
ShK(StichodactylahelianthusNeurotoxin)hasbeenisolatedfromthevenomoftheCarribeanseaanemoneStoichactishelianthus.ShKinhibitsvoltage-dependentpotassiumchannels.ItblocksKv1.3(KCNA3)potentlyandalsoKv1.1(KCNA1),Kv1.4(KCNA4)andKv1.6(KCNA6)respectivelywithaKdof11pM,16pM,312pMand165pM.Interestingly,itwasalsodemonstratedthatShKpotentlyinhibitsthehKv3.2bchannelwithanIC50valueofapproximately0.6nM.
Description:
AAsequence:Arg-Ser-Cys3-Ile-Asp-Thr-Ile-Pro-Lys-Ser-Arg-Cys12-Thr-Ala-Phe-Gln-Cys17-Lys-His-Ser-Met-Lys-Tyr-Arg-Leu-Ser-Phe-Cys28-Arg-Lys-Thr-Cys32-Gly-Thr-Cys35-OH
Disulfidebonds:Cys3-Cys35,Cys12-Cys28andCys17-Cys32
Length(aa):35
Formula:C169H274N54O48S7
MolecularWeight:4054.85Da
Appearance:Whitelyophilizedsolid
Solubility:waterandsalinebuffer
CASnumber:165168-50-3
Source:Synthetic
Purityrate:>97%
Reference:
DurablepharmacologicalresponsesfromthepeptideShK-186,aspecificKv1.3channelinhibitorthatsuppressesTcellmediatorsofautoimmunedisease
TheKv1.3channelisarecognizedtargetforpharmaceuticaldevelopmenttotreatautoimmunediseasesandorganrejection.ShK-186,aspecificpeptideinhibitorofKv1.3,hasshownpromiseinanimalmodelsofmultiplesclerosisandrheumatoidarthritis.Here,wedescribethepharmacokinetic-pharmacodynamicrelationshipforShK-186inratsandmonkeys.ThepharmacokineticprofileofShK-186wasevaluatedwithavalidatedhigh-performanceliquidchromatography-tandemmassspectrometrymethodtomeasurethepeptide’sconcentrationinplasma.Theseresultswerecomparedwithsingle-photonemissioncomputedtomography/computedtomographydatacollectedwithan¹¹¹In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaceticacid-conjugateofShK-186toassesswhole-bloodpharmacokineticparametersaswellasthepeptide’sabsorption,distribution,andexcretion.AnalysisofthesedatasupportamodelwhereinShK-186isabsorbedslowlyfromtheinjectionsite,resultinginbloodconcentrationsabovetheKv1.3channel-blockingIC₅₀valueforupto7daysinmonkeys.PharmacodynamicstudiesonhumanperipheralbloodmononuclearcellsshowedthatbriefexposuretoShK-186resultedinsustainedsuppressionofcytokineresponsesandmaycontributetoprolongeddrugeffects.Indelayed-typehypersensitivity,chronicrelapsing-remittingexperimentalautoimmuneencephalomyelitis,andpristane-inducedarthritisratmodels,asingledoseofShK-186every2to5dayswasaseffectiveasdailyadmiNISTration.ShK-186’sslowdistributionfromtheinjectionsiteanditslongresidencetimeontheKv1.3channelcontributetotheprolongedtherapeuticeffectofShK-186inanimalmodelsofautoimmunedisease.
TarchaEJ.,etal.(2012)DurablepharmacologicalresponsesfromthepeptideShK-186,aspecificKv1.3channelinhibitorthatsuppressesTcellmediatorsofautoimmunedisease.JPharmacolExpTher.PMID: 22637724
ThebeneficialeffectofblockingKv1.3inthepsoriasiformSCIDmousemodel
TheKv1.3channelisimportantintheactivationandfunctionofeffectormemoryTcells.Recently,specificblockersoftheKv1.3channelhavebeendevelopedasapotentialtherapeuticoptionfordiverseautoimmunediseases.Inpsoriaticlesions,mostlymphocytesarememoryeffectorTcells.TheaimofthepresentstudywastodetecttheexpressionofKv1.3channelsinthesecellsinpsoriaticlesionsaswellasinhumanpsoriasiformskingraftsusingtheseverecombinedimmunodeficient(SCID)mousemodel.HistologicalandimmunohistochemicalstainingforKv1.3expressionandvariousinflammatoryMarkerswasperformedinsectionsobtainedfromsixpsoriaticpatientsand18beige-SCIDmicewithpsoriasiformhumanskingrafts.SixgraftedmiceweretreatedwithStichodactylahelianthusneurotoxin(ShK),aknownKv1.3blocker.TheresultsshowedanincreasednumberofKv1.3+cellsinthepsoriaticskinaswellasinthepsoriasiformskingraftsascomparedwithnormalskinandnormalskingrafts.InjectionsofShKshowedamarkedtherapeuticeffectinthreeofsixpsoriasiformskingrafts.AsignificantlydecreasednumberofKv1.3+cellswasobservedintheresponderscomparedwiththecontrolgrafts.Thispilotstudy,althoughperformedinasmallnumberofmice,revealsthepossIBLebeneficialeffectofKv1.3blockersinpsoriasispatients.
