
Guangxitoxin-1E(GxTx-1E) wasisolatedfromthevenomofChilobrachysjingzhao(Chineseearthtigertarantula).Guangxitoxin-1E wasshowntoblock Kv2.1/KCNB1,Kv2.2/KCNB2andKv4.3/KCND3channels withoutsignificanteffectonKv1.2/KCNA2,Kv1.3/KCNA3,Kv1.5/KCNA5,Kv3.2/KCNC2,Cav1.2/CACNA1C,Cav2.2/CACNA1B,Nav1.5/SCN5A,Nav1.7/SCN9AorNav1.8/SCN10Achannels. Guangxitoxin-1E inhibitsKv2.1withanIC50 valueof1nMandKv2.2withanIC50 valueof3nM.BlockofKv4.3occursat10-20foldhigherconcentrations.Guangxitoxin-1E actsasagatingmodifiersinceitshiftsthevoltage-dependenceofKv2.1K+ currentstowardsdepolarizedpotentials.Inpancreaticbeta-cells, Guangxitoxin-1E enhancesglucose-stimulatedinsulinsecretion bybroadeningthecellactionpotentialandenhancingcalciumoscillations.
RecentlyquotedDescription:
AAsequence: Glu-Gly-Glu-Cys4-Gly-Gly-Phe-Trp-Trp-Lys-Cys11-Gly-Ser-Gly-Lys-Pro-Ala-Cys18-Cys19-Pro-Lys-Tyr-Val-Cys24-Ser-Pro-Lys-Trp-Gly-Leu-Cys31-Asn-Phe-Pro-Met-Pro-OH
Presumeddisulfidebridgepattern:Cys4-Cys19,Cys11-Cys24,Cys18-Cys31
Length(aa): 36
Formula: C178H248N44O45S7
MolecularWeight: 3948.70Da
Appearance:Whitelyophilizedsolid
Solubility: waterorsalinebuffer
CASnumber: notavailable
Source: Synthetic
Purityrate: >95%
Reference:
Theroleofvoltage-gatedpotassiumchannelsKv2.1andKv2.2intheregulationofinsulinandsomatostatinreleasefrompancreaticislets
Thevoltage-gatedpotassiumchannelsKv2.1&Kv2.2arehighlyexpressedinpancreaticislets,yettheircontributiontoislethormonesecretionisnotfullyunderstood.HereweinvestigatetheroleofKv2channelsinpancreaticisletsusingacombinationofgenetic&pharmacologicapproaches.Pancreaticβ-cellsfromKv2.1(-/-)micepossessreducedKvcurrent&displaygreaterglucose-stimulatedinsulinsecretion(GSIS)relativetoWTβ-cells.InhibitionofKv2.xchannelswithselectivepeptidyl[guangxitoxin-1E(GxTX-1E)]orsmallmolecule(RY796)inhibitorsenhancesGSISinisolatedwild-type(WT)mouse&humanislets,butnotinisletsfromKv2.1(-/-)mice.However,inWTmiceneitherinhibitorimprovedglucosetoleranceinvivo.GxTX-1E&RY796enhancedsomatostatinreleaseinisolatedhuman&mouseislets&insituperfusedpancreatafromWT&Kv2.1(-/-)mice.Kv2.2silencinginmouseisletsbyadenovirus-smallhairpinRNA(shRNA)specificallyenhancedisletsomatostatin,butnotinsulin,secretion.Inmicelackingsomatostatinreceptor5,GxTX-1Estimulatedinsulinsecretion&improvedglucosetolerance.Collectively,thesedatashowthatKv2.1regulatesinsulinsecretioninβ-cells&Kv2.2modulatessomatostatinreleaseinδ-cells.DevelopmentofselectiveKv2.1inhibitorswithoutcrossinhibitionofKv2.2mayprovidenewavenuestopromoteGSISforthetreatmentoftype2diabetes.
