Mouse Haptoglobin ELISA Kit
CATALOG # E-90HPT- Add to Wishlist
Details
- Mouse
- Goat
- ELISA
- Haptoglobin
- 2-8C
- Plasma, Serum
- 1.95 ng/ml - 125ng/ml
- 0.586 ng/ml
- 40 min.
Documents
- Data Sheet
- SDS
Kit Contents
- 1
One ELISA Micro Plate with 12 removable (8 well) micro well strips in holding frame, each coated with Affinity Purified Antibody
- 2
One ELISA Kit Data Sheet
- 3
One Certificate of Analysis
- 4
One 50 mL bottle of Diluent Running Buffer
- 5
One 50 mL bottle of 20X Concentrated Wash Solution
- 6
One 150 uL Vial of Affinity Purified HRP Conjugated Antibody in stabilizing buffer
- 7
One 12 mL vial of Chromogen-Substrate Solution
- 8
One 12 mL vial of Stop Solution
- 9
One Calibrator Vial
Citations
This product is for research use only, not for diagnostic or therapeutic use.
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
>
SIM 凝胶、化学发光图像分析系统为科学家提供了一种新一代36Bit,Bio-1DExpress软件,Windows98/2000/XP均兼容,能够观察分析各种透明或不透明的电泳图像,如EB染色胶,蛋白胶,放射自显影、印迹、斑点印迹等,满足定性,定量分析的迫切需要。
为凝胶图像分析提供了先进,操作简便的解决方法。
为广大从事分子生物学、医院临床检验、法医物证的研究人员提供了一个快捷的解决方式。
它给出更简便、更迅速及更准确的方式以再现、收集、分析图像中的细节。
由图像拍摄、图像处理、数据分析、报告打印等组成一体,符合常规实验的操作思路,做到方便、实用、简单有助于研究人员的正确、迅速地得到凝胶电泳结果照片和分析的其迅速、强大、准确、可靠、经过实践检验,能够使工作更加容易,更加有效。
向左转|向右转
一是紫外灯照射出问题了;
也可能是门没关紧,经常接触又断掉,不稳定;
如果成像仪没问题,那很可能就是电脑上操纵拍照的软件在设置上有了问题,应该有配套的说明书的,可以参考;
实在不行,可以报修的,没必要自己找烦恼。
列文虎克又动手做了一个金属支架和一个小圆筒,把两块镜片分别装在圆筒两头,还安上旋钮,来调节两块镜片间的距离。这样,世界上第一台显微镜就诞生了。
第二条 本规定适用于开展放射诊疗工作的医疗机构。
本规定所称放射诊疗工作,是指使用放射性同位素、射线装置进行临床医学诊断、治疗和健康检查的活动。
第三条 卫生部负责全国放射诊疗工作的监督管理。
县级以上地方人民政府卫生行政部门负责本行政区域内放射诊疗工作的监督管理。
第四条 放射诊疗工作按照诊疗风险和技术难易程度分为四类管理:
(一)放射治疗;
(二)核医学;
(三)介入放射学;
(四)X射线影像诊断。
医疗机构开展放射诊疗工作,应当具备与其开展的放射诊疗工作相适应的条件,经所在地县级以上地方卫生行政部门的放射诊疗技术和医用辐射机构许可(以下简称放射诊疗许可)。
第五条 医疗机构应当采取有效措施,保证放射防护、安全与放射诊疗质量符合有关规定、标准和规范的要求。 第六条 医疗机构开展放射诊疗工作,应当具备以下基本条件:
(一)具有经核准登记的医学影像科诊疗科目;
(二)具有符合国家相关标准和规定的放射诊疗场所和配套设施;
(三)具有质量控制与安全防护专(兼)职管理人员和管理制度,并配备必要的防护用品和监测仪器;
(四)产生放射性废气、废液、固体废物的,具有确保放射性废气、废物、固体废物达标排放的处理能力或者可行的处理方案;
(五)具有放射事件应急处理预案。
第七条 医疗机构开展不同类别放射诊疗工作,应当分别具有下列人员:
(一)开展放射治疗工作的,应当具有:
1.中级以上专业技术职务任职资格的放射肿瘤医师;
2.病理学、医学影像学专业技术人员;
3.大学本科以上学历或中级以上专业技术职务任职资格的医学物理人员;
4.放射治疗技师和维修人员。
(二)开展核医学工作的,应当具有:
1.中级以上专业技术职务任职资格的核医学医师;
2.病理学、医学影像学专业技术人员;
3.大学本科以上学历或中级以上专业技术职务任职资格的技术人员或核医学技师。
(三)开展介入放射学工作的,应当具有:
1.大学本科以上学历或中级以上专业技术职务任职资格的放射影像医师;
2.放射影像技师;
3.相关内、外科的专业技术人员。
(四)开展X射线影像诊断工作的,应当具有专业的放射影像医师。
第八条 医疗机构开展不同类别放射诊疗工作,应当分别具有下列设备:
(一)开展放射治疗工作的,至少有1台远距离放射治疗装置,并具有模拟定位设备和相应的治疗计划系统等设备;
(二)开展核医学工作的,具有核医学设备及其他相关设备;
(三)开展介入放射学工作的,具有带影像增强器的医用诊断X射线机、数字减影装置等设备;
