
Molybdenum sulfide selenide (MoSSe) is a two-dimensional TMDC. It is often referred to as a "Janus" MXY transition metal dichalcogenide.
Janus MoSSe consists of three layers of atoms: Sulfur, molybdenum, and selenium from the top to the bottom in the sequence of S-Mo-Se. The geometry of monolayer Janus MoSSe is different from MoS2 and MoSe2 - with one side of the Janus MoSSe structure being S atoms, and the other side being Se atoms. The Mo atom layer is sandwiched between S and Se layers, and multilayers of MoSSe are stacked by the vdW interactions. Due to the the structural asymmetry and a large out-of-plane piezoelectric polarisation of Janus MoSSe, it is possible to stack the dipoles of the individual layers and obtain an atomically-thin pn-junction across the multilayer system by stacking multiple Janus MoSSe layers on top of each other.
Similar to MoS2, the MoSSe monolayer also exhibits a honeycomb pattern from the top view of the lattice. However, the mirror symmetry is broken due to the different electronic properties of sulfur and selenium, which leads to the polar properties of MoSSe.
Bilayer MoSSe shows a preferred pattern with AC-stacking, where the S atom in the bottom layer is pointing to the Mo atom in the top layer. The dipole properties, and carrier mobility of the electron and hole are greatly affected by changing the thickness of multilayer MoSSe films.
General Information
CAS number | 132004-88-7 |
Chemical formula | MoSSe |
Molecular weight | 206.96 g/mol |
Bandgap | 2.14 eV (direct) [1] |
Classification / Family | Janus transition metal dichalcogenides (TMDCs), 2D semiconductor materials, Nano-electronics, Nano-photonics, Materials science |
Product Details
Form | Powder |
Preparation | Synthetic - Chemical Vapour Transport (CVT) |
Purity | ≥ 99.995% |
Structure | Hexagonal |
Electronic properties | 2D Semiconductor |
Melting point | n/a |
Appearance | Black powder |
Chemical Structure

Applications
Janus MoSSe monolayers possess the highly-desired vertical piezoelectric effect, which leads to enhance the flexibility and compatibility in piezoelectric device operations. The out-of-plane piezoelectricity also provides a platform to design nanoelectromechanical devices and future spintronics. Mono- and multi-layer Janus MoSSe have also been used as photocatalysts for solar water splitting and lithium-Ion batteries.
Synthesis
Molybdenum sulfide selenide powder is obtained via the CVT method, with purity typically in excess of 99.995%.
Usage
High-purity molybdenum sulfide selenide powder is generally used to prepare MoSSe nanosheets and nanoparticles by liquid exfoliation. High-purity MoWSe2 powder can also be used in CV deposition to prepare high-quality mono- and bi-layer films.
MSDS Documentation
Molybdenum sulfide selenide powder MSDS sheet
Pricing
Product Code | Quantity | Price |
M2143C1 | 500 mg | £169.00 |
M2143C1 | 1 g | £271.00 |
Literature and Reviews
- Tunable Electronic and Optical Properties of Monolayer and Multilayer Janus MoSSe as a Photocatalyst for Solar Water Splitting: A First-Principles Study, Z. Guan et al., J. Phys. Chem. C, 122, 6209−6216 (2018); DOI: 10.1021/acs.jpcc.8b00257.
- Distorted Janus Transition Metal Dichalcogenides: Stable Two-Dimensional Materials with Sizable Band Gap and Ultrahigh Carrier Mobility, X. Tang et al., J. Phys. Chem. C, 122, 19153−19160 (2018); DOI: 10.1021/acs.jpcc.8b04161.
- Efficient Charge Separation in 2D Janus van der Waals Structures with Built-in Electric Fields and Intrinsic p−n Doping, A. C. Riis-Jensen et al., J. Phys. Chem. C, 122, 24520−24526 (2018); DOI: 10.1021/acs.jpcc.8b05792.
