
BDS-1 is a 43 amino acid peptide which was originally isolated from the venom of the sea anemona Anemonia Viridis. BDS-1 was originally described as a highly selective blocker of the rapidly inactivating voltage-gated potassium channel Kv3.4/ KCNC4, a potential therapeutic target for major CNS disorders (Alzheimer and Parkinson diseases). The toxin acts as gating modifiers, mainly by shifting the voltage-dependence of activation. Channel block occurs with high affinity (IC50 of 43 nM) and is rapid and reversible. BDS-1 also blocks the Kv3.1 and Kv3.2 channels albeit with a lower affinity (>200 nM). Finally, in a more recent study, it was demonstrated that BDS-1 is a selective gating activator of the Nav1.7 channel subtype, an important target for pain management. On the human isoform, modulation is witnessed by a drastic slowing of channel inactivation which occurs with an IC50 of 3 nM.
Description:
AA sequence: Ala-Ala-Pro-Cys4-Phe-Cys6-Ser-Gly-Lys-Pro-Gly-Arg-Gly-Asp-Leu-Trp-Ile-Leu-Arg-Gly-Thr-Cys22-Pro-Gly-Gly-Tyr-Gly-Tyr-Thr-Ser-Asn-Cys32-Tyr-Lys-Trp-Pro-Asn-Ile-Cys39-Cys40-Tyr-Pro-His-OH
Disulfide bonds: Cys4-Cys39, Cys6-Cys32, Cys22-Cys40
Length (aa): 43
Formula: C210H297N57O56S6
Appearance: White lyophilized solid
Molecular Weight: 4708.37 Da
CAS number:
Source: Synthetic
Solubility: Water or saline buffer
Reference:
Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4
Sea anemone venom is known to contain toxins that are active on voltage-sensitive Na+ channels, as well as on delayed rectifier K+ channels belonging to the Kv1 family. This report describes the properties of a new set of peptides from Anemonia sulcata that act as blockers of a specific member of the Kv3 potassium channel family. These toxins, blood depressing substance (BDS)-I and BDS-II, are 43 amino acids long and differ at only two positions. They share no sequence homologies with other K+ channel toxins from sea anemones, such as AsKS, AsKC, ShK, or BgK. In COS-transfected cells, the Kv3.4 current was inhibited in a reversible manner by BDS-I, with an IC50 value of 47 nM. This inhibition is specific because BDS-I failed to block other K+ channels in the Kv1, Kv2, Kv3, and Kv4 subfamilies. Inward rectifier K+ channels are also insensitive to BDS-I. BDS-I and BDS-II share the same binding site on brain synaptic membranes, with K0.5 values of 12 and 19 nM, respectively. We observed that BDS-I and BDS-II have some sequence homologies with other sea anemone Na+ channels toxins, such as AsI, AsII, and AxI. However, they had a weak effect on tetrodotoxin-sensitive Na+ channels in neuroblastoma cells and no effect on Na+ channels in cardiac and skeletal muscle cells. BDS-I and BDS-II are the first specific blockers identified so far for the rapidly inactivating Kv3.4 channel.
Diochot et al (1998) Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4. J.Biol.Chem. PMID: 9506974.