(四)开展X射线影像诊断工作的,有医用诊断X射线机或CT机等设备。
第九条 医疗机构应当按照下列要求配备并使用安全防护装置、辐射检测仪器和个人防护用品:
(一)放射治疗场所应当按照相应标准设置多重安全联锁系统、剂量监测系统、影像监控、对讲装置和固定式剂量监测报警装置;配备放疗剂量仪、剂量扫描装置和个人剂量报警仪;
(二)开展核医学工作的,设有专门的放射性同位素分装、注射、储存场所,放射性废物屏蔽设备和存放场所;配备活度计、放射性表面污染监测仪;
(三)介入放射学与其他X射线影像诊断工作场所应当配备工作人员防护用品和受检者个人防护用品。
第十条 医疗机构应当对下列设备和场所设置醒目的警示标志:
(一)装有放射性同位素和放射性废物的设备、容器,设有电离辐射标志;
(二)放射性同位素和放射性废物储存场所,设有电离辐射警告标志及必要的文字说明;
(三)放射诊疗工作场所的入口处,设有电离辐射警告标志;
(四)放射诊疗工作场所应当按照有关标准的要求分为控制区、监督区,在控制区进出口及其他适当位置,设有电离辐射警告标志和工作指示灯。 第十一条 医疗机构设置放射诊疗项目,应当按照其开展的放射诊疗工作的类别,分别向相应的卫生行政部门提出建设项目卫生审查、竣工验收和设置放射诊疗项目申请:
(一)开展放射治疗、核医学工作的,向省级卫生行政部门申请办理;
(二)开展介入放射学工作的,向设区的市级卫生行政部门申请办理;
(三)开展X射线影像诊断工作的,向县级卫生行政部门申请办理。
同时开展不同类别放射诊疗工作的,向具有高类别审批权的卫生行政部门申请办理。
第十二条 新建、扩建、改建放射诊疗建设项目,医疗机构应当在建设项目施工前向相应的卫生行政部门提交职业病危害放射防护预评价报告,申请进行建设项目卫生审查。立体定向放射治疗、质子治疗、重离子治疗、带回旋加速器的正电子发射断层扫描诊断等放射诊疗建设项目,还应当提交卫生部指定的放射卫生技术机构出具的预评价报告技术审查意见。
卫生行政部门应当自收到预评价报告之日起30日内,作出审核决定。经审核符合国家相关卫生标准和要求的,方可施工。
第十三条 医疗机构在放射诊疗建设项目竣工验收前,应当进行职业病危害控制效果评价;并向相应的卫生行政部门提交下列资料,申请进行卫生验收:
(一)建设项目竣工卫生验收申请;
(二)建设项目卫生审查资料;
(三)职业病危害控制效果放射防护评价报告;
(四)放射诊疗建设项目验收报告。
立体定向放射治疗、质子治疗、重离子治疗、带回旋加速器的正电子发射断层扫描诊断等放射诊疗建设项目,应当提交卫生部指定的放射卫生技术机构出具的职业病危害控制效果评价报告技术审查意见和设备性能检测报告。
第十四条 医疗机构在开展放射诊疗工作前,应当提交下列资料,向相应的卫生行政部门提出放射诊疗许可申请:
(一)放射诊疗许可申请表;
(二)《医疗机构执业许可证》或《设置医疗机构批准书》(复印件);
(三)放射诊疗专业技术人员的任职资格证书(复印件);
(四)放射诊疗设备清单;
(五)放射诊疗建设项目竣工验收合格证明文件。
第十五条 卫生行政部门对符合受理条件的申请应当即时受理;不符合要求的,应当在5日内一次性告知申请人需要补正的资料或者不予受理的理由。
卫生行政部门应当自受理之日起20日内作出审查决定,对合格的予以批准, 发给《放射诊疗许可证》;不予批准的,应当书面说明理由。
《放射诊疗许可证》的格式由卫生部统一规定(见附件)。
第十六条 医疗机构取得《放射诊疗许可证》后,到核发《医疗机构执业许可证》的卫生行政执业登记部门办理相应诊疗科目登记手续。执业登记部门应根据许可情况,将医学影像科核准到二级诊疗科目。
未取得《放射诊疗许可证》或未进行诊疗科目登记的,不得开展放射诊疗工作。
第十七条 《放射诊疗许可证》与《医疗机构执业许可证》同时校验,申请校验时应当提交本周期有关放射诊疗设备性能与辐射工作场所的检测报告、放射诊疗工作人员健康监护资料和工作开展情况报告。
医疗机构变更放射诊疗项目的,应当向放射诊疗许可批准机关提出许可变更申请,并提交变更许可项目名称、放射防护评价报告等资料;同时向卫生行政执业登记部门提出诊疗科目变更申请,提交变更登记项目及变更理由等资料。
卫生行政部门应当自收到变更申请之日起20日内做出审查决定。未经批准不得变更。
第十八条 有下列情况之一的,由原批准部门注销放射诊疗许可,并登记存档,予以公告:
(一)医疗机构申请注销的;
(二)逾期不申请校验或者擅自变更放射诊疗科目的;
(三)校验或者办理变更时不符合相关要求,且逾期不改进或者改进后仍不符合要求的;
(四)歇业或者停止诊疗科目连续1年以上的;
(五)被卫生行政部门吊销《医疗机构执业许可证》的。 第十九条 医疗机构应当配备专(兼)职的管理人员,负责放射诊疗工作的质量保证和安全防护。其主要职责是:
(一)组织制定并落实放射诊疗和放射防护管理制度;
(二)定期组织对放射诊疗工作场所、设备和人员进行放射防护检测、监测和检查;
(三)组织本机构放射诊疗工作人员接受专业技术、放射防护知识及有关规定的培训和健康检查;
(四)制定放射事件应急预案并组织演练;
(五)记录本机构发生的放射事件并及时报告卫生行政部门。
第二十条 医疗机构的放射诊疗设备和检测仪表,应当符合下列要求:
(一)新安装、维修或更换重要部件后的设备,应当经省级以上卫生行政部门资质认证的检测机构对其进行检测,合格后方可启用;
(二)定期进行稳定性检测、校正和维护保养,由省级以上卫生行政部门资质认证的检测机构每年至少进行1次状态检测;
(三)按照国家有关规定检验或者校准用于放射防护和质量控制的检测仪表;
(四)放射诊疗设备及其相关设备的技术指标和安全、防护性能,应当符合有关标准与要求。