GilharA.,etal.(2011)ThebeneficialeffectofblockingKv1.3inthepsoriasiformSCIDmousemodel.JInvestDermatol.PMID: 20739949
Modelingthebindingofthreetoxinstothevoltage-gatedpotassiumchannel(Kv1.3)
Theconductionpropertiesofthevoltage-gatedpotassiumchannelKv1.3anditsmodesofinteractionwithseveralpolypeptidevenomsareexaminedusingBrowniandynamicssimulationsandmoleculardynamicscalculations.Employinganopen-statehomologymodelofKv1.3,wefirstdeterminecurrent-voltageandcurrent-concentrationcurvesandascertainthatsimulatedresultsaccordwithexperimentalmeasurements.Wetheninvestigate,usingamoleculardockingmethodandmoleculardynamicssimulations,thecomplexesformedbetweentheKv1.3channelandseveralKv-specificpolypeptidetoxinsthatareknowntointerferewiththeconductingmechanismsofseveralclassesofvoltage-gatedK(+)channels.ThedepthsofpotentialofmeanforceencounteredbycharyBDotoxin,α-KTx3.7(alsoknownasOSK1)andShKare,respectively,-19,-27,and-25kT.Thedissociationconstantscalculatedfromtheprofilesofpotentialofmeanforcecorrespondcloselytotheexperimentallydeterminedvalues.Wepinpointtheresiduesinthetoxinsandthechannelthatarecriticalfortheformationofthestablevenom-channelcomplexes.
ChenR.,etal.(2011)Modelingthebindingofthreetoxinstothevoltage-gatedpotassiumchannel(Kv1.3).BiophysJ.PMID: 22261053
BlockadeofT-lymphocyteKCa3.1andKv1.3channelsasnovelimmunosuppressionstrategytopreventkidneyallograftrejection
Currently,thereisanunmetclinicalneedfornovelimmunosuppressiveagentsforlong-termpreventionofkidneytransplantrejectionasalternativestothenephrotoxiccalcineurininhibitorcyclosporine(CsA).RecentstudieshaveshownthatK(+)channelshaveacrucialroleinT-lymphocyteactivity.WeinvestigatedwhethercombinedblockadeoftheT-cellK(+)channelsK(Ca)3.1andK(v)1.3,bothofwhichregulatecalciumsignalingduringlymphocyteactivation,iseffectiveinpreventionofrejectionofkidneyallograftsfromFisherratstoLewisrats.AllrecipientswereinitiallytreatedwithCsA(5mg/kgd)for7days.Inratswithintactallograftfunction,treatmentwascontinuedfor10dayswitheitherCsA(5mg/kgd),oracombinationofTRAM-34(K(Ca)3.1inhibitor;120mg/kgd)plusStichodactylahelianthustoxin(ShK,K(v)1.3inhibitor;80microg/kg3timesdaily),orvehiclealone.Kidneysectionswerestainedwithperiodicacid-Schifforhematoxylin-eosinandhistochemicallyformarkersofmacrophages(CD68),T-lymphocytes(CD43),orcytotoxicT-cells(CD8).OurresultsshowedthattreatmentwithTRAM-34andShKreducedtotalinterstitialmononuclearcellinfiltration(-42%)andthenumberofCD43+T-cells(-32%),cytotoxicCD8+T-cells(-32%),andCD68+macrophages(-26%)inallograftswhencomparedtovehicletreatmentalone.EfficacyofTRAM-34/ShKtreatmentwascomparablewiththatofCsA.Inaddition,novisibleorgandamageorotherdiscernibleadverseeffectswereobservedwiththistreatment.Thus,selectiveblockadeofT-lymphocyteK(Ca)3.1andK(v)1.3channelsmayrepresentanovelalternativetherapyforpreventionofkidneyallograftrejection.
