请使用支持JavaScript的浏览器! 进口Avanti试剂盒,血清清关 avantilipids抗体,试剂,血清,细胞,16:0 PC-d13 Lipids蚂蚁淘商城
商品信息
联系客服
avanti polar lipids/1,2-dipalmitoyl-sn-glycero-3-phosphocholine-1,1,2,2-d4-N,N,N-trimethyl-d9/1 x 10mg/860353P-10mg
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
avanti polar lipids/1,2-dipalmitoyl-sn-glycero-3-phosphocholine-1,1,2,2-d4-N,N,N-trimethyl-d9/1 x 10mg/860353P-10mg
品牌 / 
avantilipids
货号 / 
860353P-10mg
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616
16:0 PC-d13

16:0 PC-d13

1,2-dipalmitoyl-sn-glycero-3-phosphocholine-1,1,2,2-d4-N,N,N-trimethyl-d9

AvantiPolarLipids公司是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至吨级的磷脂类和甾体类中间体和试剂。为世界范围内的研究机构和制药公司提供1000种以上脂类产品,由于其产品的高纯度而享誉全球。40年来,AvantiPolarLipids公司为世界各地的研究人员和制药公司提供脂类产品。公司的产品不仅范围日益扩大,其纯度之高也是无人能及。 AvantiPolarLipids,Inc.,hasalonghistoryof50yearscreatingthehighestpuritylipidsavailable.Ourpassionforhighqualityanduniqueproductsisonlyexceededbyourexcellentreputationinthemarketplace. Althoughweareknownforourlipids,weareMorethanLipids.Weoffersolutionsfortheentireproductcycle…ResearchtoCommercialization. AvantiPolarLipids公司的主要产品和服务包括:(1)ResearchProductsHighestPurityLipidReagents(2)cGMPManufacturingAPI&ContractManufacturing(3)AdjuvantsImmunotherapy&VaccineDevelopment(4)AnalyticalServicesLipidAnalysis(5)LipidomicsMassSpecStandards,Antibodies&LipidToolbox(6)Formulationsliposomes&Nanoparticles(7)EquipmentLiposomeProductionTools(8)CustomServicesSynthesis&Beyond


AvantiPolarLipids是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至吨级的磷脂类和甾体类中间体和试剂。为世界范围内的研究机构和制药公司提供1000种以上脂类产品,由于其产品的高纯度而享誉全球。40年来,AvantiPolarLipids公司为世界各地的研究人员和制药公司提供脂类产品。公司的产品不仅范围日益扩大,其纯度之高也是无人能及。


