新闻动态
Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg: The Journal of Chemical Physics: Vol 82, No 1
2025-11-30
To sign up for alerts, please log in first. If you need an account, pleaseregister here To support global research during the COVID-19 pandemic, AIP Publishing is making our content freely available to scientists who register on Scitation.To gain access, please log in or create an account and then click here to activate your free access. You must be logged in to Scitation to activate your free access. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to HgAbstractAb initio effective core potentials (ECP’s) have been generated to replace the Coulomb, exchange, and core‐orthogonality effects of the chemically inert core electron in the transition metal atoms Sc to Hg. For the second and third transition series relative ECP’s have been generated which also incorporate the mass–velocity and Darwin relativistic effects into the potential. The ab initio ECP’s should facilitate valence electron calculations on molecules containing transition‐metal atoms with accuracies approaching all‐electron calculations at a fraction of the computational cost. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3d,4s,4p), (4d,5s,5p), and (5d,6s,6p) orbitals of the first, second, and third transition series atoms, respectively. All‐electron and valence‐electron atomic excitation energies are also compared for the low‐lying states of Sc–Hg, and the valence‐electron calculations are found to reproduce the all‐electron excitation energies (typically within a few tenths of an eV).REFERENCES1. Y. S. Lee and A. D. McLean, J. Chem. Phys. 76, 735 (1982). Google ScholarScitation2. J. P. Desclaux and P. Pyykko, Chem. Phys. Lett. 29, 534 (1974). Google ScholarCrossref3. See Ref. 4 for a complete discussion of effective potential techniques up to 1976. Google Scholar4. L. R. Kahn, P. Baybutt, and D. G. Truhlar, J. Chem. Phys. 65, 3826 (1976). Google ScholarScitation5. (a) S. Topiol, J. W. Moskowitz, and C. F. Melius, J. Chem. Phys. 68, 2864 (1978); Google ScholarScitationS. Topiol, J. W. Moskowitz, and C. F. Melius, 70, 3008 (1979); , J. Chem. Phys. , Google ScholarScitationS. Topiol, J. W. Moskowitz, C. F. Melius, M. D. Newton, and J. Jafiri, Courant Institute Report C00‐3077‐105, 1976. , Google Scholar6. V. Bonifacic and S. Huzinaga, J. Chem. Phys. 60, 2779 (1974); Google ScholarScitationV. Bonifacic and S. Huzinaga, 62, 1507, 1509 (1975); , J. Chem. Phys. , Google ScholarScitationV. Bonifacic and S. Huzinaga, 64, 956 (1976)., J. Chem. Phys. , Google ScholarScitation7. J. C. Barthelat, P. K. Durand, and A. Serafini, Mol. Phys. 33, 159 (1977). Google ScholarCrossref8. A. K. Rappé, T.‐A. Smedley, and W. A. GoddardIII, J. Phys. Chem. 85, 1662 (1981). Google ScholarCrossref9. Y. S. Lee, W. C. Ermler, and K. S. Pitzer, J. Chem. Phys. 67, 5871 (1977). Google Scholar10. W. C. Ermler, Y. S. Lee, K. S. Pitzer, and N. W. Winter, J. Chem. Phys. 69, 976 (1978). Google ScholarScitation11. L. R. Kahn, R. H. Cowan, and P. J. Hay, J. Chem. Phys. 68, 2368 (1978). Google ScholarScitation12. P. J. Hay, W. R. Wadt, L. R. Kahn, and F. W. Bobrowicz, J. Chem. Phys. 69, 984 (1978). Google ScholarScitation13. P. Hafner and W. H. E. Schwarz, J. Phys. B 11, 217 (1978). Google ScholarCrossref14. S. H. Datta, C. S. Ewig, and J. R. Van Wazer, Chem. Phys. Lett. 57, 83 (1978). Google ScholarCrossref15. Y. Ishikawa and G. L. Malli, Fully Relativistic Effective Core Potentials, NATO Advanced Study Institute on Relativistic Effects in Atoms, Molecules, and Solids, edited by G. L. Malli (Plenum, New York, 1983). Google Scholar16. G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B 26, 4199 (1982). Google ScholarCrossref17. L. McMurchie and E. R. Davidson, J. Comput. Phys. 44, 289 (1981). Google ScholarCrossref18. W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985). Google ScholarScitation19. P. A. Christiansen, Y. S. Lee, and K. S. Pitzer, J. Chem. Phys. 71, 4445 (1979). Google ScholarScitation20. D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979). Google ScholarCrossref21. R. W. Cowan and D. C. Griffin, J. Opt. Soc. Am. 66, 1010 (1976). Google ScholarCrossref22. W. C. Ermler, Y. S. Lee, P. A. Christiansen, and K. S. Pitzer, Chem. Phys. Lett. 81, 70 (1981). Google ScholarCrossref23. W. J. Stevens and M. Krauss, Chem. Phys. Lett. 86, 320 (1982); Google ScholarCrossrefW. J. Stevens and M. Krauss, J. Chem. Phys. 76, 3834 (1982). , Google ScholarScitation24. J. S. Cohen, W. R. Wadt, and P. J. Hay, J. Chem. Phys. 71, 2955 (1978). Google ScholarScitation25. W. R. Wadt, Chem. Phys. Lett. 89, 245 (1982). Google ScholarCrossref26. R. L. Martin and P. J. Hay, J. Chem. Phys. 75, 4539 (1981). Google ScholarScitation27. A. K. Rappé, T. Smedley, and W. A. GoddardIII, J. Phys. Chem. 85, 2607 (1981). Google ScholarCrossref28. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1984). Google ScholarScitation29. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970). Google ScholarScitation30. P. J. Hay, J. Chem. Phys. 66, 4377 (1977). Google ScholarScitation© 1985 American Institute of Physics.false Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.
本文链接: https://www.ebiomall.cn/b336-molecular/info-1492511513.html
免责声明 本文仅代表作者个人观点,与本网无关。其创作性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
版权声明 未经蚂蚁淘授权不得转载、摘编或利用其他方式使用上述作品。已经经本网授权使用作品的,应该授权范围内使用,并注明“来源:蚂蚁淘”。违反上述声明者,本网将追究其相关法律责任。
相关文章
2020-07-08
2020-07-19
2020-09-12
2020-10-11
2020-10-15

▍
品牌分类
▍
官网分类
▍
品牌问答