GrgicI.,etal.(2009)BlockadeofT-lymphocyteKCa3.1andKv1.3channelsasnovelimmunosuppressionstrategytopreventkidneyallograftrejection.TransplantProc.PMID: 19715983
MolecularmechanismoftheseaanemonetoxinShKrecognizingtheKv1.3channelexploredbydockingandmoleculardynamicsimulations
ComputationalmethodsareemployedtosimulatetheinteractionoftheseaanemonetoxinShKincomplexwiththevoltage-gatedpotassiumchannelKv1.3frommice.Alloftheavailable20structuresofShKintheProteinDataBankwereconsideredforimprovingtheperformanceoftherigidproteindockingofZDOCK.ThetrADItionalandnovelbindingmodeswereobtainedamongalargenumberofpredictedcomplexesbyusingclusteringanalysis,screeningwithexpertknowledge,energyminimization,andmoleculardynamicsimulations.Thequalityandvalidityoftheresultingcomplexeswerefurtherevaluatedtoidentifyafavorablecomplexstructureby500psmoleculardynamicsimulationsandthechangeofbindingfreeenergieswithacomputationalalaninescanningtechnique.ThenovelandreasonableShK-Kv1.3complexstructurewasfoundtobedifferentfromthetraditionalmodelbyusingtheLys22residuetoblockthechannelpore.FromtheresultingstructureoftheShK-Kv1.3complex,ShKmainlyassociatesthechanneloutervestibulewithitssecondhelicalsegment.StructuralanalysisfirstrevealedthattheLys22residuesidechainoftheShKpeptidejusthangsbetweenCandDchainsoftheKv1.3channelinsteadofphysicallyblockingthechannelpore.TheobviouslossoftheShKSer20AlaandTyr23AlamutantbindingABIlitytotheKv1.3channeliscausedbytheconformationalchange.ThefivehydrogenbondsbetweenArg24inShKandH404(A)andD402(D)inKv1.3makeArg24themostcrucialforitsbindingtotheKv1.3channel.BesidesthedetailedinteractionbetweenShKandKv1.3attheatomlevel,thesignificantconformationalchangeinducedbytheinteractionbetweentheShKpeptideandtheKv1.3channel,accompaniedbythegradualdecreaseofbindingfreeenergies,stronglyimpliesthatthebindingoftheShKpeptidetowardtheKv1.3channelisadynamicprocessofconformationalrearrangementandenergystabilization.AllofthesecanacceleratethedevelopmentofShKstructure-basedimmunosuppressants.
JinL,WuY.(2007)MolecularmechanismoftheseaanemonetoxinShKrecognizingtheKv1.3channelexploredbydockingandmoleculardynamicsimulations.JChemInfModel. PMID: 17718553
K+channelblockers:noveltoolstoinhibitTcellactivationleadingtospecificimmunosuppression
DuringthelasttwodecadessincetheidentificationandcharacterizationofTcellpotassiumchannelsgreatadvanceshavebeenmadeintheunderstandingoftheroleofthesechannelsinTcellfunctions,especiallyinantigen-inducedactivation.TheirlimitedtissuedistributionandtherecentdiscoverythatdifferentTcellsubtypescarryingoutdistinctimmunefunctionsshowspecificexpressionlevelsofthesechannelshavemadeTcellpotassiumchannelsattractivetargetsforimmunomodulatorydrugs.Manytoxinsofvariousanimalspeciesandastructurallydiversearrayofsmallmoleculesinhibitingthesechannelswithvaryingaffinityandselectivitywerefoundandtheirsuccessfuluseinimmunosuppressioninvivowasalsodemonstrated.Betterunderstandingofthetopologicaldifferencesbetweenpotassiumchannelpores,detailedknowledgeoftoxinandsmall-moleculestructuresandtheidentificationofthebindingsitesofblockingcompoundsmakeitpossibletoimprovetheselectivityandaffinityoftheleadcompoundsbyintroducingmodificationsbasedonstructuralinformation.Inthisreviewthebasicpropertiesandphysiologicalrolesofthevoltage-gatedKv1.3andtheCa2+-activatedIKCa1potassiumchannelsarediscussedalongwithanoverviewofcompoundsinhibitingthesechannelsandapproachesaimingatproducingmoreefficientmodulatorsofimmunefunctionsforthetreatmentofdiseaseslikesclerosismultiplexandtypeIdiabetes.
