
DPP-DTT is a high mobility p-type polymer, suitable for OFET and sensing and photovoltaic applications.
Luminosyn™ DPP-DTT
Luminosyn™ DPP-DTT (also referred to as PDPP2T-TT-OD) is now available.
High molecular weightHigher molecular weight offers higher charge mobility
High purityDPP-DTT is purified via Soxhlet extraction with methanol, hexane and chlorobenzene under an argon atmosphere
Batch-specific GPC dataHave confidence in what you are ordering; batch-specific GPC data for your thesis or publications
Large quantity ordersPlan your experiments with confidence with polymers from the same batch
OFET and Sensing Applications
The exceptional high mobility of this polymer of up to 10 cm2/Vs [2] via solution-processed techniques, combined with its intrinsic air stability (even during annealing) has made PDPP2T-TT-OD of significant interest for OFET and sensing purposes.
While the highest mobilities require exceptional molecular weights of around 500 kD (and with commensurate solubility issues), high mobilities in the region of 1-3 cm2/Vs can still be achieved with good solution-processing at around 250 kD. As such, we have made a range of molecular weights available to allow for different processing techniques.
In our own tests, we have found that by using simple spin-coating onto an OTS-treated silicon substrate (using our prefabricated test chips), high mobilities comparable to the literature can be achieved (1-3 cm2/Vs). Further improvements may also be possible with more advanced strain-inducing deposition techniques.




Photovoltaic Applications
Although shown as a promising hole-mobility polymer for OFETs, when used as the donor material in a bulk heterojunction photovoltaic (with PC70BM as the acceptor), initial efficiencies of 1.6% were achieved for DPP-DTT [3]. The low device metrics were attributed to poor film morphology. However, a higher efficiency of 6.9% was achieved by using thicker film (220 nm) [4].
PDPP2T-TT-OD has also recently been used successfully as an active-layer dopant material in PTB7-based devices [5]. An improvement in device performance was observed, with average efficiencies increasing from 7.6% to 8.3% when the dopant concentration of DPP-DTT was 1 wt%. The use of DPP-DTT as a high-mobility hole-interface layer for perovskite hybrid devices has also been investigated [6].
Synthetic route
DPP-DTT synthesis: DPP-DTT was synthesised by following the procedures described in [2] and [3] (please refer to the following references):
With 2-thiophenecarbonitrile and dimethyl succinate as starting materials in t-amyl alcohol, it gave 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione. Alkylation of 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione with 2-octyldodecylbromide in dimethylformamide afforded 3,6-bis(thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione. Further bromination gave 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (M1).

Further reaction of M1 with 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene (M2) under Stille coupling conditions gave the target polymer DPP-DTT, which was further purified via Soxhlet extraction with methanol, hexane and then chloroform.

General Information
CAS number | 1260685-66-2 (1444870-74-9) |
Chemical formula | (C60H88N2O2S4)n |
HOMO / LUMO | HOMO = -5.2 eV, LUMO = -3.5 eV [2] |
Synonyms |
|
Solubility | Chloroform, chlorobenzene and dichlorobenzene |
Classification / Family | Bithiophene, Thienothiophene, Organic semiconducting materials, Low band-gap polymers, Organic photovoltaics, Polymer solar cells, OFETs |

