Activate,ablateandbleachinoneexperiment.
TheInfinityScannermodulesoffertheultimatemulti-spectralphotomanipulationtooldesignedtodeliverunparalleledapplicationflexibility.Whetheryouneedtobleach,cut,activate,stimulateorevencombinemultipletechniques,theInfinityscannercanbeconfiguredtoaddressyourneeds.
HighspeedvectorscanningcapABIlitiesallowyoutonotonlyhaveprecisecontrol,buttotakefulladvantageofthecamera-basedwidefieldsystemoftheDMi8Stocapturethefastestcellularprocesses.
徕卡(Leica)是由一家同名的德国公司生产的照相机的品牌,由徕茨(Leitz)和照相机(camera)的前音节组成。公司的原名为恩斯特·徕茨公司。目前拆分为三家公司:徕卡相机股份公司、徕卡地理系统股份公司和徕卡微系统有限公司,分别生产照相机、地质勘测设备和显微镜。“徕卡”品牌由徕卡微系统股份公司持有,并授权另两家公司使用。徕卡相机最初问世于1913年,是世界上最早35mm的照相机。819一次性窄刀片为80mm长x8mm高x0.25mm厚。由不锈钢制成,刀片超细而耐用,能够用于徕卡切片机和冰冻切片机系列,以及用于常规的冰冻切片机和切片机模型。独特的刀片涂层工艺对常规组织学中切片拉伸与切割条带质量的改进效果显而易见。
德国徕卡目前有三款DB80刀片,分别是DB80HS、DB80LS、DB80LX。本文将用视频和文字来介绍这三款产品。LeicaSurgipathDB80系列刀片专为徕卡切片机家族设计,以超乎想象的锋利度、耐用性和稳定性,保证了恒定的切片质量。DB80系列产品的优质性能已通过组织学实验室实地证明,适用于所有轮转式、平推式切片机和冰冻切片机—真正适用于切片机家族的刀片。☆SurgipathDB80LS高级窄刀片为做出明确诊断而切割所需的超薄切片。DB80LS通过锋利的窄刀片、优质的表面处理以及边缘对边缘、刀片对刀片的一致性达到了新的品质高度。产品特点:适用于中度、软组织切片,超锋利、成串性极佳。订货信息: 14035843488Low-profiledisp.bladesDB80LS(1x50)14035843489Low-profiledisp.bladesDB80LS(10x50)☆SurgipathDB80HS高级一次性切片机宽刀片当您需要的组织切片较厚时,就可以将希望寄托于作为宽刀片切片机和冰冻切片机刀片使用的SurgipathDB80HS,其具有锋利、长使用寿命和高度一致性的特征。产品特点:适用于更厚的,超锋利、成串性极佳。订货信息:14035843490High-profiledisp.bladesDB80HS(1x50)14035843491Hig-profiledisp.bladesDB80HS(10x50)☆SurgipathDB80LX高级一次性窄刀片DB80LX的独有特性使其即使面对非常难以切片的组织,包括致密标本在内,也能制作高品质的薄层切片。由于具有精心挑选的材质、精致的涂层和先进的外形,此刀片能够让您快速有效地切片常规标本、活检组织和致密组织。产品特点:适用于所有组织,包括硬组织及致密组织切片,超长使用寿命。订货信息:14035843496Low-profiledisp.bladesDB80LX(1x50)14035843497Low-profiledisp.bladesDB80LX(10x50)
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
成像原理:
光学显微镜
光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。经显微镜到人眼的物体都成倒立放大的虚像。反光镜用来反射,照亮被观察的物体。反光镜一般有两个反射面:一个是平面镜,在光线较强时使用;一个是凹面镜,在光线较弱时使用,可会聚光线。
电子显微镜
电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。
电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。现在电子显微镜最大放大倍率超过300万倍,而光学显微镜的最大放大倍率约为2000倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵。