不合格或国家有关部门规定淘汰的放射诊疗设备不得购置、使用、转让和出租。
第二十一条 医疗机构应当定期对放射诊疗工作场所、放射性同位素储存场所和防护设施进行放射防护检测,保证辐射水平符合有关规定或者标准。
放射性同位素不得与易燃、易爆、腐蚀性物品同库储存;储存场所应当采取有效的防泄漏等措施,并安装必要的报警装置。
放射性同位素储存场所应当有专人负责,有完善的存入、领取、归还登记和检查的制度,做到交接严格,检查及时,账目清楚,账物相符,记录资料完整。
第二十二条 放射诊疗工作人员应当按照有关规定配戴个人剂量计。
第二十三条 医疗机构应当按照有关规定和标准,对放射诊疗工作人员进行上岗前、在岗期间和离岗时的健康检查,定期进行专业及防护知识培训,并分别建立个人剂量、职业健康管理和教育培训档案。
第二十四条 医疗机构应当制定与本单位从事的放射诊疗项目相适应的质量保证方案,遵守质量保证监测规范。
第二十五条 放射诊疗工作人员对患者和受检者进行医疗照射时,应当遵守医疗照射正当化和放射防护最优化的原则,有明确的医疗目的,严格控制受照剂量;对邻近照射野的敏感器官和组织进行屏蔽防护,并事先告知患者和受检者辐射对健康的影响。
第二十六条 医疗机构在实施放射诊断检查前应当对不同检查方法进行利弊分析,在保证诊断效果的前提下,优先采用对人体健康影响较小的诊断技术。
实施检查应当遵守下列规定:
(一)严格执行检查资料的登记、保存、提取和借阅制度,不得因资料管理、受检者转诊等原因使受检者接受不必要的重复照射;
(二)不得将核素显像检查和X射线胸部检查列入对婴幼儿及少年儿童体检的常规检查项目;
(三)对育龄妇女腹部或骨盆进行核素显像检查或X射线检查前,应问明是否怀孕;非特殊需要,对受孕后8至15周的育龄妇女,不得进行下腹部放射影像检查;
(四)应当尽量以胸部X射线摄影代替胸部荧光透视检查;
(五)实施放射性药物给药和X射线照射操作时,应当禁止非受检者进入操作现场;因患者病情需要其他人员陪检时,应当对陪检者采取防护措施。
第二十七条 医疗机构使用放射影像技术进行健康普查的,应当经过充分论证,制定周密的普查方案,采取严格的质量控制措施。
使用便携式X射线机进行群体透视检查,应当报县级卫生行政部门批准。
在省、自治区、直辖市范围内进行放射影像健康普查,应当报省级卫生行政部门批准。
跨省、自治区、直辖市或者在全国范围内进行放射影像健康普查,应当报卫生部批准。
第二十八条 开展放射治疗的医疗机构,在对患者实施放射治疗前,应当进行影像学、病理学及其他相关检查,严格掌握放射治疗的适应证。对确需进行放射治疗的,应当制定科学的治疗计划,并按照下列要求实施:
(一)对体外远距离放射治疗,放射诊疗工作人员在进入治疗室前,应首先检查操作控制台的源位显示,确认放射线束或放射源处于关闭位时,方可进入;
(二)对近距离放射治疗,放射诊疗工作人员应当使用专用工具拿取放射源,不得徒手操作;对接受敷贴治疗的患者采取安全护理,防止放射源被患者带走或丢失;
(三)在实施永久性籽粒插植治疗时,放射诊疗工作人员应随时清点所使用的放射性籽粒,防止在操作过程中遗失;放射性籽粒植入后,必须进行医学影像学检查,确认植入部位和放射性籽粒的数量;
(四)治疗过程中,治疗现场至少应有2名放射诊疗工作人员,并密切注视治疗装置的显示及病人情况,及时解决治疗中出现的问题;严禁其他无关人员进入治疗场所;
(五)放射诊疗工作人员应当严格按照放射治疗操作规范、规程实施照射;不得擅自修改治疗计划;
(六)放射诊疗工作人员应当验证治疗计划的执行情况,发现偏离计划现象时,应当及时采取补救措施并向本科室负责人或者本机构负责医疗质量控制的部门报告。
第二十九条 开展核医学诊疗的医疗机构,应当遵守相应的操作规范、规程,防止放射性同位素污染人体、设备、工作场所和环境;按照有关标准的规定对接受体内放射性药物诊治的患者进行控制,避免其他患者和公众受到超过允许水平的照射。
第三十条 核医学诊疗产生的放射性固体废物、废液及患者的放射性排出物应当单独收集,与其他废物、废液分开存放,按照国家有关规定处理。
第三十一条 医疗机构应当制定防范和处置放射事件的应急预案;发生放射事件后应当立即采取有效应急救援和控制措施,防止事件的扩大和蔓延。
第三十二条 医疗机构发生下列放射事件情形之一的,应当及时进行调查处理,如实记录,并按照有关规定及时报告卫生行政部门和有关部门:
(一)诊断放射性药物实际用量偏离处方剂量50%以上的;
(二)放射治疗实际照射剂量偏离处方剂量25%以上的;
(三)人员误照或误用放射性药物的;
(四)放射性同位素丢失、被盗和污染的;
(五)设备故障或人为失误引起的其他放射事件。 第三十三条 医疗机构应当加强对本机构放射诊疗工作的管理,定期检查放射诊疗管理法律、法规、规章等制度的落实情况,保证放射诊疗的医疗质量和医疗安全。
第三十四条 县级以上地方人民政府卫生行政部门应当定期对本行政区域内开展放射诊疗活动的医疗机构进行监督检查。检查内容包括:
(一)执行法律、法规、规章、标准和规范等情况;
(二)放射诊疗规章制度和工作人员岗位责任制等制度的落实情况;
(三)健康监护制度和防护措施的落实情况;
(四)放射事件调查处理和报告情况。
第三十五条 卫生行政部门的执法人员依法进行监督检查时,应当出示证件;被检查的单位应当予以配合,如实反映情况,提供必要的资料,不得拒绝、阻碍、隐瞒。
第三十六条 卫生行政部门的执法人员或者卫生行政部门授权实施检查、检测的机构及其工作人员依法检查时,应当保守被检查单位的技术秘密和业务秘密。
第三十七条 卫生行政部门应当加强监督执法队伍建设,提高执法人员的业务素质和执法水平,建立健全对执法人员的监督管理制度。 第三十八条 医疗机构有下列情形之一的,由县级以上卫生行政部门给予警告、责令限期改正,并可以根据情节处以3000元以下的罚款;情节严重的,吊销其《医疗机构执业许可证》。