PanyiG,etal.(2006)K+channelblockers:noveltoolstoinhibitTcellactivationleadingtospecificimmunosuppression.CurrPharmDes. PMID: 16787250
Stichodactylahelianthuspeptide,apharmacologicaltoolforstudyingKv3.2channels
Voltage-gatedpotassium(Kv)channelsregulatemanyphysiologicalfunctionsandrepresentimportanttherapeutictargetsinthetreatmentofseveralclinicaldisorders.Althoughsomeofthesechannelshavebeenwell-characterized,thestudyofothers,suchasKv3channels,hasbeenhinderedbecauseoflimitedpharmacologicaltools.ThecurrentstudywasinitiatedtoidentifypotentblockersoftheKv3.2channel.Chinesehamsterovary(CHO)-K1cellsstablyexpressinghumanKv3.2b(CHO-K1.hKv3.2b)wereestablishedandcharacterized.Stichodactylahelianthuspeptide(ShK),isolatedfromS.helianthusvenomandaknownhigh-affinityblockerofKv1.1andKv1.3channels,wasfoundtopotentlyinhibit86Rb+effluxfromCHO-K1.hKv3.2b(IC50approximately0.6nM).InelectrophysiologicalrecordingsofKv3.2bchannelsexpressedinXenopuslaevisoocytesorinplanarpatch-clampstudies,ShKinhibitedhKv3.2bchannelswithIC50valuesofapproximately0.3and6nM,respectively.DespitethepresenceofKv3.2proteininhumanpancreaticbetacells,ShKhasnoeffectontheKvcurrentofthesecells,suggestingthatitisunlikelythathomotetramericKv3.2channelscontributesignificantlytothedelayedrectifiercurrentofinsulin-secretingcells.InmousecorticalGABAergicfast-spikinginterneurons,however,applicationofShKproducedeffectsconsistentwiththeblockadeofKv3channels(i.e.,anincreaseinactionpotentialhalf-width,adecreaseintheamplitudeoftheactionpotentialafterhyperpolarization,andadecreaseinmaximalfiringfrequencyinresponsetodepolarizingcurrentinjections).Takentogether,theseresultsindicatethatShKisapotentinhibitorofKv3.2channelsandmayserveasausefulpharmacologicalprobeforstudyingthesechannelsinnativepreparations.
YanL.,etal.(2005)Stichodactylahelianthuspeptide,apharmacologicaltoolforstudyingKv3.2channels.MolPharmacol.PMID: 15709110
TargetingeffectormemoryTcellswithaselectivepeptideinhibitorofKv1.3channelsfortherapyofautoimmunediseases
Thevoltage-gatedKv1.3K(+)channelisanoveltargetforimmunomodulationofautoreactiveeffectormemoryT(T(EM))cellsthatplayamajorroleinthepathogenesisofautoimmunediseases.WedescribethecharacterizationofthenovelpeptideShK(L5)thatcontainsl-phosphotyrosinelinkedviaanine-atomhydrophiliclinkertotheNterminusoftheShKpeptidefromtheseaanemoneStichodactylahelianthus.ShK(L5)isahighlyspecificKv1.3blockerthatexhibits100-foldselectivityforKv1.3(K(d)=69pM)overKv1.1andgreaterthan250-foldselectivityoverallotherchannelstested.ShK(L5)suppressestheproliferationofhumanandratT(EM)cellsandinhibitsinterleukin-2productionatpicomolarconcentrations.NaiveandcentralmemoryhumanTcellsareinitially60-foldlesssensitivethanT(EM)cellstoShK(L5)andthenbecomeresistanttothepeptideduringactivationbyup-regulatingthecalcium-activatedK(Ca)3.1channel.ShK(L5)doesnotexhibitinvitrocytotoxicityonmammaliancelllinesandisnegativeintheAmestest.Itisstableinplasmaandwhenadministeredoncedailybysubcutaneousinjection(10mug/kg)attains“steadystate”bloodlevelsofapproximately300pM.ThisregimendoesnotcausecardiactoxicityassessedbycontinuousEKGmonitoringanddoesnotalterclinicalchemistryandhematologicalparametersafter2-weektherapy.ShK(L5)preventsandtreatsexperimentalautoimmuneencephalomyelitisandsuppressesdelayedtypehypersensitivityinrats.ShK(L5)mightproveusefulfortherapyofautoimmunedisorders.