- Theoretical Prediction of Janus MoSSe as a Potential Anode Material for Lithium-Ion Batteries, C. Shang et al., J. Phys. Chem. C, 122, 23899−23909 (2018); DOI: 10.1021/acs.jpcc.8b07478.
- Electronic and Optical Properties of Pristine and Vertical and Lateral Heterostructures of Janus MoSSe and WSSe, F. Li et al., J. Phys. Chem. Lett., 8, 5959−5965 (2017); DOI: 10.1021/acs.jpclett.7b02841.
- Stacked Janus Device Concepts: Abrupt pn-Junctions and Cross-Plane Channels, M. Palsgaard et al., Nano Lett. 2018, 18, 7275−7281 (2018); DOI: 10.1021/acs.nanolett.8b03474.
- Janus Monolayer Transition-Metal Dichalcogenides, J. Zhang et al., ACS Nano, 11, 8192−8198 (2017); DOI: 10.1021/acsnano.7b03186.
- A Janus MoSSe monolayer: a potential wide solarspectrum water-splitting photocatalyst with a low carrier recombination rate, Mater. Chem. A, 6, 2295 (2018); DOI: 10.1039/c7ta10015a.
- Tunable dipole and carrier mobility for a few layer Janus MoSSe structure, W. Yin et al., J. Mater. Chem. C, 6, 1693 (2018); DOI: 10.1039/c7tc05225a.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
然后往容器中滴液体直至读数为0.70时就可以了
我们每天长时间都在实验室里和移液器(俗称“枪”)打交道,枪已经成为实验室标配,因为它是很多实验过程和分析的基础。但正因为如此,我们都认为它很简单,就像走路和呼吸一样自然,不需要你花任何心思,它就可以做你想做的事情。但事实真的是这样吗?
事实上,枪虽小但往往关系到实验结果的准确性,有小伙伴经常抱怨枪老出问题:
1.用了一段时间就不准漏液了?
2.液体容易倒吸?
3.移液排不干净?……
到底是哪里出问题了呢,你有没有碰到这样的迷之困惑?
当当当,福利到,来自梅特勒-托利多瑞宁移液技术专家自告奋勇来解答大伙儿的困惑,有任何关于移液器使用的问题欢迎来和我们探讨共同进步哟~
最后感谢丁香园支持本活动!
我们会每天抽时间统一回复大家的问题,专家答疑截止12月31日哦!
塑料类工具灭菌有什么需要注意的吗?谢谢!
2、吸液:用右手的拇指和中指捏住移液管的上端,将管的下口插入欲吸取的溶液中,插入
不要太浅或太深,一般为10~20mm处,太浅会产生吸空,把溶液吸到洗耳球内弄脏溶液,
太深又会在管外沾附溶液过多。左手拿洗耳球,接在管的上口把溶液慢慢吸入,先吸入该管 容量的1/3
左右,用右手的食指按住管口,取出,横持,并转动管子使溶液接触到刻度以上 部位,以置换内壁的水分,然后将溶液从管的下口放出并弃去,如此用反复洗3
次后,即可 吸取溶液至刻度以上,立即用右手的食指按住管口。 3、调节液面:将移液管向上提升离开液面,管的末端仍靠在盛溶液器皿的内壁上,管身保
持直立,略为放松食指(有时可微微转动吸管)使管内溶液慢慢从下口流出,直至溶液的弯
月面底部与标线相切为止,立即用食指压紧管口。将尖端的液滴靠壁去掉,移出移液管,插 入承接溶液的器皿中。
4、放出溶液:承接溶液的器皿如是锥形瓶,应使锥形瓶倾斜30°,移液管直立,管下端紧
靠锥形瓶内壁,稍松开食指,让溶液沿瓶壁慢慢流下,流完后管尖端接触瓶内壁约15 秒后,
再将移液管移去,残留在管末端的少量溶液,不可用外力强使其流出,因较准时已考虑了末 端保留的溶液的体积。
大家做溶出曲线稀释溶液时有某有再用移液枪?移液枪量取1ml的体积准确不?