详见百度百科:http://baike.baidu.com/view/2921.htm
普通光学显微镜通过提高和改善透镜的性能,使放大率达到1000—1500倍左右,但一直末超过2000倍。这是由于普通光学显微镜的放大能力受光的波长的限制。光学显微镜是利用光线来看物体,为了看到物体,物体的尺寸就必须大于光的波长,否则光就会 “绕”过去。理论研究结果表明,普通光学显微镜的分辨本领不超过0。02微米,有人采用波长比可见光更短的紫外线,放大能力也不过再提高一倍左右。
要想看到组成物质的最小单位——原子,光学显微镜的分辨本领还差3—4个量级。为了从更高的层次上研究物质的结构,必须另辟蹊径,创造出功能更强的显微镜。
有人设想用波长比紫外线更短的X射线的透镜。
20世纪20年代法国科学家德布罗意发现电子流也具有波动性,其波长与能量有确定关系,能量越大波长越短,比如电子学1000伏特的电场加速后其波长是0.388埃,用10万伏电场加速后波长只有0.0387埃,于是科学家们就想到是否可以用电子束来代替光波?这是电子显微镜即将诞生的一个先兆。
用电子束来制造显微镜,关键是找到能使电子束聚焦的透镜,光学透镜是无法会聚电子束的。
1926年,德国科学家蒲许提出了关于电子在磁场中运动的理论。他指出: “具有轴对称性的磁场对电子束来说起着透镜的作用。”这样,蒲许就从理论上解决了电子显微镜的透镜问题,因为电子束来说,磁场显示出透镜的作用,所以称为 “磁透镜”。
德国柏林工科大学的年轻研究员卢斯卡,1932年制作了第一台电子显微镜——它是一台经过改进的阴极射线示波器,成功地得到了铜网的放大像——第一次由电子束形成的图像,加速电压为7万,最初放大率仅为12倍。尽管放大率微不足道,但它却证实了使用电子束和电子透镜可形成与光学像相同的电子像。
经过不断地改进,1933年卢斯卡制成了二级放大的电子显微镜,获得了金属箔和纤维的1万倍的放大像。
1937年应西门子公司的邀请,卢斯理建立了超显微镜学实验室。1939年西门子公司制造出分辨本领达到30埃的世界上最早的实用电子显微镜,并投入批量生产。
电子显微镜的出现使人类的洞察能力提高了好几百倍,不仅看到了病毒,而且看见了一些大分子,即使经过特殊制备的某些类型材料样品里的原子,也能够被看到。
但是,受电子显微镜本身的设计原理和现代加工技术手段的限制,目前它的分辨本领已经接近极限。要进一步研究比原子尺度更小的微观世界必须要有概念和原理上的根本突破。
1978年,一种新的物理探测系统—— “扫描隧道显微镜已被德国学者宾尼格和瑞士学者罗雷尔系统地论证了,并于1982年制造成功。这种新型的显微镜,放大倍数可达3亿倍,最小可分辨的两点距离为原子直径的1/10,也就是说它的分辨率高达0.1埃。
扫描隧道显微镜采用了全新的工作原理,它利用一种电子隧道现象,将样品本身作为一具电极,另一个电极是一根非常尖锐的探针,把探针移近样品,并在两者之间加上电压,当探针和样品表面相距只有数十埃时,由于隧道效应在探针与样品表面之间就会产生隧穿电流,并保持不变,若表面有微小起伏,那怕只有原子大小的起伏,也将使穿电流发生成千上万倍的变化,这种携带原子结构的信息,输入电子计算机,经过处理即可在荧光屏上显示出一幅物体的三维图象。
鉴于卢斯卡发明电子显微镜的,宾尼格、罗雷尔设计制造扫描隧道显微镜的业绩,瑞典皇家科学院决定,将1986年诺贝尔物理奖授予他们三人。
激光扫描共聚焦显微镜(LSCM)是近年来迅速发展起来的一种新型高精度显微镜,不仅用于观察经固定的各种细胞和组织结构,而且还可对活细胞的形态、结构,离子的实时动态等进行观察和定量荧光测定,以及定量图像分析。目前国内LSCM技术应用前景广泛,并且发表众多具影响力的文章。为了推动LSCM技术的创新发展、促进相关人员技术的提升,我们特此制定激光共聚焦显微镜高级应用培训,面向生物医药领域从事成像技术方法创新的科研人员和成像平台管理者,充分发挥现有成像设备的作用,通过理论加实践的系统学习,最大限度地掌握该技术的使用方法,独立判断与排除科研常见问题和障碍。
2017年8月26日星期六
08:30-08:45报道
08:45-08:50欢迎致辞
08:50-09:05清华大学细胞影像中心介绍
09:05-09:45光学显微镜的选择和如何拍出高质量共聚焦图像王文娟
09:45-10:15休息与讨论
10:15-11:00多色影响与荧光光谱扫描及线性分析孙悦
11:00-11:45荧光漂白后恢复(FRAP)冯倩倩
11:50-13:30午餐
13:30-16:30上机操作培训(根据情况进行分组操作)
8:30-8:45学习内容回顾与总结
2017年8月27日星期日
09:00-09:15培训回顾
09:15-10:00荧光共振能量转移(FRET)王瑾瑜
10:00-10:45转盘共聚焦显微镜成像张彦丽
10:40-11:00休息与讨论
11:00-11:50图像处理基础与荧光共定位分析王文娟
