Poly[2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) is a PPV derivative that is particularly favourable for device fabrication due to its great solubility in most of the common organic solvents owing to its asymmetric side chains. To date, MEH-PPV is possibly one of the most celebrated and studied polymer semiconductors, recognising its applications in OPV, OFETs, polymer light-emitting diodes (PLED) and perovskite solar cells.
The first example of a polymer solar cell with a convincing understanding of the physics and chemistry involved was the bilayer heterojunction cell utilising the soluble polymer MEH-PPV and the Buckminsterfullerene C60 where a power conversion efficiency of 0.04% was obtained using monochromatic light.[1, 2]
ITO/MEH-PPV/TPBI doped by 10 wt % Cs2CO3/Cs2CO3/Ca/Al [9]
Colour
Orange-Red
Max. EQE
2.2%
Max. Luminance
62,000 cd/m2
Max. Current Efficiency
5.7 cd/A
*For chemical structure informations please refer to the cited references.
MSDS Documentation
MEH-PPV MSDS sheet
Pricing
Batch
Quantity
Price
M542
250 mg
£173.00
M542
500 mg
£364.00
M542
1 g
£563.00
Batch information
Batch
Mw
Mn
PDI
Stock info
M541
372,942
72,485
5.15
Discontinued
M542
210,000
53,850
3.90
Out of stock
Literature and Reviews
Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene, N. Sariciftci et al., Science, 258, 1474–1476 (1992).
Semiconducting polymer—buckminsterfullerene heterojunctions—diodes, photodiodes and photovoltaic cells, N. Sariciftci et al., Appl. Phys. Lett., 62, 585–587 (1993).
High-efficiency inverted top-emitting polymer light-emitting diodes, L. Hou et al., Appl. Phys. Lett., 87, 153509 (2005); doi: 10.1063/1.2099528 .
High-efficiency and good color quality white light-emitting devices based on polymer blend, J. Zou et al., Org. Electronics, 10, 843–848 ((2009), doi:10.1016/j.orgel.2009.04.007.
High-efficiency polymer light-emitting diodes based on poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene] with plasma-polymerized CHF3-modified indium tin oxide as an anode, C-C. Hsiao et al., Appl. Phys. Lett. 88, 033512 (2006); http://dx.doi.org/10.1063/1.2165192.
Achieving High-Efficiency Polymer White-Light-Emitting Devices, J. Huang et al., Adv. Mater., 18, 114–117 (2006); DOI: 10.1002/adma.20050110.
Enhanced performance of white polymer light-emitting diodes using polymer blends as hole-transporting layers, Q. Sun et al., Appl. Phys. Lett. 89, 153501 (2006); http://dx.doi.org/10.1063/1.2360248.
Multilayer white polymer light-emitting diodes with deoxyribonucleic acid-cetyltrimetylammonium complex as a hole-transporting/electronblocking, Q.Sun et al., Appl. Phys. Lett. 92, 251108 (2008); doi: 10.1063/1.2948864 .
Design of hole blocking layer with electron transport channels for high performance polymer light-emitting diode, C-C. Hsiao et al., Adv. Mater., 20, 1982–1988 (2008); DOI:10.1002/adma.200702150.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
天呐!每天喝两杯汽水或增加个体患癌风险 日期:2016年8月9日 13:31 近日,刊登于国际杂志the Journal of the National Cancer Institute上的一项研究报告中,来自瑞典卡罗林斯卡学院(Karolinska Institute)的研究者通过研究表明,每天两杯汽水或可增加个体患癌风险。有很多理由值得我们去考虑尽量减少汽水的摄入,因为每天摄入过多汽水往往... 查看更多>