LiXN., etal. (2013)Theroleofvoltage-gatedpotassiumchannelsKv2.1andKv2.2intheregulationofinsulinandsomatostatinreleasefrompancreaticislets. JPharmacolExpTher. PMID: 23161216
Regulationofvoltage-gatedK+channelsbyglucosemetabolisminpancreaticbeta-cells
Regulationofdelayedrectifier-typeK(+)channels(Kv-channels)byglucosewasstudiedinratpancreaticbeta-cells.TheKv-channelcurrentwasincreasedinamplitudesbyincreasingglucoseconcentrationfrom2.8to16.6mM,whileitwasdecreasedby2.8mMglucoseinareversIBLemanner(down-regulation)inbothperforated&conventionalwhole-cellmodes.ThecurrentwasdecreasedbyFCCP,intraPipette0mMATPorAMPPNP.Glyceraldehyde,pyruvicacid,2-ketoisocaproicacid,&10mMMgATPpreventedthedown-regulationinducedby2.8mMorlessglucose.TheresidualcurrentaftertreatmentwithKv2.1-specificblocker,guangxitoxin-1E,wasunchangedbyloweringorincreasingglucoseconcentration.WeconcludethatglucosemetabolismregulatesKv2.1channelsinratsbeta-cellsviaalteringMgATPlevels.
YoshidaM., etal. (2009)Regulationofvoltage-gatedK+channelsbyglucosemetabolisminpancreaticbeta-cells. FEBSLett. PMID: 19500583
AnautomatedelectrophysiologyserumshiftassayforK(V)channels
ThepresenceofseruminBIOLOGicalsamplesoftennegativelyimpactsthequalityofinvitroassays.However,assaystolerantofserumareusefulforassessingtheinvivoavailABIlityofasmallmoleculeforitstarget.Electrophysiologyassaysofionchannelsarenotoriouslysensitivetoserumbecauseoftheirrelianceontheinteractionoftheplasmamembranewitharecordingelectrode.Hereweinvestigatethetoleranceofanautomatedelectrophysiologyassayforavoltage-gatedpotassium(K(V))channeltoserum&purifiedplasmaproteins.Thedelayedrectifierchannel,K(V)2.1,stablyexpressedinChinesehamsterovarycellsproduceslarge,stablecurrentsontheIonWorksQuattroplatform(MDSAnalyticalTechnologies,Sunnyvale,CA),makingitanidealtestcase.K(V)2.1currentsrecordedonthisplatformarehighlyresistanttoserum,allowingrecordingsinashighas33%serum.UsingasetofcompoundsrelatedtotheK(V)channelblocker,4-phenyl-4-[3-(2-methoxyphenyl)-3-oxo-2-azaprop-1-yl]cyclohexanone,weshowthatshiftsincompoundpotencywithwholeserumorisolatedserumproteinscanbereliablymeasuredwiththisassay.Importantly,thisassayisalsorelativelyinsensitivetoplasma,allowingthecreationofabioassayforinhibitorsofK(V)2.1channelactivity.Hereweshowthatsuchabioassaycanquantifythelevelsofthegatingmodifier,guangxitoxin-1E,inplasmasamplesfrommicedosedwiththepeptide.Thisstudydemonstratestheutilityofusinganautomatedelectrophysiologyplatformformeasuringserumshifts&forbioassaysofionchannelmodulators.
