
Hainantoxin-IV (HNTX-IV) is a peptide that was originally isolated from the venom of the Chinese bird spider Ornithoctonus hainana Liang (Selenocosmia hainana Liang). It has been reported that this peptide is a potent antagonist of tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channels (VGSCs). Hainantoxin-IV binds to TTX-S with an IC50value of 34 nM in adult rat dorsal root ganglion (DRG) neurons. Tetrodotoxin-resistant (TTX-R) voltage-gated sodium channels are not affected by Hainantoxin-IV. It probably interacts with the site 1 through a mechanism quite similar to that of TTX without affecting the activation and inactivation kinetics.
Description:
AA sequence: Glu-Cys2-Leu-Gly-Phe-Gly-Lys-Gly-Cys9-Asn-Pro-Ser-Asn-Asp-Gln-Cys16-Cys17-Lys-Ser-Ser-Asn-Leu-Val-Cys24-Ser-Arg-Lys-His-Arg-Trp-Cys31-Lys-Tyr-Glu-Ile-NH2
(Disulfide bonds between Cys2-Cys17, Cys9-Cys24, and Cys16-Cys31)
Length (aa): 35
Formula: C166H257N53O50S6
Molecular Weight: 3987.6 Da
Appearance: White lyophilized solid
Solubility: water and saline buffer
CAS number: Not available
Source: Synthetic
Purity rate: > 97%
Reference:
A positively charged surface patch is important for hainantoxin-IV binding to voltage-gated sodium channels
Liu Y, et al. (2012) A positively charged surface patch is important for hainantoxin-IV binding to voltage-gated sodium channels. J Pept Sci. PMID: 22927181
Structure--activity relationships of hainantoxin-IV and structure determination of active and inactive sodium channel blockers.
Li D, et al.(2004) Structure–activity relationships of hainantoxin-IV and structure determination of active and inactive sodium channel blockers. J Biol Chem. PMID: 15201273
Isolation and characterization of hainantoxin-IV, a novel antagonist of tetrodotoxin-sensitive sodium channels from the Chinese bird spider Selenocosmia hainana.
A neurotoxin, named hainantoxin-IV, was purified from the venom of the spider Selenocosmia hainana. The amino acid sequence was determined by Edman degradation, revealing it to be a 35-residue polypeptide amidated at its C terminal and including three disulfide bridges: Cys2-Cys17, Cys9-Cys24, and Cys16-Cys31 assigned by partial reduction and sequence analysis. Hainantoxin-IV shares 80% sequence identity with huwentoxin-IV from the spider S. huwena, a potent antagonist that acts at site 1 on tetrodotoxin-sensitive (TTX-S) sodium channels, suggesting that hainantoxin-IV adopts an inhibitor cystine knot structural motif like huwentoin-IV. Under whole-cell voltage-clamp conditions, this toxin has no effect on tetrodotoxin-resistant voltage-gated sodium channels in adult rat dorsal root ganglion neurons, while it blocks TTX-S sodium channels in a manner similar to huwentoxin-IV, and the actions of both toxins on sodium currents are very similar to that of tetrodotoxin. Thus, they define a new family of spider toxins affecting sodium channels.
Liu Z, et al.(2003) Isolation and characterization of hainantoxin-IV, a novel antagonist of tetrodotoxin-sensitive sodium channels from the Chinese bird spider Selenocosmia hainana. Cell Mol Life Sci. PMID: 12827284
Inhibition of neuronal tetrodotoxin-sensitive Na+ channels by two spider toxins: hainantoxin-III and hainantoxin-IV.
Hainantoxin-III and hainantoxin-IV, isolated from the venom of the Chinese bird spider Seleconosmia hainana, are neurotoxic peptides composed of 33-35 residues with three disulfide bonds. Using whole-cell patch-clamp technique, we investigated their action on ionic channels of adult rat dorsal root ganglion neurons. It was found that the two toxins did not affect Ca2+ channels (both high voltage activated and low voltage activated types) nor tetrodotoxin-resistant voltage-gated Na+ channels (VGSCs). However, hainantoxin-III and hainantoxin-IV strongly depressed the amplitude of tetrodotoxin-sensitive Na+ currents with IC50 values of 1.1 and 44.6 nM, respectively. Both hainantoxin-III (1 nM) and hainantoxin-IV (50 nM) caused a hyperpolarizing shift of about 10 mV in the voltage midpoint of steady-state Na+ channel inactivation, but they showed difference in the reprime kinetics of VGSCs: hainantoxin-III significantly decreased the recovery rate from inactivation at a prepulse potential of -80 mV while hainantoxin-IV did not do. It is interesting to note that similar to huwentoxin-IV, the two hainantoxins did not affect the activation and inactivation kinetics of Na+ currents and at a concentration of 1 microM they completely inhibited the slowing inactivation currents induced by BMK-I (toxin I from the scorpion Buthus martensi Karsch), a scorpion alpha-like toxin. The results indicate that hainantoxin-III and hainantoxin-IV are novel spider toxins and affect the mammal neural Na+ channels through a mechanism quite different from other spider toxins targeting the neural receptor site 3, such as delta-aractoxins and mu-agatoxins.