Up-regulation and increased activity of KV3.4 channels and their accessory subunit MinK-related peptide 2 induced by amyloid peptide are involved in apoptotic neuronal death
The aim of the present study was to investigate whether K(V)3.4 channel subunits are involved in neuronal death induced by neurotoxic beta-amyloid peptides (Abeta). In particular, to test this hypothesis, three main questions were addressed: 1) whether the Abeta peptide can up-regulate both the transcription/translation and activity of K(V)3.4 channel subunit and its accessory subunit, MinK-related peptide 2 (MIRP2); 2) whether the increase in K(V)3.4 expression and activity can be mediated by the nuclear factor-kappaB (NF-kappaB) family of transcriptional factors; and 3) whether the specific inhibition of K(V)3.4 channel subunit reverts the Abeta peptide-induced neurodegeneration in hippocampal neurons and nerve growth factor (NGF)-differentiated PC-12 cells. We found that Abeta(1-42) treatment induced an increase in K(V)3.4 and MIRP2 transcripts and proteins, detected by reverse transcription-polymerase chain reaction and Western blot analysis, respectively, in NGF-differentiated PC-12 cells and hippocampal neurons. Patch-clamp experiments performed in whole-cell configuration revealed that the Abeta peptide caused an increase in I(A) current amplitude carried by K(V)3.4 channel subunits, as revealed by their specific blockade with blood depressing substance-I (BDS-I) in both hippocampal neurons and NGF-differentiated PC-12 cells. The inhibition of NF-kappaB nuclear translocation with the cell membrane-permeable peptide SN-50 prevented the increase in K(V)3.4 protein and transcript expression. In addition, the SN-50 peptide was able to block Abeta(1-42)-induced increase in K(V)3.4 K(+) currents and to prevent cell death caused by Abeta(1-42) exposure. Finally, BDS-I produced a similar neuroprotective effect by inhibiting the increase in K(V)3.4 expression. As a whole, our data indicate that K(V)3.4 channels could be a novel target for Alzheimer’s disease pharmacological therapy.
Pannaccione et al (2007) Up-regulation and increased activity of KV3.4 channels and their accessory subunit MinK-related peptide 2 induced by amyloid peptide are involved in apoptotic neuronal death. Mol.Pharmacol. PMID: 17495071.
Voltage-dependent potassium currents during fast spikes of rat cerebellar Purkinje neurons: inhibition by BDS-I toxin.
Martina M., et al. (2007) Voltage-dependent potassium currents during fast spikes of rat cerebellar Purkinje neurons: inhibition by BDS-I toxin. J. Neurophysiol. PMID: 17065256
Modulation of Kv3 subfamily potassium currents by the sea anemone toxin BDS: significance for CNS and biophysical studies.
Kv3 potassium channels, with their ultra-rapid gating and high activation threshold, are essential for high-frequency firing in many CNS neurons. Significantly, the Kv3.4 subunit has been implicated in the major CNS disorders Parkinson’s and Alzheimer’s diseases, and it is claimed that selectively targeting this subunit will have therapeutic utility. Previous work suggested that BDS toxins (“blood depressing substance,” from the sea anemone Anemonia sulcata) were specific blockers for rapidly inactivating Kv3.4 channels, and consequently these toxins are increasingly used as diagnostic agents for Kv3.4 subunits in central neurons. However, precisely how selective are these toxins for this important CNS protein? We show that BDS is not selective for Kv3.4 but markedly inhibits current through Kv3.1 and Kv3.2 channels. Inhibition comes about not by “pore block” but by striking modification of Kv3 gating kinetics and voltage dependence. Activation and inactivation kinetics are slowed by BDS-I and BDS-II, and V(1/2) for activation is shifted to more positive voltages. Alanine substitution mutagenesis around the S3b and S4 segments of Kv3.2 reveals that BDS acts via voltage-sensing domains, and, consistent with this, ON gating currents from nonconducting Kv3.2 are markedly inhibited. The altered kinetics and gating properties, combined with lack of subunit selectivity with Kv3 subunits, seriously affects the usefulness of BDS toxins in CNS studies. Furthermore, our results do not easily fit with the voltage sensor “paddle” structure proposed recently for Kv channels. Our data will be informative for experiments designed to dissect out the roles of Kv3 subunits in CNS function and dysfunction.
Shuk Yin M. Yeung, Dawn Thompson, Zhuren Wang, David Fedida, Brian Robertson. Modulation of Kv3 subfamily potassium currents by the sea anemone toxin BDS: significance for CNS and biophysical studies. The Journal of Neuroscience 25, 8735-8745 (2005).
Modulation of neuronal sodium channels by the sea anemone peptide BDS-I.