RatliffKS., etal.(2008)AnautomatedelectrophysiologyserumshiftassayforK(V)channels. AssayDrugDevTechnol.PMID: 18471078
Gatingmodifierpeptidesasprobesofpancreaticbeta-cellphysiology
Pancreaticbeta-cellsdepolarizeinresponsetoglucose&firecalcium-dependentactionspotentialsthattriggerinsulinsecretion.Themajorcurrentresponsibleforactionpotentialrepolarizationinthesecellsisadelayedrectifier&Kv2.1subunitsarethoughtbeamajorcontributorofthedelayedrectifierchannels.Hence,blockersofKv2.1channelsmightprolongactionpotentials&enhancecalciuminflux&insulinsecretion.However,thelackofspecificsmallmoleculeKv2.1inhibitorshashinderedthetestingofthismechanism.Importantly,severalgatingmodifierpeptidesinhibitKv2.1channelsinarelativelyspecificfashion.Hanatoxin(HaTX)&guangxitoxin-1(GxTX-1)areexamplesthathavebeenusedtoprobetheroleofKv2.1channelsinbeta-cellphysiology.BothHaTX&GxTX-1stronglyinhibittheKvcurrentofbeta-cellsfromvariousspecies,arguingthatKv2.1subunitscontributesignificantlytothebeta-celldelayedrectifier.GxTX-1prolongsglucose-triggeredactionpotentials,enhancesglucose-dependentintracellularcalciumelevations&augmentsglucose-dependentinsulinsecretion.Takentogether,thesedatasuggestthatblockersofKv2.1channelsmaybeausefulapproachtothedesignofnoveltherapeuticagentsforthetreatmentoftype2diabetes.Thesestudieshighlighttheutilityofgatingmodifierpeptidesinthestudyofphysiologicalsystems.
HerringtonJ.,(2009)Gatingmodifierpeptidesasprobesofpancreaticbeta-cellphysiology. Toxicon. PMID: 17101164
SNAP-25(1-180)enhancesinsulinsecretionbyblockingKv2.1channelsinratpancreaticisletbeta-cells
Voltage-gatedoutwardK(+)currentsfrompancreaticisletbeta-cellsareknowntorepolarizetheactionpotentialduringaglucosestimulus,&consequentlytomodulateCa(2+)entry&insulinsecretion.ThevoltagegatedK(+)(Kv)channel,Kv2.1,whichisexpressedinratisletbeta-cells,mediatesover60%oftheKvoutwardK(+)currents.AnovelpeptidylinhibitorofKv2.1/Kv2.2channels,guangxitoxin(GxTX)-1,hasbeenshowntoenhanceglucose-stimulatedinsulinsecretion.Here,weshowthatSNAP-25(1-180)(S180),anN-terminalSNAP-25domain,butnotSNAP-25(1-206)(S206),inhibitsKvcurrent&enhancesglucose-dependentinsulinsecretionfromratpancreaticisletbeta-cells,&furThermore,thisenhancementwasinducedbytheblockadeoftheKv2.1current.ThisstudyindicatesthattheKv2.1channelisapotentialtargetfornoveltherapeuticagentdesignforthetreatmentoftype2diabetes.Thistargetmaypossessadvantagesovercurrently-usedtherapies,whichmodulateinsulinsecretioninaglucose-independentmanner.
ZhuangGQ., etal. (2009)SNAP-25(1-180)enhancesinsulinsecretionbyblockingKv2.1channelsinratpancreaticisletbeta-cells. BiochemBiophysResCommun. PMID: 19103161
Blockersofthedelayed-rectifierpotassiumcurrentinpancreaticbeta-cellsenhanceglucose-dependentinsulinsecretion
Delayed-rectifierK+currents(I(DR))inpancreaticbeta-cellsarethoughttocontributetoactionpotentialrepolarization&therebymodulateinsulinsecretion.Thevoltage-gatedK+channel,K(V)2.1,isexpressedinbeta-cells,&thebiophysicalcharacteristicsofheterologouslyexpressedchannelsaresimilartothoseofI(DR)inrodentbeta-cells.AnovelpeptidylinhibitorofK(V)2.1/K(V)2.2channels,guangxitoxin(GxTX)-1(half-maximalconcentrationapproximately1nmol/l),hasbeenpurified,characterized,&usedtoprobethecontributionofthesechannelstobeta-cellphysiology.Inmousebeta-cells,GxTX-1inhibits90%ofI(DR)&,asforK(V)2.1,shiftsthevoltagedependenceofchannelactivationtomoredepolarizedpotentials,acharacteristicofgating-modifierpeptides.GxTX-1broadensthebeta-cellactionpotential,enhancesglucose-stimulatedintracellularcalciumoscillations,enhancesinsulinsecretionfrommousepancreaticisletsinaglucose-dependentmanner.Thesedatapointtoamechanismforspecificenhancementofglucose-dependentinsulinsecretionbyapplyingblockersofthebeta-cellI(DR),whichmayprovideadvantagesovercurrentlyusedtherapiesforthetreatmentoftype2diabetes.