(一)未取得放射诊疗许可从事放射诊疗工作的;
(二)未办理诊疗科目登记或者未按照规定进行校验的;
(三) 未经批准擅自变更放射诊疗项目或者超出批准范围从事放射诊疗工作的。
第三十九条 医疗机构使用不具备相应资质的人员从事放射诊疗工作的,由县级以上卫生行政部门责令限期改正,并可以处以5000元以下的罚款;情节严重的,吊销其《医疗机构执业许可证》。
第四十条 医疗机构违反建设项目卫生审查、竣工验收有关规定的,按照《中华人民共和国职业病防治法》的规定进行处罚。
第四十一条 医疗机构违反本规定,有下列行为之一的,由县级以上卫生行政部门给予警告,责令限期改正;并可处1万元以下的罚款:
(一) 购置、使用不合格或国家有关部门规定淘汰的放射诊疗设备的;
(二) 未按照规定使用安全防护装置和个人防护用品的;
(三) 未按照规定对放射诊疗设备、工作场所及防护设施进行检测和检查的;
(四) 未按照规定对放射诊疗工作人员进行个人剂量监测、健康检查、建立个人剂量和健康档案的;
(五) 发生放射事件并造成人员健康严重损害的;
(六) 发生放射事件未立即采取应急救援和控制措施或者未按照规定及时报告的;
(七) 违反本规定的其他情形。
第四十二条 卫生行政部门及其工作人员违反本规定,对不符合条件的医疗机构发放《放射诊疗许可证》的,或者不履行法定职责,造成放射事故的,对直接负责的主管人员和其他直接责任人员,依法给予行政处分;情节严重,构成犯罪的,依法追究刑事责任。 第四十三条 本规定中下列用语的含义:
放射治疗:是指利用电离辐射的生物效应治疗肿瘤等疾病的技术。
核医学:是指利用放射性同位素诊断或治疗疾病或进行医学研究的技术。
介入放射学:是指在医学影像系统监视引导下,经皮针穿刺或引入导管做抽吸注射、引流或对管腔、血管等做成型、灌注、栓塞等,以诊断与治疗疾病的技术。
X射线影像诊断:是指利用X射线的穿透等性质取得人体内器官与组织的影像信息以诊断疾病的技术。
第四十四条 已开展放射诊疗项目的医疗机构应当于2006年9月1日前按照本办法规定,向卫生行政部门申请放射诊疗技术和医用辐射机构许可,并重新核定医学影像科诊疗科目。
第四十五条 本规定由卫生部负责解释。
第四十六条 本规定自2006年3月1日起施行。2001年10月23日发布的《放射工作卫生防护管理办法》同时废止。
附件:1.放射诊疗许可证正本及副本(略)
2.放射诊疗许可申请表(略)
纽约大学的研究团队在CRISPR-Cas9的基础上开发了一个定向检测基因组区域的活体成像系统。该系统能够精确观测基因组位点和细胞核结构,揭示细胞核改变在基因表达调控和其他细胞过程中的重要作用。
CRISPR-Cas9原本是细菌在漫长的进化史中演化出的重要防御机制。规律成簇的间隔短回文重复CRISPR与内切酶Cas9的组合,可以在sgRNA的指引下,靶标并切割入侵者的遗传物质。2012年研究者们利用这一特点,将CRISPR系统发展成了强大的基因组编辑工具。现在CRISPR-Cas9基因组编辑系统的应用延伸到了基因敲除、删除、染色体重排、RNA编辑、全基因组筛选等众多领域。
研究人员用病毒RNA和sgRNA生成了嵌合转录本。这种转录本与缺乏剪切活性的Cas9共表达,可以把荧光标记的病毒RNA结合蛋白招募到基因组指定位点。为了证实CRISPR成像技术的效率和灵活性,研究人员同时标记了小鼠染色体12的两种卫星序列,以及不同的基因组位点。他们在文章中指出,这是一种快速、稳定的低背景成像技术,可以用来追踪染色质互作动态和验证表观遗传学过程。
为了更好的研究非编码RNA,哈佛大学的科学家们以CRISPR为基础打造出了一个定向的RNA定位法——CRISPR-Display(CRISP-Disp)。他们利用失去催化活性的dCas9,将整合在sgRNA中的大片段RNA带到特定DNA位点。文章通讯作者是RNA领域的著名青年科学家JohnRinn博士,他曾被评为2009年美国国内撼动科学界的青年英才。
在CRISPR系统的基础上使用sgRNA文库进行遗传筛选,是鉴定基因调控子的一种有效方法。研究者们可以通过CRISPR筛选在基因组非编码区域中寻找功能性元件。不过这样的应用需要高度覆盖又简单实用的自定义sgRNA文库。耶鲁大学医学院的研究人员开发了一个名为MolecularChipper的新技术。该技术能够针对指定基因组区域生成密集覆盖的sgRNA文库。
酿脓链球菌的Cas9现在已经被广泛用于基因组编辑。那么,对Cas9进行基因工程改造将面临哪些限制呢?加州大学伯克利分校的研究团队通过随机插入突变对Cas9结构进行了全面分析,鉴定了这种蛋白的基因改造热点。这些位点可以耐受PDZ结构域的插入,不影响Cas9的结合和剪切功能。
像素组合(Binning),可以方便的用1×1,2×2,3×3,4×4,5×5等像素组合方式预览荧光图象,极大提高荧光图象预览速度。
Binning factor的用途解释是:“该参数决定每条光谱的数据点数目。信号强度正比于该值,但是数据点数目和光谱分辨率相应地要正比例减少。”
参考:www.opticres.com- 基于7个网页
H x V : 276 x 208, Binning Factor:5 x 5.
344 x 260 ,4 x 4.
460 x 344 ,3 x 3 ...(见下面所引用资料)
从中可以看出,H x V 选得越高,Binning Factor就相应地降低。
在激光拉曼光谱仪、红外光谱、圆二色光谱等成像显示器件中,每条谱峰,其实都是有很多个像素点组成,这些像素点就是数据点。Binning factor像素组合因子决定每幅光谱的数据点数目。仪器的显示像素数据点越多,显示分辨率设置就越高,谱峰描绘的就越精细精确,这一点和电视荧光屏显示器的特性是一致的。但Binning Factor像素组合因子与像素点数目是反变化的。
