phosphate in Ocean Surface Waters Using Long Path Liquid Waveguide Capillary Cells (LWCC) and Spectrometric Detection. OEAS Faculty Publications. Paper, 46. https://doi.org/10.4319/lom.2012.10.568

Bianchi, F., Dommen, J., Mathot, S., & Baltensperger, U. (2012). On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber. Atmospheric Measurement Techniques, 5(7), 1719–1725. https://doi.org/10.5194/amt-5-1719-2012

Horstkotte, B., Alexovič, M., Maya, F., Duarte, C. M., Andruch, V., & Cerdá, V. (2012). Automatic determination of copper by in-syringe dispersive liquid–liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. Talanta, 99, 349–356. https://doi.org/10.1016/j.talanta.2012.05.063

Nuno, R., De, M., & Páscoa, J. (2011). EXPLOITING THE USE OF A LIQUID WAVEGUIDE CAPILLARY CELL FOR SPECTROPHOTOMETRIC DETERMINATIONS IN FLOW-BASED SYSTEMS. Retrieved from https://search.proquest.com/openview/af6e8eef15339d85d69d9846a84d3dc1/1?pq-origsite=gscholar&cbl=2026366&diss=y

Páscoa, R. N. M. J., Tóth, I. V., & Rangel, A. O. S. S. (2011). Spectrophotometric determination of zinc and copper in a multi-syringe flow injection analysis system using a liquid waveguide capillary cell: Application to natural waters. Talanta, 84(5), 1267–1272. https://doi.org/10.1016/J.TALANTA.2011.01.023

Zhang, X., Hecobian, A., Zheng, M., Frank, N. H., & Weber, R. J. (2010). Atmospheric Chemistry and Physics Biomass burning impact on PM 2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis. Atmos. Chem. Phys, 10, 6839–6853. https://doi.org/10.5194/acp-10-6839-2010

Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., & Weber, R. J. (2010). Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmospheric Chemistry and Physics, 10(13), 5965–5977. https://doi.org/10.5194/acp-10-5965-2010

Müller, M., Acker, M., Taut, S., & Bernhard, G. (2010). Complex formation of trivalent americium with salicylic acid at very low concentrations. Journal of Radioanalytical and Nuclear Chemistry, 286(1), 175–180. https://doi.org/10.1007/s10967-010-0639-9

Heller, M. I., & Croot, P. L. (2010). Kinetics of superoxide reactions with dissolved organic matter in tropical Atlantic surface waters near Cape Verde (TENATSO). Journal of Geophysical Research, 115(C12), C12038. https://doi.org/10.1029/2009JC006021

Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., & Weber, R. J. (2010). Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. Atmospheric Chemistry and Physics, 10, 5965–5977. https://doi.org/10.5194/acp-10-5965-2010

Rastogi, N., Oakes, M. M., Schauer, J. J., Shafer, M. M., Majestic, B. J., & Weber, R. J. (2009). New technique for online measurement of water-soluble Fe(II) in atmospheric aerosols. Environmental Science & Technology, 43(7), 2425–2430. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19452896

Amornthammarong, N., & Zhang, J.-Z. (2009). Liquid-waveguide spectrophotometric measurement of low silicate in natural waters. Talanta, 79(3), 621–626. https://doi.org/10.1016/j.talanta.2009.04.050

MA, J., YUAN, D., ZHANG, M., & LIANG, Y. (2009). Reverse flow injection analysis of nanomolar soluble reactive phosphorus in seawater with a long path length liquid waveguide capillary cell and spectrophotometric detection. Talanta, 78(1), 315–320. https://doi.org/10.1016/j.talanta.2008.11.017

Gimbert, L. J., Haygarth, P. M., & Worsfold, P. J. (2007). Determination of nanomolar concentrations of phosphate in natural waters using flow injection with a long path length liquid waveguide capillary cell and solid-state spectrophotometric detection. Talanta, 71(4), 1624–1628. https://doi.org/10.1016/J.TALANTA.2006.07.044

Belz, M. (2007). Simple and sensitive protein detection system using UV LEDs and liquid core waveguides. In T. Vo-Dinh, R. A. Lieberman, & G. Gauglitz (Eds.), Proceedings of SPIE (Vol. 6755, p. 675505). SPIE. https://doi.org/10.1117/12.735348