Blood-depressing substance I (BDS-I), a 43 amino-acid peptide from sea anemone venom, is used as a specific inhibitor of Kv3-family potassium channels. We found that BDS-I acts with even higher potency to modulate specific types of voltage-dependent sodium channels. In rat dorsal root ganglion (DRG) neurons, 3 μM BDS-I strongly enhanced tetrodotoxin (TTX)-sensitive sodium current but weakly inhibited TTX-resistant sodium current. In rat superior cervical ganglion (SCG) neurons, which express only TTX-sensitive sodium current, BDS-I enhanced current elicited by small depolarizations and slowed decay of currents at all voltages (EC(50) ∼ 300 nM). BDS-I acted with exceptionally high potency and efficacy on cloned human Nav1.7 channels, slowing inactivation by 6-fold, with an EC(50) of approximately 3 nM. BDS-I also slowed inactivation of sodium currents in N1E-115 neuroblastoma cells (mainly from Nav1.3 channels), with an EC(50) ∼ 600 nM. In hippocampal CA3 pyramidal neurons (mouse) and cerebellar Purkinje neurons (mouse and rat), BDS-I had only small effects on current decay (slowing inactivation by 20-50%), suggesting relatively weak sensitivity of Nav1.1 and Nav1.6 channels. The biggest effect of BDS-I in central neurons was to enhance resurgent current in Purkinje neurons, an effect reflected in enhancement of sodium current during the repolarization phase of Purkinje neuron action potentials. Overall, these results show that BDS-I acts to modulate sodium channel gating in a manner similar to previously known neurotoxin receptor site 3 anemone toxins but with different isoform sensitivity. Most notably, BDS-I acts with very high potency on human Nav1.7 channels.
Pin Liu, Sooyeon Jo, Bruce P. Bean. Modulation of neuronal sodium channels by the sea anemone peptide BDS-I. Journal of Neurophysiology 107, 3155-3167 (2012).
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
因为是考察不同PH对药物的影响,样品又不好改变其PH值,这种情况怎么办?希望有经验的高手指教。
我的流动相是甲醇-水(90:10)
谢谢赐教!
请进子版按格式发贴,自行修改,谢谢。
pH(1)=pKa+lg[c(CH₃COONa)/c(CH₃COOH)]=pKa=4.74
通HCl后,溶液是c(CH₃COOH)=0.2mol/L、c(NaCl)=0.1mol/L的混合溶液,溶液pH按照弱酸溶液pH的求法求.
c(H⁺)=√[Ka*c(CH₃COOH)]=√(10^-4.74*0.2)=0.00191(mol/L)(采用了近似公式)
pH(2)=-lg{c(H⁺)}=2.72
两个pH求得,那么pH的变化量也就可得了.pH的变化量=|pH(2)-pH(1)|=|2.72-4.74|=2.02
1)PH缓冲溶液作用原理和pH值
当往某些溶液中加入一定量的酸和碱时,有阻碍溶液pH变化的作用,称为缓冲作用,这样的溶液叫做缓冲溶液.弱酸及其盐的混合溶液(如HAc与NaAc),弱碱及其盐的混合溶液(如NH3·H2O与NH4Cl)等都是缓冲溶液.
由弱酸HA及其盐NaA所组成的缓冲溶液对酸的缓冲作用,是由于溶液中存在足够量的碱A-的缘故.当向这种溶液中加入一定量的强酸时,H离子基本上被A-离子消耗:
所以溶液的pH值几乎不变;当加入一定量强碱时,溶液中存在的弱酸HA消耗OH-离子而阻碍pH的变化.
2)PH缓冲溶液的缓冲能力
在缓冲溶液中加入少量强酸或强碱,其溶液pH值变化不大,但若加入酸,碱的量多时,缓冲溶液就失去了它的缓冲作用.这说明它的缓冲能力是有一定限度的.
缓冲溶液的缓冲能力与组成缓冲溶液的组分浓度有关.0.1mol·L-1HAc和0.1mol·L-1NaAc组成的缓冲溶液,比0.01mol·L-1HAc和0.01mol·L-1NaAc的缓冲溶液缓冲能力大.关于这一点通过计算便可证实.但缓冲溶液组分的浓度不能太大,否则,不能忽视离子间的作用.