下面的数据是一个采购招标中的描述。其中,第39项“高分辨率数码冷CCD”有:
【Selectable Resolution:(选择分辨率)
H x V Binning Factor
276 x 208 5 x 5
344 x 260 4 x 4
460 x 344 3 x 3
692 x 520 2 x 2
1388 x 1040 1 x 1
Live帧频(取决于硬件和软件的配置)
H x V Binning Factor Frame Rate@20ms
1388 x 1040 1 11
692 x 520 2 21
460 x 344 3 31
连续时间记录在AxioVision 4 Module的最大帧频
"Fast Acquisition" (快捕取决于特殊的软件)
H x V Binning Factor Frame Rate
1388 x 1040 1 14
692 x 520 2 26
460 x 344 3 35
344 x 260 4 43
276 x 208 5 50 】
下面是这一段相关的资料:
Stereo Investigator and Neurolucida System (体视学细胞自动计数系统 ) 1套
三.显微成像系统
"Axio Imager.Z1" 显微镜(TFT控制)
"Axio Imager.Z1"电动驱动支持和TFT监控组件
1.-电动驱动调焦,行距10nm
- 显象管适配器
- 电动灯光控制,USB,RS232 和TCP/IP接口
-外部电源单位12V DC 100W,稳定的,240V AC/50...60Hz/230VA,
- USB电缆和针对中国的电缆线 数量 1
2.载物台与聚光镜架固定在一起构成"Axio Imager" 数量 1
3.Z轴驱动器的操纵台,扁平的,靠右
扁平的,符合人体工程学的控制旋钮,在右边
建议与光导或者载物台相连接,靠右 数量 1
4. 6位物镜转换器,HD DIC M27 cod. 数量 1
5.偏转相机在左边, 60N界面
2个转换位置与60N滑动器连接
pos. 1 = 100% vis,
pos. 2 for the optional mounting of path-deflecting mirror 100% =
100% doc or beam splitter 50% = 50% vis : 50% doc 数量 1
6.偏转相机的100%偏转镜,34x46x4 mm 数量 1
7. "Axio Imager"透射光源
包括带有滤光轮滤孔的的光视野光圈 数量 1
8.投射光源的快门
转换时间< 200 ms
最大转换频率. 2 Hz 数量 1
9.滤片轮
含有四个位置,每个位置都有中性密度滤光片和其他25mm滤光片;
用于投射光,并反映光设备形态。 数量 1
10 中性密度滤光器, D/A, d=25
含有6个中性密度的滤光器,变速器为50%,2×25%,12 和1.5%,整合在滤光轮,滤光器是分开的, 数量 1
11.照相镜座15°/25 (100:0/0:100),垂直翻转图像,可调停,相机端口有60N接口
数量 1
12, "Axio Imager"扫描台130x85 STEP (D)
-1mm锭距的马达驱动
-与驱动控制器相连
-扫描范围130 mm x 85 mm
-最大速度200 mm/s
-分辨率:0.1um
-重复性:<1um
-绝对精密度:+/-5um
-装备架:160 x 116 mm
数量 1
13.Ludl MAC 5000基本控制系统
周围单位的Ludl 控制模块
包含:
-230/110V供给电源的基本体系,自动开关
-与模块连接的RS-232电脑主机,串联电缆接口
数量 1
14.Lual MAC5000Xystage 步进控制器 incl. Joystick (D)
控制带有电动步进器的Maerzhaeuser XY-Stages 的外围单位
标准组件包括下面的零件:
-电源供给为230V/110V的基础体系,自动开关
-RS-232的电脑主机与模块相连。串联电缆接口
-X轴和Y轴的的2个电动步进控制器
-两轴操纵杆
-带有步进电机的Maerzhaeuser stages 的2个电动机电缆
数量 1
15.滑动联接架76 x 26 (D),-架子大小160x116 数量1
16 防尘器L,包含有防尘盖 (L670xW460xH775 mm),目镜盖和光源的视场光阑的保护帽 数量1
17."Axio Imager"的FL和HD反射光/荧光照明器, 带有手动停止滑轮和滤光轮的开关。透射范围为340nm-1000nm 包括340nm和1100nm~40%. 数量1
18.反射光照明的高速度的shutter,开关时间<20ms,开关最高频率:5 Hz 数量1
19.FLEC P&C反射组件,滤光反射器(避免倾斜安装),滤光器最大厚度:5mm. 数量3
20. Filter set 38 HE eGFP shift free,EX BP 470/40, BS FT 495, EM BP 525/50
(38 HE eGFP自由转换荧光滤色镜套) 数量1
21.Filter set 43 HE Cy 3 shift free,EX BP 550/25, BS FT 570, EM BP 605/70
(43 HE Cy 3自由转换荧光滤色镜套), 数量 1
22.Filter set 49 DAPI shift free,EX G 365, BS FT 395, EM BP 445/50