AvantiPolarLipidsInc,是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至百公斤级的磷脂类和甾体类中间体和试剂。主要产品Naturalsphingolipids天然鞘脂类Naturalphospholipids天然磷脂类Naturallipidsbyextraction天然提取脂类Referencestandards相关标准品Syntheticsphingolipids合成鞘脂类--Sphingosines&S-1-P鞘氨醇和鞘氨醇-1-磷酸盐--Ceramides神经酰胺--Sphingomyelins鞘磷脂--Sphingosine&ceramidederivatives鞘氨醇及神经酰胺衍生物--Sphinganine&derivatives鞘氨醇及其衍生物--C17sphingolipids十七碳鞘脂类--C20sphingolipids二十碳鞘脂类--Phytosphingosine&derivatives植物鞘氨醇及其衍生物Syntheticlipids&phospholipids合成脂质与磷脂--PC卵磷脂--PA磷脂酸--PE脑磷脂--PG磷脂酰甘油--PS磷脂酰丝氨酸--PI,PIP2&PIP3磷脂酰肌醇,磷脂酰肌醇-4,5-二磷酸,磷脂酰-3,4,5-三磷酸--CA胆酸--LysoPC溶源性卵磷脂--LysoPA溶源性磷脂酸--LysoPAAnalogues溶源性磷脂酸类似物--Lysobio-PA溶源性双磷脂酸--LysoPE,PG&PS溶源性脑磷脂,磷脂酰甘油和磷脂酰丝氨酸--AlkylPC烷基卵磷脂--Diether&Diphytanoyletherlipids二醚与二植烷醚脂质--PAF血小板活化因子--AcylPAFAnalog酰化血小板活化因子类似物--Brominatedphosphocholines溴代胆碱磷酸--Alkylphosphatederivatives烷基磷酸盐衍生物--Plasmalogen缩醛磷脂--Functionalizedlipids功能性脂类--Biotinylatedlipids生物素酰化脂质--Bioactivelipids生物活性脂类Syntheticphospholipids合成磷酸--AcylcoenzymeA乙酰辅酶A--Metabolicintermediates代谢中间产物--Adhesivelipid粘合脂质--pHsensitivelipids酸度计用脂质Transfectionreagents转染试剂Sterolderivatives甾酮衍生物Lipidblends混合脂质Glycosylatedphospholipids糖化磷脂Fluorinatedphospholipids氟化磷脂Chelators螯合剂Pre-mixedlipidsforbicelleformation构型分析用预混合脂质Diacylglycerols&analogues甘油二酯与类似物Deuteriumlabeledlipids氘标记脂质C13PC碳-13标记卵磷脂DoxylPC自旋标记卵磷脂TempoPCTempo(4-氧-4-羟-四甲基呱啶氮氧自由基)标记卵磷脂Fluoresecentsphingolipids荧光标记鞘脂类--Omegalabeled欧米加标记物--Fattyacidlabeled脂肪酸标记物Fluoresecentcholesterol荧光标记胆固醇Fluoresecentphospholipids荧光标记磷脂--Fattyacidlabeled脂肪酸标记物--Headgrouplabeled首基标记物Polymerizablelipids聚合脂质Poly(Ethyleneglycol)-lipidconjugates共轭聚脂质FunctionalizedPEGlipids功能PEG脂质Analyticalservices分析服务Drugdeliveryproduct药物运送载体Bulklipidsforpharmaceuticalproduction工业级脂质Equipment设备


蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
脂质代谢紊乱是指先天性或获得性因素造成的血液及其他组织器官中脂质(脂类)及其代谢产物质和量的异常。脂质的代谢包括脂类在小肠内消化、吸收,由淋巴系统进入血循环(通过脂蛋白转运),经肝脏转化,储存于脂肪组织,需要时被组织利用。... 查看更多>