组成缓冲溶液的两组分的比值不为1∶1时,缓冲作用减小,缓冲能力降低,当c(盐)/c(酸)为1∶1时△pH最小,缓冲能力大.不论对于酸或碱都有较大的缓冲作用.缓冲溶液的pH值可用下式计算:
此时缓冲能力大.缓冲组分的比值离1∶1愈远,缓冲能力愈小,甚至不能起缓冲作用.对于任何缓冲体系,存在有效缓冲范围,这个范围大致在pKaφ(或pKbφ)两侧各一个pH单位之内.
弱酸及其盐(弱酸及其共轭碱)体系pH=pKaφ±1
弱碱及其盐(弱碱及其共轭酸)体系pOH=pKbφ±1
例如HAc的pKaφ为4.76,所以用HAc和NaAc适宜于配制pH为3.76~5.76的缓冲溶液,在这个范围内有较大的缓冲作用.配制pH=4.76的缓冲溶液时缓冲能力最大,此时(c(HAc)/c(NaAc)=1.
3)PH缓冲溶液的配制和应用
为了配制一定pH的缓冲溶液,首先选定一个弱酸,它的pKaφ尽可能接近所需配制的缓冲溶液的pH值,然后计算酸与碱的浓度比,根据此浓度比便可配制所需缓冲溶液.
以上主要以弱酸及其盐组成的缓冲溶液为例说明它的作用原理、pH计算和配制方法.对于弱碱及其盐组成的缓冲溶液可采用相同的方法.
PH缓冲溶液在物质分离和成分分析等方面应用广泛,如鉴定Mg2离子时,可用下面的反应:
白色磷酸铵镁沉淀溶于酸,故反应需在碱性溶液中进行,但碱性太强,可能生成白色Mg(OH)2沉淀,所以反应的pH值需控制在一定范围内,因此利用NH3·H2O和NH4Cl组成的缓冲溶液,保持溶液的pH值条件下,进行上述反应.
两个CEX方法A和B测定同一单抗,结果碱性峰比例差不多,酸性峰比例相差约7%,相应主峰也差了7%左右。
具体来说,A方法酸性峰高,主峰低,碱性峰稍微低点;B方法酸性峰低,主峰高,碱性峰稍微高点;另外也做了CIEF,结果呢和A方法更接近。
仔细比较起来,AB两个方法的峰性和数量差不多,就不知道为什么会有这么大的差异。两个方法一个用的WCX柱-磷酸缓冲液,一个用SCX柱-MES缓冲液
大家帮我分析下:
1.两个方法哪个方法更准确,是以酸性峰高的为准还是什么?为什么?
2.这显著差异是由方法造成,具体原因是什么?柱子?
3.CIEF的结果和A方法更接近,是不是可以由此证明A方法更好或者CIEF的方法更好(因为CIEF更快更方便)?
欢迎讨论~
纠正下,A方法用的是Tosoh的柱子,B方法用的是SCX柱。TOSOH的柱子是7um的填料,10cm长。SCX是10um的填料。我本人TOSOH的阳离子柱子用的很少,这次信手用用,结果发现差异很大
那我现在就考虑,在以后方法开发过程中,除了通过流动相pH和组成、梯度、柱子选择来获得样品主峰和酸碱性的最大分离,还要关注各峰比例。因为之前比较方法好坏都只看分离度,尤其是主峰和邻近峰的分离度,获得最大分离度,自然可以做到主峰尽可能纯,但从未认真比较过各峰比例。这是一个大疏忽吧!
另外,CIEF和CEX方法原理还是有点差异的,所以分的是不同的异质体,原液放行两个方法肯定是都要做的。问题就是在早期细胞株筛选和工艺开发阶段,哪个方法才是又快又准。CIEF(iCE280)一般15分钟一个样,比CEX快多了。如果CIEF测得主峰要低于CEX结果,是不是真的完全可以取代CEX呢?CEX分离出的峰远比CIEF的多!