BeetonC.,etal.(2005)TargetingeffectormemoryTcellswithaselectivepeptideinhibitorofKv1.3channelsfortherapyofautoimmunediseases.MolPharmacol. PMID: 15665253
PotassiumchannelblockadebytheseaanemonetoxinShKforthetreatmentofmultiplesclerosisandotherautoimmunediseases
Expressionofthetwolymphocytepotassiumchannels,thevoltage-gatedchannelKv1.3andthecalciumactivatedchannelIKCa1,changesduringdifferentiationofhumanTcells.WhileIKCa1isthefunctionallydominantchannelinnaiveand“early”memoryTcells,Kv1.3iscrucialfortheactivationofterminallydifferentiatedeffectormemory(TEM)Tcells.BecauseoftheinvolvementofTEMcellsinautoimmuneprocesses,Kv1.3isregardedasapromisingtargetforthetreatmentofT-cellmediatedautoimmunediseasessuchasmultiplesclerosisandthepreventionofchronictransplantrejection.ShK,a35-residuepolypeptidetoxinfromtheseaanemone,Stichodactylahelianthus,blocksKv1.3atlowpicomolarconcentrations.ShKadoptsacentralhelix-kink-helixfold,andalanine-scanningandothermutagenesisstudieshavedefineditschannel-bindingsurface.ModelshavebeendevelopedofhowthistoxineffectsK+-channelblockadeandhowitsdockingconfigurationmightdifferinShK-Dap22,whichcontainsasinglesidechainsubstitutionthatconfersspecificityforKv1.3blockade.ShK,ShK-Dap22andtheKv1.3blockingscorpiontoxinkaliotoxinhavebeenshowntopreventandtreatexperimentalautoimmuneencephalomyelitisinrats,amodelformultiplesclerosis.AfluoresceinatedanalogofShK,ShK-F6CA,hasbeendeveloped,whichallowsthedetectionofactivatedTEMcellsinhumanandanimalbloodsamplesbyflowcytometryandthevisualizationofKv1.3channeldistributioninlivingcells.ShKanditsanalogsarecurrentlyundergoingfurtherevaluationasleadsinthedevelopmentofnewbiopharmaceuticalsforthetreatmentofmultiplesclerosisandotherT-cellmediatedautoimmunedisorders.
NortonRS.,etal.(2004)PotassiumchannelblockadebytheseaanemonetoxinShKforthetreatmentofmultiplesclerosisandotherautoimmunediseases.CurrMedChem.PMID: 15578998
SolutionstructureofShKtoxin,anovelpotassiumchannelinhibitorfromaseaanemone
AnessentialbindingsurfaceforShKtoxininteractionwithratbrainpotassiumchannels.
An“Alascan”analysisofShKtoxin,a35-residuebasicpeptidepossessingthreedisulfidebonds,identifiessevensidechainswhichinfluencebindingtobraindelayedrectifierpotassiumchannels.Additionalanalogsweresynthesizedandtestedtofurtherdeciphertherolesoftheseresidues,particularlyTyr23.Theinhibitoryeffectsoftheseanalogson125I-labeleddendrotoxinbindingtoratbrainmembranesshowedthatreplacementofTyr23withAladrasticallyloweredtheaffinityofthetoxinfortheKv1.2channels.AlasubstitutionofPhe27reducedpotencymorethan15-fold.MonosubstitutedAlaanalogsforIle7,Ser20,orLys30eachdisplayed5-foldreductionsinpotency.Thus,aromaticityatposition23isimportantforeffectivedelayedrectifierbrainKchannelbinding.Incontrast,thearomaticresidueatposition27wasnotcritical,sincecyclohexylalaninesubstitutionincreasedaffinity.ThesolutionstructureofShKtoxinclustersIle7,Arg11,Ser20,Lys22,Tyr23,andPhe27incloseproximity,formingthepotassiumchannelbindingsurfaceofthetoxin.WeproposeanessentialbindingsurfaceonthetoxininwhichLys22andTyr23aremajorcontributors,throughionicandaromatic(hydrophobic)interactions,withthepotassiumchannel.