上海麒盟生物科技有限公司在发布的人骨髓间充质干细胞成脂分化试剂盒供应信息,浏览与人骨髓间充质干细胞成脂分化试剂盒相关的产品或在搜索更多与人骨髓间充质干细胞成脂分化试剂盒相关的内容。 查看更多>
科学家最近制造出了全身透明的老鼠,这是医学界首次能让整个动物的躯体透明化。这一成果将有助于观察癌细胞在机体内的扩散,进行更加准确的临床诊断和疾病监测。这一研究成果发表在美国《细胞》杂志上。这项研究的第一作者、加州理工学院研究员杨彬对新华社记者说,不用担心透明鼠会出现在我们家中,因为他们的技术并不能制造出活的透明鼠。据杨彬介绍,老鼠 查看更多>
酯类油是指分子结构中含有酯基的天然物质-动植物油脂数千年前就被人们用作润滑材料以减轻劳动负荷,或使车轮轻快运转。直至20 世纪后期,这种天然油脂仍大量应用于齿轮油、金属切削液、金属拉拔润滑剂和机床导轨油中。... 查看更多>
上海优予生物科技有限公司在发布的成脂鉴定试剂盒(油红染色法)供应信息,浏览与成脂鉴定试剂盒(油红染色法)相关的产品或在搜索更多与成脂鉴定试剂盒(油红染色法)相关的内容。 查看更多>
上海埃德斯生物科技有限公司在发布的人类间充质干细胞诱导成脂分化试剂盒供应信息,浏览与人类间充质干细胞诱导成脂分化试剂盒相关的产品或在搜索更多与人类间充质干细胞诱导成脂分化试剂盒相关的内容。 查看更多>
赛业(广州)生物科技有限公司在发布的C57BL/6小鼠脂肪间质干细胞成脂诱导分化培养基供应信息,浏览与C57BL/6小鼠脂肪间质干细胞成脂诱导分化培养基相关的产品或在搜索更多与C57BL/6小鼠脂肪间质干细胞成脂诱导分化培养基相关的内容。 查看更多>
根据本周在线发表在“ 自然 - 细胞生物学”杂志上的一项新研究,人胚胎干细胞(hESCs)可编程在小鼠体内形成两种不同类型的功能性脂肪细胞 。胚胎细胞是多能的,因为它们被认为保留了在人体内产生每种细胞类型的能力。人体的某些未成熟细胞也可以在实验室中诱导形成多种细胞类型。这些所谓的诱导人多能干细胞(hiPSC)也可用于开发各种人类疾病的模型。 由马萨诸塞州剑桥哈佛大学Chad Cowan领导的一组研究人员,包括多哈卡塔尔基金会的Heba Al-Siddiqi,分两 查看更多>
美国Avanti Polar Lipids公司介绍 查看更多>
肝移植是肝硬化和肝细胞癌的重要治疗方法,但是由于肝源短缺,一些质量较差的移植肝脏可能引起移植物无功能或功能不良。脂肪变性就是一种影响移植肝脏功能的重要因素,它定义为肝细胞内甘油三酯积聚,从而导致脂质囊泡的形成。肝移植手术术中评估移植肝脏脂肪变性水平目前的金标准是术中快速冰冻切片病理学检查。定量评估的标准即脂肪占细胞质的百分比。一般 查看更多>
赛业(广州)生物科技有限公司在发布的狗脂肪间质干细胞成脂诱导分化培养基供应信息,浏览与狗脂肪间质干细胞成脂诱导分化培养基相关的产品或在搜索更多与狗脂肪间质干细胞成脂诱导分化培养基相关的内容。 查看更多>
上海麒盟生物科技有限公司在发布的人脐带间充质干细胞成脂分化试剂盒供应信息,浏览与人脐带间充质干细胞成脂分化试剂盒相关的产品或在搜索更多与人脐带间充质干细胞成脂分化试剂盒相关的内容。 查看更多>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
硝酸酯类药物的应用123
我的爱搁浅了谁2016-12-18
相关疾病:头痛哪些药物与硝酸脂类药物合用可以减轻硝酸脂类药物引起的头疼?
脂质(Lipids)又称脂类,是脂肪及类脂的总称.这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂。并能为机体利用的重要有机化合物。脂质包括的范围广泛,其分类方法亦有多种。通常根据脂质的主要组成成分分为:简单脂质、复合脂质、衍生脂质、不皂化脂类。
基本介绍
不溶于水而能被乙醚、氯仿、苯等非极性有机溶剂抽提出的化合物,统称脂类。
脂类包括油脂(甘油三酯)和类脂(磷脂、蜡、萜类、甾类)。
脂类是机体内的一类有机小分子物质,它包括范围很广,其化学结构有很大差异,生理功能各不相同,其共同物理性质是不溶于水而溶于有机溶剂,在水中可相互聚集形成内部疏水的聚集体(如右图)。
脂类是油、脂肪、类脂的总称。食物中的油脂主要是油和脂肪,一般把常温下是液体的称作油,而把常温下是固体的称作脂肪.