11:50-13:30午餐
13:30-16:30上机操作培训(根据情况进行分组操作)
8:30-8:45学习内容回顾与总结
2017年8月28日星期一
09:00-09:30培训回顾与总结
09:30-10:00培训测验
10:00-10:30颁发证书
10:30-10:40合影
清华大学细胞影像中心是在生命学科校级平台(清华大学生物医学测试中心、清华大学蛋白质研究技术中心)范围内、跨中心、多平台联合组建的虚体技术中心,简称细胞影像中心。中心包括的平台有:生物医学测试中心细胞生物学平台光学显微镜机组、共享仪器平台光学显微镜机组、尼康生物影像中心、蛋白质研究技术中心细胞影像平台。细胞影像中心作为一个综合型光学成像平台,以科研服务为宗旨,主要提供细胞生物学影像及分析测试服务。包含的仪器有:激光扫描共聚焦(Confocal:Zeiss、Nikon、Leica、Olympus)、转盘共聚焦(SpinningDiskConfocal)、激光显微切割、双光子显微镜、超高分辨SIM/STORM/STED、全内反射(TIRF)荧光显微镜、荧光寿命成像-荧光相关光谱系统(FCS/FLIM)、高分辨活细胞成像系统、活细胞工作站、全自动数字玻片扫描系统和图像处理工作站(软件有Imaris,Image-ProPremier/Plus,Huygens,AutoQuant,MetaMorph和NIS-Elements等),为实验提供一站式的解决方案。
转盘共聚焦显微镜拍摄,发表于Eph/ephrinsignalingmaintainstheboundaryofdorsalforerunnercellclusterduringmorphogenesisofthezebrafishembryonicleft-right
使用Nikon超分辨率显微镜拍摄,N-SIM显微镜显示NRK细胞稳定的表达线粒体标记20-GFP。标尺,1μm。WangC,DuW,YuLi*,etal.Dynamictubulationofmitochondriadrivesmitochondrialnetworkformation[J].Cellresearch,2015,25(10):1108.
使用ZeissLSM710激光共聚焦显微镜拍摄,图为人眼晶状体祖细胞中的晶状体球蛋白聚集体。绿色:绿色荧光蛋白和晶状体球蛋白融合蛋白;红色:P62蛋白;蓝色:细胞核;标尺:10μm。发表于Lanosterolreversesproteinaggregationincataracts.Nature,2015(523),607-611
使用ZeissLSM780激光共聚焦显微镜拍摄,图为酿酒酵母十二号染色体的设计与合成。发表于ZhangW,ZhaoG,LuoZ,etal.EngineeringtheribosomalDNAinamegabasesyntheticchromosome.[J].
王文娟博士清华大学细胞影像中心主任,高级工程师。毕业于北京大学,美国纽约大学医学中心博士后,主要从事光学显微成像和图像处理技术。技术专长:1.光学显微镜技术用于生物医学的研究,包括激光共聚焦、超高分辨、全内反射和荧光寿命成像等技术。2.单分子成像光学仪器搭建与单分子荧光成像3.图像处理、展示和数据分析。
冯倩倩共享仪器平台主管,工程师。技术专长:激光共聚焦显微镜影像技术
孙悦共享仪器平台主管,工程师。技术专长:激光共聚焦显微镜、全自动数字玻片扫描和双光子成像技术
王瑾瑜尼康生物影像中心负责人,工程师。技术专长:光诱导蛋白相关技术(FRET、FRAP、PA-GFP等)和超高分辨率技术
张彦丽张彦丽,工程师。技术专长:转盘共聚焦成像、双光子成像
培训时间:2017年8月26日-28日
报到时间:2017年8月25日12:00-18:002017年8月26日08:00-08:45
培训地点:清华大学生物技术馆会议室
报名费用:
单人:3000元/人
两人:2400元/人
三人及以上:2000元/人
(含注册费、培训费、资料费、茶歇费、午餐费)主办方可协助学员预定住宿(费用自理,需提前一周预定)
报名截止时间:8月20日
在线报名链接:http://www.damor.cn/app/wap-activity/sign-up/index.html
总放大倍数 = 物镜放大倍数 * 数字放大倍数
物镜放大倍数 = 大物镜放大倍数 * 镜头放大倍数
数字放大倍数 = 监视器尺寸 * 25.4/CCD靶面对角线尺寸大小
CCD靶面对角线尺寸大小:1/3 " 为6mm1/2 " 为8mm 2/3 " 为11mm
例:0.7X - 4.5X的标配主机配1/3 "CCD摄像机配14 " 监视器
数字放大倍数:14 * 25.4 / 6 = 59.3X
总放大倍数:(0.7X - 4.5X) * 59.3=41.5X - 266.9X
那么照此配置,总的放大倍率就在41.5X到266.9X之间连续可调。