(49 DAPI自由转换荧光滤色镜套), 数量 1
23.HAL100带灯箱和加热反射滤色的光源, 数量 1
24.单端卤素灯12V 100W, 数量 2
25. HXP 120 (D)光源,包含内置光源模块和红外荧光光源综合带有trigg
capability (5V TTL)的开关,用于步进电动控制,快而且无震动, 数量 1
26.Lightguide HXP 120 with liquid fill, 2m (D),3mm x 2000mm,带有流体填充的HXP 120光导,2m (D) 3mm x 2000mm, 数量 1
27.带有HXP 120 和X-Cite 120光导的光源适配器, 数量 1
光学配置
28.物镜"Fluar" 2.5x/0.12 M27 (WD=6.3mm), 数量 1
29.增强反差型平场荧光物镜10x/0.3 M27(WD=5.2mm), 数量 1
30.增强反差型平场荧光物镜20x/0.50 M27(WD=2.0mm). 数量 1
31.增强反差型平场荧光物镜40x/0.75 M27(WD=0.71mm), 数量 1
32.物镜"Plan-Apochromat" 100x/1.40 Oil DIC M27 (WD=0.17mm), incl.,"Immersol" 518 F, oiler 20 ml, 数量 1
33.目镜PL 10x/23 Br. foc. 数量 2
34.目镜罩, 数量 2
35.电动多功能聚光器0.9 H D Ph DIC, mot,带有motorized前透镜,光圈和转动架,
带有中心Ph1, Ph2, Ph3 和 D 光圈,3头与油密度指示控制器连接,1个单独用于明场。目镜的扩大倍数1.0x-100x, WD=1.4mm, 数量 1
36 .适应器60N - T2 1.0x, 数量 2
37.转接镜头T2-C 1" 1.0x, 数量 1
38.转接镜头T2-C 1" 1.0x;可调整的(x,y,z 轴和旋转功能), 数量 1
39
高分辨率数码冷CCD
带有AxioVision驱动,火线/ IEEE1394 interface incl
电缆和IR barrier filter BG40(enclose)
画素数:1388 (H) x 1040 (V) = 1.4 Mega pixel
像素大小:6.45 um x 6.45 um
芯片大小:8.7 mm x 6.9 mm equivalent to 2/3"
光谱范围:保护玻璃制品的穿透范围 360-1000nm
IR barrier filter app. 350-700 nm
NIR-Mode: 增强IR最大敏感性
含有很好的容量:大约17.000 e
Selectable Resolution:(选择分辨率)
H x V Binning Factor
276 x 208 5 x 5
344 x 260 4 x 4
460 x 344 3 x 3
692 x 520 2 x 2
1388 x 1040 1 x 1
Live帧频(取决于硬件和软件的配置)
H x V Binning Factor Frame Rate@20ms
1388 x 1040 1 11
692 x 520 2 21
460 x 344 3 31
连续时间记录在AxioVision 4 Module的最大帧频
"Fast Acquisition" (快捕取决于特殊的软件)
H x V Binning Factor Frame Rate
1388 x 1040 1 14
692 x 520 2 26
460 x 344 3 35
344 x 260 4 43
276 x 208 5 50
微传感器读卡器("ROI"):可调适的
数字化:12 Bit / 24.57 MHz pixel clock
动力学范围:Typical >2200 : 1 (>66.8 dB) at < 7.7 e readout noise
暗电流:ca. 0.7 e/p/s
时间积分:1 ms to 60 s
冷却:One stage Peltier cooling
控制信号:TTL输出控制
接口: FireWire / IEEE1394 interface, 6 pin jack, cable 5 m,400MBit/s
光学接口: C-Mount
目镜螺纹深度: 最大 5 mm
每张图像最大文档大小: About 2.8 MB at 1388 x 1040 @ 1 x 12 Bit
尺寸/重量: App. 11 cm x 8 cm x 4.5 cm (2.3" x 3.2" x 1.7") / 370 g
机架: 蓝色阳性铝电镀,含有散热装置
1/4" photo thread for tripod mount
注册: CE, cUL
电源: 10-33 V, DC, 4W, power supply provided by FireWire bus
环境条件: 5-35℃,10-80%相对空气湿度,不冷凝,要求通风
数量 1
40
高分辨率显微摄像头AxioCam MRc Rev. 3 F
Mid Range Color
带有AxioVision驱动,火线/ IEEE1394 interface incl
电缆和IR barrier filter BG40
画素数: 1388 (H) x 1040 (V) = 1.4 Mega pixel
象素大小: 6.45 |m x 6.45 |ì
芯片大小: 8.9 mm x 6.7 mm equivalent to 2/3"
光谱范围: 含 IR barrier filter app. 400 nm to 700 nm Max.