分类介绍
1. 油脂(fat)
即甘油三酯或称之为脂酰甘油(triacylglycerol),是油和脂肪的统称。一般将常温下呈液态的油脂称为油,而将其呈固态时称为脂肪。
脂肪是由甘油和脂肪酸脱水合成而形成的。脂肪酸的羧基中的—OH 与甘油羟基中的—H 结合而失去一分子说,于是甘油与脂肪酸之间形成酯键,变成了脂肪分子。
脂肪中的三个酰基(无机或有机含氧酸除去羟基后所余下的原子团)一般是不同的,来源与碳十六、碳十八或其他脂肪酸。有双键的脂肪酸称为不饱和脂肪酸,没有双键的则称为饱和脂肪酸。、
动物的脂肪中,不饱和脂肪酸很少,植物油中则比较多。膳食中饱和脂肪太多会引起动脉粥样硬化,因为脂肪和胆固醇均会在血管内壁上沉积而形成斑块,这样就会妨碍血流,产生心血管疾病。也由于此,血管壁上有沉淀物,血管变窄,使肥胖症患者容易患上高血压等疾病。
油脂分布十分广泛,各种植物的种子、动物的组织和器官中都存有一定数量的油脂,特别是油料作物的种子和动物皮下的脂肪组织,油脂含量丰富。人体内的脂肪约占体重的10%~20%。人体内脂肪酸种类很多,生成甘油三酯时可有不同的排列组合方式,因此,甘油三酯具有多种存在形式。贮存能量和供给能量是脂肪最重要的生理功能。1克脂肪在体内完全氧化时可释放出38kJ(9.3kcal)的能量,比1克糖原或蛋白质所释放的能量多两倍以上。脂肪组织是体内专门用于贮存脂肪的组织,当机体需要能量时,脂肪组织细胞中贮存的脂肪可动员出来分解供给机体的需要。此外,高等动物和人体内的脂肪,还有减少身体热量损失,维持体温恒定,减少内部器官之间摩擦和缓冲外界压力的作用。
2. 类脂(lipids)
包括磷脂(phospholipids),糖脂(glycolipid)和胆固醇及其酯(cholesterol and cholesterol ester)三大类。①磷脂是含有磷酸的脂类,包括由甘油构成的甘油磷脂(phosphoglycerides)与由鞘氨醇构成的鞘磷脂(sphingomyelin)。在动物的脑和卵中,大豆的种子中,磷脂的含量较多。②糖脂是含有糖基的脂类。③还有,胆固醇及甾类化合物(类固醇)等物质主要包括胆固醇、胆酸、性激素及维生素D等。这些物质对于生物体维持正常的新陈代谢和生殖过程,起着重要的调节作用。另外,胆固醇还是脂肪酸盐和维生素D3以及类固醇激素等的合成原料,对于调节机体脂类物质的吸收,尤其是脂溶性维生素(A,D,E,K)的吸收以及钙、磷代谢等均起着重要作用。这三大类类脂是生物膜的重要组成成分,构成疏水性的“屏障”(barrier),分隔细胞水溶性成分及将细胞划分为细胞器/核等小的区室,保证细胞内同时进行多种代谢活动而互不干扰,维持细胞正常结构与功能等。
按化学组成分
1.单纯脂:定义:脂肪酸与醇脱水缩合形成的化合物。
蜡:高级脂肪酸与高级一元醇,幼植物体表覆盖物,叶面,动物体表覆盖物,蜂蜡。
甘油脂:高级脂肪酸与甘油,最多的脂类。
2.复合脂:定义:单纯脂加上磷酸等基团产生的衍生物。
磷脂:甘油磷脂(卵、脑磷脂)、鞘磷脂(神经细胞中含量丰富)。
3.脂的前体及衍生物
萜类(音tiē)和甾类(音zāi)及其衍生物:不含脂肪酸,都是异戊二烯的衍生物。
衍生脂:上述脂类的水解产物,包括脂肪酸及其衍生物、甘油、鞘氨醇等。
高级脂肪酸、甘油、固醇、前列腺素。
4.结合脂:定义:脂与其它生物分子形成的复合物。
糖脂:糖与脂类通过糖苷键连接起来的化合物(共价键),如霍乱毒素。
脂蛋白:脂类与蛋白质在肝脏内通过非共价结合形成的产物,如血液中的几种脂蛋白,VLDL、LDL、HDL、VHDL是脂类的运输方式。
化学结构
脂质(Lipids)又称脂类,是脂肪及类脂的总称.这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂。并能为机体利用的重要有机化合物。脂质包括的范围广泛,其分类方法亦有多种。通常根据脂质的主要组成成分分为:简单脂质、复合脂质、衍生脂质、不皂化脂类。