PenningtonMW.,etal.(1996)AnessentialbindingsurfaceforShKtoxininteractionwithratbrainpotassiumchannels.Biochemistry. PMID: 8987971
CharacterizationofapotassiumchanneltoxinfromtheCaribbeanSeaanemoneStichodactylahelianthus
Apeptidetoxin,ShK,thatblocksvoltage-dependentpotassiumchannelswasisolatedfromthewholebodyextractoftheCaribbeanseaanemoneStichodactylahelianthus.ItcompeteswithdendrotoxinIandalpha-dendrotoxinforbindingtosynaptosomalmembranesofratbrain,facilitiesacetylcholinereleaseatanavianneuromuscularjunctionandsuppressesK+currentsinratdorsalrootganglionneuronesinculture.ItsaminoacidsequenceisR1SCIDTIPKS10RCTAFQCKHS20MKYRLSFCRK30TCGTC35.ThereisnohomologywithotherK+channel-blockingpeptides,exceptforBgKfromtheseaanemoneBunodosomagranulifera.ShKandBgKappeartobeinadifferentstructuralclassfromothertoxinsaffectingK+channels.
Castaneda,O.,etal.(1995)CharacterizationofapotassiumchanneltoxinfromtheCaribbeanSeaanemoneStichodactylahelianthus,Toxicon. PMID: 7660365
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
因为是考察不同PH对药物的影响,样品又不好改变其PH值,这种情况怎么办?希望有经验的高手指教。
我的流动相是甲醇-水(90:10)
谢谢赐教!
请进子版按格式发贴,自行修改,谢谢。
两个CEX方法A和B测定同一单抗,结果碱性峰比例差不多,酸性峰比例相差约7%,相应主峰也差了7%左右。
具体来说,A方法酸性峰高,主峰低,碱性峰稍微低点;B方法酸性峰低,主峰高,碱性峰稍微高点;另外也做了CIEF,结果呢和A方法更接近。
仔细比较起来,AB两个方法的峰性和数量差不多,就不知道为什么会有这么大的差异。两个方法一个用的WCX柱-磷酸缓冲液,一个用SCX柱-MES缓冲液
大家帮我分析下:
1.两个方法哪个方法更准确,是以酸性峰高的为准还是什么?为什么?
2.这显著差异是由方法造成,具体原因是什么?柱子?
3.CIEF的结果和A方法更接近,是不是可以由此证明A方法更好或者CIEF的方法更好(因为CIEF更快更方便)?
欢迎讨论~
纠正下,A方法用的是Tosoh的柱子,B方法用的是SCX柱。TOSOH的柱子是7um的填料,10cm长。SCX是10um的填料。我本人TOSOH的阳离子柱子用的很少,这次信手用用,结果发现差异很大
那我现在就考虑,在以后方法开发过程中,除了通过流动相pH和组成、梯度、柱子选择来获得样品主峰和酸碱性的最大分离,还要关注各峰比例。因为之前比较方法好坏都只看分离度,尤其是主峰和邻近峰的分离度,获得最大分离度,自然可以做到主峰尽可能纯,但从未认真比较过各峰比例。这是一个大疏忽吧!
另外,CIEF和CEX方法原理还是有点差异的,所以分的是不同的异质体,原液放行两个方法肯定是都要做的。问题就是在早期细胞株筛选和工艺开发阶段,哪个方法才是又快又准。CIEF(iCE280)一般15分钟一个样,比CEX快多了。如果CIEF测得主峰要低于CEX结果,是不是真的完全可以取代CEX呢?CEX分离出的峰远比CIEF的多!
欢迎大家继续讨论~
1.直接用固体磷酸钠配制成50mM的磷酸钠溶液,再调pH到7.4;(我们试着用这个做了下,发现挂不上柱)
2.配置磷酸钠盐缓冲液:按NaH2PO4:Na2HPO4以19:81的摩尔比配制成pH7.4的缓冲液?(附一张百度出来的配方
)
3.如果是磷酸钠盐缓冲液,可以直接将50mM的NaH2PO4的水溶液用NaOH调成pH7.4吗?