容量: 大约. 17.000 e
Selectable Resolution(选择分辨率):
H x V Binning Factor
272 x 208 5 x 5, Color
344 x 260 4 x 4, Monochrome
460 x 344 3 x 3, Color
692 x 520 2 x 2, Monochrome
1388 x 1040 1 x 1, Single Shot
彩色插值: "High Speed Color" or "High Quality Color"selectable
Live帧频(取决于硬件和软件的配置)
H x V Binning Factor Frame Rate@20ms
1388 x 1040 1 11
460 x 344 3 26
276 x 208 5 38
Frame rates for time series recording in AxioVision 4 Module
"Fast Acquisition" (快捕取决于特殊的软件)
H x V Binning Factor Frame Rate
1388 x 1040 1 14
692 x 520 2 26
460 x 344 3 35
344 x 260 4 42
276 x 208 5 48
微传感器读卡器("ROI"):可调适的
数字化:12 Bit / 24.57 MHz pixel clock
动力学范围:Typical >2200 : 1 (>66.8 dB) at < 7.7 e readout noise
暗电流:ca. 0.7 e/p/s
时间积分:1 ms to 60 s
冷却:One stage Peltier cooling
控制信号:TTL输出控制
接口: FireWire / IEEE1394 interface, 6 pin jack, cable 5 m,400MBit/s
光学接口: C-Mount
目镜螺纹深度: 最大 5 mm
每张图像最大文档大小: About 8.6 MB at 1388 x 1040 @ 3 x 12 Bit
尺寸/重量: App. 11 cm x 8 cm x 4.5 cm (2.3" x 3.2" x 1.7") / 370 g
机架: 蓝色阳性铝电镀,含有散热装置
1/4" photo thread for tripod mount
注册: CE, cUL
电源: 10-33 V, DC, 4W, power supply provided by FireWire bus
环境条件: 5-35℃,10-80%相对空气湿度,不冷凝,要求通风
数量 1
41 .软件核站点: AxioVision Rel. 4.7, 数量 1
四、Virtual Slice Module
从显微镜创建你自己分析的材料的真实切片的图片,不同放大倍率相对应,真正的无缝拼接,快速而实用
五、Solid Modeling Module
1.显示特征:实体网格轮廓 ,实体或网格的分枝结构 ,OpenGL为基础 ,有层次的观看跟踪模型 ,复杂分枝结构 .
2.光照特征:背光 /直光/闪亮的表面
3.透明度特征:使用者定义透明度 /标记透明度 /分枝结构的透明度 /轮廓透明度
4.Navigation Features:放大缩小 /平移 /穿越 /自动旋转展开
目前主流的活细胞成像系统从原理上可以分为两大类:
基于宽场反卷积技术
基于共聚焦技术
两种技术作为目前最流行的活细胞成像技术,均可以实现在维持细胞存活的情况下,快速获取单一焦平面的信号,在具体性能上则各有擅长。
宽场反卷积技术
对光线进行反卷积运算是光学成像领域的成熟技术,最早由美国国家航空航天局开发并成为观察微弱天体信号的标准技术。去卷积和共聚焦技术是光学显微镜领域获得单一焦平面光线的两大主流技术(J.M.Murray, live cell imaging, 2010)。通过将非焦平面的光线还原至焦平面上,大大提高了样品信号的强度以及图像的信噪比。由于去卷积技术设计到大量的后期运算,因此在高性能计算机发明以前,一直受制于运算能力,没有得到大规模的推广。随着近年来计算机性能的大幅提升和价格的下降,去卷积技术逐渐成为光学显微镜的主流技术。一个点光源经过显微镜的光路,由于镜片对光线的衍射和散射,最终呈现在观察者面前的是一个模糊的点,所以点光源变成模糊的点的过程即为卷积。反卷积就是把模糊的点还原成点光源的过程。
以API 公司的DeltaVision 系统为例,其反卷积过程经历以下几步:
1)首先通过无数的计算和实验,得到点光源经过显微镜物镜后变模糊的规律,建立模型。
2)选择完美的物镜,保证样品信号经过物镜后变模糊的规律符合步骤一中得到的模型。
3)将通过显微镜光路的所有的光信号进行收集,因为点光源经过显微镜光路后会变成一个空间中的倒圆锥形,所以在收集信号的时候需要很准确的记录信号的Z 轴信息。
4)对收集到的所有光信号按照步骤一中的模型进行还原,最终将模糊的点还原成清晰的点,客观反映它在空间的位置和强度。
目前去卷积技术越来越广泛地应用于生物学图像的研究中。
共聚焦技术