MSDS Documentation
DPP-DTT MSDS sheet
Pricing
Batch | Quantity | Price |
M0311A1 | 100 mg | £199.00 |
M0311A1 | 250 mg | £399.00 |
M0311A1 | 500 mg | £686.00 |
M0311A1 | 1 g | £1200.00 |
M0311A1 | 2 g | £2200.00 |
M0311A1 | 5 g / 10 g* | Please enquire |
*For 5 - 10 grams order quantity, the lead time is 4-6 weeks.
Batch information
Batch | Mw | Mn | PDI | Stock info |
M314 | 292,200 | 74,900 | 3.90 | Discontinued |
M315 | 278,781 | 76,323 | 3.65 | Discontinued |
M316 | ≥30,000 | ≤3 | Discontinued | |
M317 | 290,668 | 143,039 | 2.03 | Discontinued |
M0311A1 | 183,332 | 37,335 | 4.91 | In stock |
References
- A High Mobility P-Type DPP-Thieno[3,2-b]thiophene Copolymer for Organic Thin-Film Transistors, Y. Li et al., Adv. Mater., 22, 4862-4866 (2010)
- A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, J. Li et al., Nature Scientific Reports, 2, 754, DOI: 10.1038/srep00754 (2012)
- Synthesis of low bandgap polymer based on 3,6-dithien-2-yl-2,5-dialkylpyrrolo[3,4-c]pyrrole-1,4-dione for photovoltaic applications, G. Zhang et al., Sol. Energ. Mat. Sol. C., 95, 1168-1173 (2011)
- Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films, Li W et al., Adv Mater., 25(23):3182-3186 (2013); doi:10.1002/adma.201300017.
- Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer, S. Liu et al., Energy Environ. Sci., 8, 1463-1470 (2015)
- Electro-optics of perovskite solar cells, Q. Lin et al., Nature Photonics, 9, 106-112 (2015)
- A Vertical Organic Transistor Architecture for Fast Nonvolatile Memory, X. She et al., adv. Mater., 29, 1604769 (2017); DOI: 10.1002/adma.201604769.
- Solvent-Free Processable and Photo-Patternable Hybrid Gate Dielectric for Flexible Top-Gate Organic Field-Effect Transistors, J. S. Kwon et al., ACS Appl. Mater. Interfaces, 9 (6), 5366–5374 (2017); DOI: 10.1021/acsami.6b14500.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
然后往容器中滴液体直至读数为0.70时就可以了
我们每天长时间都在实验室里和移液器(俗称“枪”)打交道,枪已经成为实验室标配,因为它是很多实验过程和分析的基础。但正因为如此,我们都认为它很简单,就像走路和呼吸一样自然,不需要你花任何心思,它就可以做你想做的事情。但事实真的是这样吗?
事实上,枪虽小但往往关系到实验结果的准确性,有小伙伴经常抱怨枪老出问题:
1.用了一段时间就不准漏液了?
2.液体容易倒吸?
3.移液排不干净?……
到底是哪里出问题了呢,你有没有碰到这样的迷之困惑?
当当当,福利到,来自梅特勒-托利多瑞宁移液技术专家自告奋勇来解答大伙儿的困惑,有任何关于移液器使用的问题欢迎来和我们探讨共同进步哟~
最后感谢丁香园支持本活动!
我们会每天抽时间统一回复大家的问题,专家答疑截止12月31日哦!
塑料类工具灭菌有什么需要注意的吗?谢谢!
2、吸液:用右手的拇指和中指捏住移液管的上端,将管的下口插入欲吸取的溶液中,插入
不要太浅或太深,一般为10~20mm处,太浅会产生吸空,把溶液吸到洗耳球内弄脏溶液,
太深又会在管外沾附溶液过多。左手拿洗耳球,接在管的上口把溶液慢慢吸入,先吸入该管 容量的1/3
左右,用右手的食指按住管口,取出,横持,并转动管子使溶液接触到刻度以上 部位,以置换内壁的水分,然后将溶液从管的下口放出并弃去,如此用反复洗3
次后,即可 吸取溶液至刻度以上,立即用右手的食指按住管口。 3、调节液面:将移液管向上提升离开液面,管的末端仍靠在盛溶液器皿的内壁上,管身保
持直立,略为放松食指(有时可微微转动吸管)使管内溶液慢慢从下口流出,直至溶液的弯
月面底部与标线相切为止,立即用食指压紧管口。将尖端的液滴靠壁去掉,移出移液管,插 入承接溶液的器皿中。
4、放出溶液:承接溶液的器皿如是锥形瓶,应使锥形瓶倾斜30°,移液管直立,管下端紧
靠锥形瓶内壁,稍松开食指,让溶液沿瓶壁慢慢流下,流完后管尖端接触瓶内壁约15 秒后,
再将移液管移去,残留在管末端的少量溶液,不可用外力强使其流出,因较准时已考虑了末 端保留的溶液的体积。
大家做溶出曲线稀释溶液时有某有再用移液枪?移液枪量取1ml的体积准确不?