Xiao Y, et al. (2003) Inhibition of neuronal tetrodotoxin-sensitive Na+ channels by two spider toxins: hainantoxin-III and hainantoxin-IV. Eur J Pharmacol. PMID: 14512091
Determination of disulfide bridges of two spider toxins: Hainantoxin-III and Hainantoxin-IV
Peptide toxins are usually highly bridged proteins with multipairs of intrachain disulfide bonds. Analysis of disulfide connectivity is an important facet of protein structure determination. In this paper, we successfully assigned the disulfide linkage of two novel peptide toxins, called HNTX-III and HNTX-IV, isolated from the venom of Ornithoctonus hainana spider. Both peptides are useful inhibitors of TTX-sensitive voltage-gated sodium channels and are composed of six cysteine residues that form three disulfide bonds, respectively. Firstly, the peptides were partially reduced by tris(2-carboxyethyl)-phosphine (TCEP) in 0.1 M citrate buffer containing 6 M guanidine-HCl at 40° C for ten minutes. Subsequently, the partially reduced intermediates containing free thiols were separated by reversed-phase high-performance liquid chromatography (RP-HPLC) and alkylated by rapid carboxamidomethylation. Then, the disulfide bonds of the intermediates were analyzed by Edman degradation. By using the strategy above, disulfide linkages of HNTX-III and HNTX-IV were determined as I-IV, II-V and III-VI pattern. In addition, this study also showed that this method may have a great potential for determining the disulfide bonds of spider peptide toxins.
Wang W., et al. (2009) Determination of disulfide bridges of two spider toxins: Hainantoxin-III and Hainantoxin-IV. J Venom Anim Toxins incl Trop Dis.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
这就是说不用酸碱预处理吗?
Whatman的网站上没有DE52最大耐受压力,请问又经验的战友应该是多少?
Whatman的网站上:
DE32DryMicrogranularDEAECellulose
SimilarperformancecharacteristicsafterprecyclingasDE52.
DE52PreswollenMicrogranularDEAECellulose
ProbablythemostwidelyusedDEAEcelluloseintheworld;usedforbiopolymerswithlowtohighnegativecharges;exhibitsexcellentresolutionwithgoodflowrates.
附件是一本图书(MethodsinMolecularMedicine,)的章节,上面说:
WhatmanDEAE52comesalreadypreswollenandonlyneedstobetransferred
totherunningbuffer50mMTE8.
lAntibodiesUsingIonExchangeChromatography.pdf(87.06k)
1、弱酸和它的盐(如:HAc---NaAc)的水溶液组成;
2、弱碱和它的盐(如:NH3·H2O---NH4Cl)的水溶液组成;
3、多元弱酸的酸式盐及其对应的次级盐(如:NaH2PO4---Na2HPO4)的水溶液组成。
酸碱缓冲溶液的选型一般应根据具体情况进行选择。缓冲酸性可选用碱性缓冲液,缓冲酸性可采用碱性缓冲液。常用作缓冲溶液的酸类由弱酸及其共轭酸盐组合成的溶液具有缓冲作用。生化实验室常用的缓冲系主要有磷酸、柠檬酸、碳酸、醋酸、巴比妥酸、Tris(三羟甲基氨基甲烷)等系统,生化实验或研究工作中要慎重地选择缓冲体系,因为有时影响实验结果的因素并不是缓冲液的pH值,而是缓冲液中的某种离子。如硼酸盐、柠檬酸盐、磷酸盐和三羟甲基甲烷等缓冲剂都可能产生不需要的化学反应。
【酸碱缓冲溶液】由弱酸及其盐、弱碱及其盐组成的混合溶液,能在一定程度上抵消、减轻外加强酸或强碱对溶液酸碱度的影响,从而保持溶液的pH值相对稳定。这种溶液称为酸碱缓冲溶液。
是否可以理解为纯化水得PH范围为6.3-7.6?能否直接用pH计测量?谢谢!
两个CEX方法A和B测定同一单抗,结果碱性峰比例差不多,酸性峰比例相差约7%,相应主峰也差了7%左右。
具体来说,A方法酸性峰高,主峰低,碱性峰稍微低点;B方法酸性峰低,主峰高,碱性峰稍微高点;另外也做了CIEF,结果呢和A方法更接近。
仔细比较起来,AB两个方法的峰性和数量差不多,就不知道为什么会有这么大的差异。两个方法一个用的WCX柱-磷酸缓冲液,一个用SCX柱-MES缓冲液
大家帮我分析下:
1.两个方法哪个方法更准确,是以酸性峰高的为准还是什么?为什么?
2.这显著差异是由方法造成,具体原因是什么?柱子?
3.CIEF的结果和A方法更接近,是不是可以由此证明A方法更好或者CIEF的方法更好(因为CIEF更快更方便)?
欢迎讨论~
纠正下,A方法用的是Tosoh的柱子,B方法用的是SCX柱。TOSOH的柱子是7um的填料,10cm长。SCX是10um的填料。我本人TOSOH的阳离子柱子用的很少,这次信手用用,结果发现差异很大
那我现在就考虑,在以后方法开发过程中,除了通过流动相pH和组成、梯度、柱子选择来获得样品主峰和酸碱性的最大分离,还要关注各峰比例。因为之前比较方法好坏都只看分离度,尤其是主峰和邻近峰的分离度,获得最大分离度,自然可以做到主峰尽可能纯,但从未认真比较过各峰比例。这是一个大疏忽吧!
另外,CIEF和CEX方法原理还是有点差异的,所以分的是不同的异质体,原液放行两个方法肯定是都要做的。问题就是在早期细胞株筛选和工艺开发阶段,哪个方法才是又快又准。CIEF(iCE280)一般15分钟一个样,比CEX快多了。如果CIEF测得主峰要低于CEX结果,是不是真的完全可以取代CEX呢?CEX分离出的峰远比CIEF的多!
欢迎大家继续讨论~
:)
我在做一细菌不同酸碱度生长状况时,发现这些奇怪现象:pH=3的培养基灭菌(TSB液体培养基)灭菌后pH上升到到9.2!而原来pH=9.0的降到8.7(基本没多少变化),请问各位大侠,这是什么原因?
一般做不同酸碱度生长实验时,该如何才能防止pH在湿热灭菌后基本不变化?


暂无品牌分类