HerringtonJ., etal.(2006)Blockersofthedelayed-rectifierpotassiumcurrentinpancreaticbeta-cellsenhanceglucose-dependentinsulinsecretion. Diabetes. PMID: 16567526
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
因为是考察不同PH对药物的影响,样品又不好改变其PH值,这种情况怎么办?希望有经验的高手指教。
我的流动相是甲醇-水(90:10)
谢谢赐教!
请进子版按格式发贴,自行修改,谢谢。
两个CEX方法A和B测定同一单抗,结果碱性峰比例差不多,酸性峰比例相差约7%,相应主峰也差了7%左右。
具体来说,A方法酸性峰高,主峰低,碱性峰稍微低点;B方法酸性峰低,主峰高,碱性峰稍微高点;另外也做了CIEF,结果呢和A方法更接近。
仔细比较起来,AB两个方法的峰性和数量差不多,就不知道为什么会有这么大的差异。两个方法一个用的WCX柱-磷酸缓冲液,一个用SCX柱-MES缓冲液
大家帮我分析下:
1.两个方法哪个方法更准确,是以酸性峰高的为准还是什么?为什么?
2.这显著差异是由方法造成,具体原因是什么?柱子?
3.CIEF的结果和A方法更接近,是不是可以由此证明A方法更好或者CIEF的方法更好(因为CIEF更快更方便)?
欢迎讨论~
纠正下,A方法用的是Tosoh的柱子,B方法用的是SCX柱。TOSOH的柱子是7um的填料,10cm长。SCX是10um的填料。我本人TOSOH的阳离子柱子用的很少,这次信手用用,结果发现差异很大
那我现在就考虑,在以后方法开发过程中,除了通过流动相pH和组成、梯度、柱子选择来获得样品主峰和酸碱性的最大分离,还要关注各峰比例。因为之前比较方法好坏都只看分离度,尤其是主峰和邻近峰的分离度,获得最大分离度,自然可以做到主峰尽可能纯,但从未认真比较过各峰比例。这是一个大疏忽吧!
另外,CIEF和CEX方法原理还是有点差异的,所以分的是不同的异质体,原液放行两个方法肯定是都要做的。问题就是在早期细胞株筛选和工艺开发阶段,哪个方法才是又快又准。CIEF(iCE280)一般15分钟一个样,比CEX快多了。如果CIEF测得主峰要低于CEX结果,是不是真的完全可以取代CEX呢?CEX分离出的峰远比CIEF的多!
欢迎大家继续讨论~
1.直接用固体磷酸钠配制成50mM的磷酸钠溶液,再调pH到7.4;(我们试着用这个做了下,发现挂不上柱)
2.配置磷酸钠盐缓冲液:按NaH2PO4:Na2HPO4以19:81的摩尔比配制成pH7.4的缓冲液?(附一张百度出来的配方
)
3.如果是磷酸钠盐缓冲液,可以直接将50mM的NaH2PO4的水溶液用NaOH调成pH7.4吗?
再者,2和3这两个方法配制的磷酸钠盐缓冲液有什么区别?最终效果是一样的吗?如果不一样,有什么理论的知识支撑呢?个人感觉是分析化学中酸碱理论中的缓冲液那里的知识。求帮忙解答这些疑问。
另外,我还想问一下,pH对于Ni柱对His-tagged的蛋白的分离纯化影响大吗?是怎么影响的?谢谢大家了!