再者,2和3这两个方法配制的磷酸钠盐缓冲液有什么区别?最终效果是一样的吗?如果不一样,有什么理论的知识支撑呢?个人感觉是分析化学中酸碱理论中的缓冲液那里的知识。求帮忙解答这些疑问。
另外,我还想问一下,pH对于Ni柱对His-tagged的蛋白的分离纯化影响大吗?是怎么影响的?谢谢大家了!
拼音名:Chunhuashui
英文名:PurifiedWater
【性状】本品为无色的澄清液体;无臭,无味。
【检查】酸碱度取本品10ml,加甲基红指示液2滴,不得显红色;另取10ml,加溴麝香草酚蓝指示液5滴,不得显蓝色。氯化物、流酸盐与钙盐取本品,分置三支试管中,每管各50ml。第一管中加硝酸5滴与硝酸银试液1ml,第二管中加氯化钡试液2ml,第三管中加草酸铵试液2ml,均不得发生浑浊。
硝酸盐取本品5ml置试管中,于冰浴中冷却,加10%氯化钾溶液0.4ml与0.1%二苯胺硫酸溶液0.1ml,摇匀,缓缓滴加硫酸5ml,摇匀,将试管子50℃水浴中放置15分钟,溶液产生的蓝色与标准硝酸盐溶液[取硝酸钾0.163g,加水溶解并稀释至100ml,摇匀,精密量取1ml,加水稀释成100ml,再精密量取10ml,加水稀释成100ml,摇匀,即得(每1ml相当于1pgNO3)0.3ml,加无硝酸盐的水4.7ml,用同一方法处理后的颜色比较,不得更深(0.000006%)。
亚硝酸盐取本品10ml,置纳氏管中,加对氨基苯磺酰胺的稀盐酸溶液(1→100)lml与盐酸菜乙H肢溶液(0.l+100)1ml,产生的粉红色,与标准亚硝酸盐溶液〔取亚硝酸钠0.750g(按干燥品计算),加水溶解,稀释至100ml,摇匀,精密量取1ml,加水稀释成100ml,摇匀,再精密量取1ml,加水稀释成50ml,摇匀,即得(每1ml相当于1μgNO2)]0.2ml,加无亚硝酸盐的水9.8ml,用同一方法处理后的颜色比较,不得更深(0.000002%)。
氨取本品50ml,加碱性碘化汞钾试液2ml,放置15分钟;如显色,与氯化铵溶液(取氯化铵31.5mg,加无氨水适量使溶解并稀释成1000ml)1.5ml,加元氨水48ml与碱性碘化汞钾试液2ml制成的对照液比较,不得更深(0.00003%)。
二氧化碳取本品25ml,置50ml具塞量筒中,加氢氧化钙试液25ml,密塞振摇,放置,小时内不得发生浑浊。
易氧化物取本品100ml,加稀硫酸10ml,煮沸后,加高锰酸钾滴定液(0.02mol/L)0.10ml,再煮沸10分钟,粉红色不得完全消失。
不挥发物取本品100ml,置105℃恒重的蒸发皿中,在水浴上蒸干,并在105℃干燥至恒重,遗留残渣不得过1mg。
重金属取本品50ml,加水18.5ml,蒸发至20ml,放冷,加醋酸盐缓冲液(pH3.5)2ml与水适量使成25ml,加硫代乙酰胺试液2ml,摇匀,放置2分钟,与标准铅溶液1.5ml加水18.5ml用同一方法处理后的颜色比较,不得更深(0.00003%)。
微生物限度取本品,采用薄膜过滤法处理后,依法检查(附录ⅪJ),细菌、霉菌和酵母菌总数每1ml不得过100个。
【贮藏】密闭保存。
【化学成分】本品为蒸馏法、离子交换法、反渗透法或其他适宜的方法制得的供药用的水,不含任何附加剂。
【分子式与分子量】H2O18.02
【药理作用】溶剂、稀释剂
这里药典纯化水标准中并无PH值项目,请问对纯化水有PH值的要求吗,范围应在多少?请说明出处?
在纯化水检测中,检验酸碱度合格,但是发现PH在8左右。如果按以上标准检验合格,是否要考虑PH值?请知道的解答,谢谢!


暂无品牌分类