欢迎大家继续讨论~
由弱酸及其盐、弱碱及其盐组成的混合溶液,能在一定程度上抵消、减轻外加强酸或强碱对溶液酸碱度的影响,从而保持溶液的pH值相对稳定。这种溶液称为缓冲溶液。
拼音名:Chunhuashui
英文名:PurifiedWater
【性状】本品为无色的澄清液体;无臭,无味。
【检查】酸碱度取本品10ml,加甲基红指示液2滴,不得显红色;另取10ml,加溴麝香草酚蓝指示液5滴,不得显蓝色。氯化物、流酸盐与钙盐取本品,分置三支试管中,每管各50ml。第一管中加硝酸5滴与硝酸银试液1ml,第二管中加氯化钡试液2ml,第三管中加草酸铵试液2ml,均不得发生浑浊。
硝酸盐取本品5ml置试管中,于冰浴中冷却,加10%氯化钾溶液0.4ml与0.1%二苯胺硫酸溶液0.1ml,摇匀,缓缓滴加硫酸5ml,摇匀,将试管子50℃水浴中放置15分钟,溶液产生的蓝色与标准硝酸盐溶液[取硝酸钾0.163g,加水溶解并稀释至100ml,摇匀,精密量取1ml,加水稀释成100ml,再精密量取10ml,加水稀释成100ml,摇匀,即得(每1ml相当于1pgNO3)0.3ml,加无硝酸盐的水4.7ml,用同一方法处理后的颜色比较,不得更深(0.000006%)。
亚硝酸盐取本品10ml,置纳氏管中,加对氨基苯磺酰胺的稀盐酸溶液(1→100)lml与盐酸菜乙H肢溶液(0.l+100)1ml,产生的粉红色,与标准亚硝酸盐溶液〔取亚硝酸钠0.750g(按干燥品计算),加水溶解,稀释至100ml,摇匀,精密量取1ml,加水稀释成100ml,摇匀,再精密量取1ml,加水稀释成50ml,摇匀,即得(每1ml相当于1μgNO2)]0.2ml,加无亚硝酸盐的水9.8ml,用同一方法处理后的颜色比较,不得更深(0.000002%)。
氨取本品50ml,加碱性碘化汞钾试液2ml,放置15分钟;如显色,与氯化铵溶液(取氯化铵31.5mg,加无氨水适量使溶解并稀释成1000ml)1.5ml,加元氨水48ml与碱性碘化汞钾试液2ml制成的对照液比较,不得更深(0.00003%)。
二氧化碳取本品25ml,置50ml具塞量筒中,加氢氧化钙试液25ml,密塞振摇,放置,小时内不得发生浑浊。
易氧化物取本品100ml,加稀硫酸10ml,煮沸后,加高锰酸钾滴定液(0.02mol/L)0.10ml,再煮沸10分钟,粉红色不得完全消失。
不挥发物取本品100ml,置105℃恒重的蒸发皿中,在水浴上蒸干,并在105℃干燥至恒重,遗留残渣不得过1mg。
重金属取本品50ml,加水18.5ml,蒸发至20ml,放冷,加醋酸盐缓冲液(pH3.5)2ml与水适量使成25ml,加硫代乙酰胺试液2ml,摇匀,放置2分钟,与标准铅溶液1.5ml加水18.5ml用同一方法处理后的颜色比较,不得更深(0.00003%)。
微生物限度取本品,采用薄膜过滤法处理后,依法检查(附录ⅪJ),细菌、霉菌和酵母菌总数每1ml不得过100个。
【贮藏】密闭保存。
【化学成分】本品为蒸馏法、离子交换法、反渗透法或其他适宜的方法制得的供药用的水,不含任何附加剂。
【分子式与分子量】H2O18.02
【药理作用】溶剂、稀释剂
这里药典纯化水标准中并无PH值项目,请问对纯化水有PH值的要求吗,范围应在多少?请说明出处?
在纯化水检测中,检验酸碱度合格,但是发现PH在8左右。如果按以上标准检验合格,是否要考虑PH值?请知道的解答,谢谢!


暂无品牌分类