Gimbert, L. J., Haygarth, P. M., & Worsfold, P. J. (2007). Determination of nanomolar concentrations of phosphate in natural waters using flow injection with a long path length liquid waveguide capillary cell and solid-state spectrophotometric detection. Talanta, 71(4), 1624–1628. https://doi.org/10.1016/j.talanta.2006.07.044

Schofield, O., Kerfoot, J., Mahoney, K., Moline, M., Oliver, M., Lohrenz, S., & Kirkpatrick, G. (2006). Vertical migration of the toxic dinoflagellate Karenia brevis and the impact on ocean optical properties. Journal of Geophysical Research, 111(C6), C06009. https://doi.org/10.1029/2005JC003115

Li, Q. P., Zhang, J.-Z., Millero, F. J., & Hansell, D. A. (2005). Continuous colorimetric determination of trace ammonium in seawater with a long-path liquid waveguide capillary cell. Marine Chemistry, 96(1–2), 73–85. https://doi.org/10.1016/j.marchem.2004.12.001

Nozière, B. (2005). Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols. Geophysical Research Letters, 32(3), L03812. https://doi.org/10.1029/2004GL021942

Schofield, O., Bergmann, T., Oliver, M. J., Irwin, A., Kirkpatrick, G., Bissett, W. P., … Orrico, C. (2004). Inversion of spectral absorption in the optically complex coastal waters of the Mid-Atlantic Bight. Journal of Geophysical Research, 109(C12), C12S04. https://doi.org/10.1029/2003JC002071

United States. National Aeronautics and Space Administration. Office of Aero-Space Technology. (2002). Spinoff 2002. U.S. G.P.O.

Zhelyaskov, V. R., Liu, S., & Broderick, M. P. (2000). Analysis of nanoliter samples of electrolytes using a flow-through microfluorometer. Kidney International, 57(4), 1764–1769. https://doi.org/10.1046/j.1523-1755.2000.00022.x

Calderilla, C., Avivar, J., Leal, L. O., & Cerdà, V. (n.d.). Multivariate optimisation of a rapid and simple automated method for bismuth determination in well water samples exploiting long path length spectrophotometry. Retrieved from https://cimav.repositorioinstitucional.mx/1

full-text. (n.d.).

Issues in Global Environment: Freshwater and Marine Environments: 2011 Edition - Google Books. (n.d.). Retrieved January 28, 2019, from https://books.google.com/books?id=0_TBHvAwl1kC&pg=PA320&lpg=PA320&dq=iron+detection+using+LWCC&source=bl&ots=ugTI2IUyfz&sig=ACfU3U136w2VXDXuNwJ075 5WkGgASI4mAg&hl=en&sa=X&ved=2ahUKEwjJ3_NkJHgAhXqUd8KHWp6AzM4FBDoATACegQIBBAB#v=onepage&q=iron detection      

ScienceDirect (Online service). (n.d.). Talanta. Elsevier.

full-text. (n.d.).

Chen, Y., Huang, Y., Feng, S., & Yuan, D. (n.d.). Please do not adjust margins Solid phase extraction coupled with a liquid waveguide capillary cell for simultaneous redox speciation analysis of dissolved iron in estuarine and coastal waters. Anal. Methods, 1–8. https://doi.org/10.1039/x0xx00000x

Cho, H. R., Jung, E. C., Park, K. K., Park, Y. J., & Kim, W. H. (n.d.). Speciation of U(VI) Using a 1.0-meter Liquid Waveguide Capillary Cell. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:38049243

Self referencing LED detection system for spectroscopy applications. (n.d.).

Imholt, F. (n.d.). Optical properties of secondary organic aerosols using ultraviolet/visible spectroscopy.

Cruise report 64PE370 on RV Pelagia. (n.d.).

Accessories
More Choices:
  1. LWCC Calibration Solution
    LWCC Calibration Solution
    LWCC-CAL
    For pricing, Customers outside of the US and Canada, please contact your distributor.
Video

Long Pathlength Ensures Significant Increase of Sensitivity

Reviews
蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
品牌分类