拼音名:Chunhuashui
英文名:PurifiedWater
【性状】本品为无色的澄清液体;无臭,无味。
【检查】酸碱度取本品10ml,加甲基红指示液2滴,不得显红色;另取10ml,加溴麝香草酚蓝指示液5滴,不得显蓝色。氯化物、流酸盐与钙盐取本品,分置三支试管中,每管各50ml。第一管中加硝酸5滴与硝酸银试液1ml,第二管中加氯化钡试液2ml,第三管中加草酸铵试液2ml,均不得发生浑浊。
硝酸盐取本品5ml置试管中,于冰浴中冷却,加10%氯化钾溶液0.4ml与0.1%二苯胺硫酸溶液0.1ml,摇匀,缓缓滴加硫酸5ml,摇匀,将试管子50℃水浴中放置15分钟,溶液产生的蓝色与标准硝酸盐溶液[取硝酸钾0.163g,加水溶解并稀释至100ml,摇匀,精密量取1ml,加水稀释成100ml,再精密量取10ml,加水稀释成100ml,摇匀,即得(每1ml相当于1pgNO3)0.3ml,加无硝酸盐的水4.7ml,用同一方法处理后的颜色比较,不得更深(0.000006%)。
亚硝酸盐取本品10ml,置纳氏管中,加对氨基苯磺酰胺的稀盐酸溶液(1→100)lml与盐酸菜乙H肢溶液(0.l+100)1ml,产生的粉红色,与标准亚硝酸盐溶液〔取亚硝酸钠0.750g(按干燥品计算),加水溶解,稀释至100ml,摇匀,精密量取1ml,加水稀释成100ml,摇匀,再精密量取1ml,加水稀释成50ml,摇匀,即得(每1ml相当于1μgNO2)]0.2ml,加无亚硝酸盐的水9.8ml,用同一方法处理后的颜色比较,不得更深(0.000002%)。
氨取本品50ml,加碱性碘化汞钾试液2ml,放置15分钟;如显色,与氯化铵溶液(取氯化铵31.5mg,加无氨水适量使溶解并稀释成1000ml)1.5ml,加元氨水48ml与碱性碘化汞钾试液2ml制成的对照液比较,不得更深(0.00003%)。
二氧化碳取本品25ml,置50ml具塞量筒中,加氢氧化钙试液25ml,密塞振摇,放置,小时内不得发生浑浊。
易氧化物取本品100ml,加稀硫酸10ml,煮沸后,加高锰酸钾滴定液(0.02mol/L)0.10ml,再煮沸10分钟,粉红色不得完全消失。
不挥发物取本品100ml,置105℃恒重的蒸发皿中,在水浴上蒸干,并在105℃干燥至恒重,遗留残渣不得过1mg。
重金属取本品50ml,加水18.5ml,蒸发至20ml,放冷,加醋酸盐缓冲液(pH3.5)2ml与水适量使成25ml,加硫代乙酰胺试液2ml,摇匀,放置2分钟,与标准铅溶液1.5ml加水18.5ml用同一方法处理后的颜色比较,不得更深(0.00003%)。
微生物限度取本品,采用薄膜过滤法处理后,依法检查(附录ⅪJ),细菌、霉菌和酵母菌总数每1ml不得过100个。
【贮藏】密闭保存。
【化学成分】本品为蒸馏法、离子交换法、反渗透法或其他适宜的方法制得的供药用的水,不含任何附加剂。
【分子式与分子量】H2O18.02
【药理作用】溶剂、稀释剂
这里药典纯化水标准中并无PH值项目,请问对纯化水有PH值的要求吗,范围应在多少?请说明出处?
在纯化水检测中,检验酸碱度合格,但是发现PH在8左右。如果按以上标准检验合格,是否要考虑PH值?请知道的解答,谢谢!


暂无品牌分类