共聚焦显微镜它采用点光源(point lightsource) 照射标本,在焦平面上形成了一个轮廓分明的小的光点(light spot ) ,该点被照射后发出的荧光被物镜收集,并沿原照射光路回送到探测器。探测器前方有一个针孔(pinhole) ,几何尺寸可调。这样,来自焦平面的光,可以会聚在探测针孔范围之内,而其它来自焦平面上方或下方的散射光,都被挡在探测针孔之外而不能成象。光束扫描器又分为单光束、多光束或狭缝扫描器几种。其中单光束扫描获得的图像质量最好,狭缝扫描器虽然产生图像的速率很高(可达实时水平) ,但其图像信噪比低于单光束扫描,这是因为从狭缝长轴来的漫射光不能被有效遮挡。多光束扫描如碟片式共聚焦是由电动马达驱动Nipkow 盘旋转而实现的,其荧光量较低,速率一般较高。
宽场反卷积技术与共聚焦技术比较表
二、API 高分辨活细胞成像系统的主要特点
DeltaVision 活细胞成像系统有以下优势:
1)高灵敏:得益于精密和高效的光路,以及领先的还原型反卷积技术,DeltaVision 将宽场显微镜的灵敏度和分辨率提高到新的水平,标准配置下最低可以探测到13个GFP 分子,成为目前为止最灵敏的光学显微系统之一。
HIV 病毒通过DC 细胞和T 细胞的接触侵染T 细胞,绿色颗粒为HIV 病毒
2)高速:标配下可达到 21 帧/秒(512×512)的成像速度。当配备EM-CCD 后,最高可达到224 帧/秒(64×64),可用于囊泡运动和钙火花等快速的生理生化过程观察。
3)低光毒性:得益于灵敏度的显著提高,即使微弱的荧光,也可以收集到足够的信号,因此激发光的强度和时间可以大幅度减少。光损伤和光淬灭不再是活细胞和微弱荧光观察的障碍。
4)智能:焦点漂移和细胞脱离视野是活细胞观察的梦魇。DeltaVision 特有的自动对焦(autofocus)和细胞跟踪(cell tracking)功能,不仅可以自动维持焦平面的稳定,而且能够跟踪移动的细胞,使这些问题迎刃而解,长时间连续的活细胞观察不再困难。
通过对荧光信号和细胞轮廓的识别,DeltaVision 可以精确的跟踪需要观察的细胞。
5)免维护:整个系统无易损易耗部件,光源寿命在 5000 小时以上,可正常使用7-10年以上,无需更换光源和校准光路。。系统控制和图形处理基于Linux 操作系统,更适合多线程控制和数据处理,不仅大幅度降低了数据处理时间,也避免了在数据传输过程中感染病毒的危险。人性化的softWoRX软件简单易用,一个对话框内即可完成所有的控制操作。
三、API 高分辨活细胞成像系统的主要功能与应用领域
1)多维成像
目前可以做到六维(XYZ 三维,时间,不同点,不同波长)成像。通过光学切片(optical section)技术,实现对样品的3D 观察,构建样品的立体结构。
经过3D 重建的肿瘤细胞:A 为正面,B 为旋转30 度后,C 为旋转90 度后。
2)3D 还原型反卷积处理
显微镜的分辨率和图像的对比度取决于物镜收集的光学信息。显微镜光路中衍射和折射现象的存在,使得样品信号的位置和强度都发生了变化,降低了系统的分辨率和图像的质量。API 作为对图像数据进行反卷积处理最早的实践者,将显微镜的硬件设计和后期软件处理完美的结合在一起,通过对光学信号的3D 还原型反卷积处理,大大提高了显微镜的灵敏度和分辨率。
原始图像和经过3D 反卷积处理后图像的对比:A,B 为处理前,C,D 为处理后。
经过反卷积处理后,信号的强度和图像对比度得到很大提升。
3)延时摄影
通过软件精确的控制,拍摄的时间间隔从数秒到数小时不等,在长时间拍摄下也不会造成荧光信号的淬灭。根据实验需求的不同,无论单一层面还是3 维结构,都可以获得良好的效果。
正在分裂的Hela 细胞,其中绿色标记微管蛋白,红色标记染色体
4)高速离子成像
结合高速 CCD 和高效的光路,在512×512 像素下仍然可以实现21 帧/秒的成像速度。对于快速的离子浓度的变化,最快可以50-100 帧/秒的速度获取图像。
细胞间钙信号的传递。使用Fluo‐3 标记胞内的钙离子,并给予荧光信号对钙离子的强度进
5.荧光共定位分析
通过比较多个荧光通道的定位情况,即可知道他们在空间上和时间上的分布信息,进而得到相应的荧光信号是否存在相互作用、协同运动、定向运输等。
体外重组的病毒颗粒侵染细胞,绿色标记病毒的壳蛋白,红色标记病毒的RNA结合蛋白。病毒入侵前,由于病毒颗粒完整,绿色信号和红色信号共定位。病毒入侵细胞后,脱掉表面的壳蛋白,绿色信号和红色信号分离。
6)荧光共振能量转移(FRET)
DeltaVision 特制的活细胞滤片组保证CFP/YFP,GFP/mcherry(RFP)荧光强度的精确记录,并进一步计算出蛋白对之间精确的能量转移系数。
计算不同荧光通道荧光信号的强度,进一步可得到能量转移系数。
主要应用领域:
1)细胞迁移与细胞骨架;
2)细胞分裂与细胞周期;
3)细胞信号转导;
4)组织分化与发育;
5)囊泡和蛋白运输;
6)生理学和神经科学;
7)钙离子信号研究;
8)蛋白质与DNA 的相互作用;
9)宿主与病原体相互作用;
10)癌症研究;
11)药理研究;
12)生物物理研究。