脂质包括多种多样的分子,其特点是主要由碳和氢两种元素以非极性的共价键组成。由于这些分子是非极性的,所以和水不能相容,因此是疏水的。严格地说,脂质不是大分子,因为它们的相对分子质量不如糖类、蛋白质和核酸的那么大,而且它们也不是聚合物。
简单脂质
简单脂质是脂肪酸与各种不同的醇类形成的酯,简单脂质包括酰基甘油酯和蜡。
(一)酰基甘油酯
酰基甘油酯又称脂肪是以甘油为主链的脂肪酸酯。如三酰基甘油酯的化学结构为甘油分子中三个羟基都被脂肪酸酯化,故称为甘油三酯(triglyceride)或中性脂肪。甘油分子本身无不对称碳原子。但它的三个羟基可被不同的脂肪酸酯化,则甘油分子的中间一个碳原子是一个不对称原子,因而有两种不同的构型(L-构型和D-构型)。天然的甘油三酯都是L-构型。酰基甘油酯分为甘油一酯、甘油二酯、甘油三酯、烷基醚(或α、β烯基醚)酰基甘油酯。
(二)蜡
蜡(waxes)是不溶于水的固体,是高级脂肪酸和长链一羟基脂醇所形成的酯,或者是高级脂肪酸甾醇所形成的酯。常见有真蜡、固醇蜡等。
真蜡是一类长链一元醇的脂肪酸酯。
固酯蜡是固醇与脂肪酸形成的酯,如维生素A酯、维生素D酯等。
复合脂质
复合脂质(complx lipids)即含有其他化学基团的脂肪酸酯,体内主要含磷脂和糖脂两种复合脂质。
(一)磷脂
磷脂(phospholipid)是生物膜的重要组成部分,其特点是在水解后产生含有脂肪酸和磷酸的混合物。根据磷脂的主链结构分为磷酸甘油反和鞘磷脂。
1.磷酸甘油酯(phosphoglycerides)主链为甘油-3-磷酸,甘油分子中的另外两个羟基都被脂肪酸所酯化,噒酸基团又可被各种结构不同的小分子化合物酯化后形成各种磷酸甘油酯。体内含量较多的是磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺(脑磷脂)、磷脂酰丝氨酸、磷脂酰甘油、二磷脂酰甘油(心磷酯)及磷酯酰肌醇等,每一磷脂可因组成的脂肪酸不同而有若干种。
从分子结构可知甘油分子的中央原子是不对称的。因而有不同的立体构型。天然存在的磷酸甘油酯都具有相同的主体化学构型。按照化学惯例。这些分子可以用二维投影式来表示。D-和L甘油醛的构型就是根据其X射线结晶学结果确定的。右旋为D构型,左旋为L构型。磷酸甘油酯的立化化学构型及命名由此而确定。
2.鞘磷脂(sphingomyelin)鞘磷脂是含硝氨醇或二氢鞘氨醇的磷脂,其分子不含甘油,是一分子脂肪酸以酰胺键与鞘氨醇的氨基相连。鞘氨醇或二氢鞘氨醇是具有脂肪族长链的氨基二元醇。有疏水的长链脂肪烃基尾和两个羟基及一个氨基的极性头。
鞘磷脂含磷酸,其末端痉基取代基团为磷酸胆碱酸乙醇胺。人体含量最多的鞘磷脂是神经鞘磷脂,由鞘氨醇、脂肪酸及磷酸胆碱构成。神经鞘磷酯是构成生物膜的重要磷酯。它常与卵磷脂并存细胞膜外侧。
(二)糖脂
糖脂(glycolipids)这是一类含糖类残基的复合脂质化学结构各不相同的脂类化合物,且不断有糖脂的新成员被发现。糖脂亦分为两大类:糖基酰甘油和糖鞘脂。糖鞘脂又分为中性糖鞘脂和酸性糖鞘脂。
1.糖基酰基甘油(glycosylacylglycerids),糖基酰甘油结构与磷脂相类似,主链是甘油,含有脂肪酸,但不含磷及胆碱等化合物。糖类残基是通过糖苷键连接在1,2-甘油二酯的C-3位上构成糖基甘油酯分子。已知这类糖脂可由各种不同的糖类构成它的极性头。不仅有二酰基油酯,也有1-酰基的同类物。
自然界存在的糖脂分子中的糖主要有葡萄糖、半乳糖,脂肪酸多为不饱和脂肪酸。根据国际生物化学名称委员会的命名:单半乳糖基甘油二酯和二半乳糖基甘油二酯的结构分别为1,2-二酰基-3-O-β-D-吡喃型半乳糖基-甘油和1,2-二酰基-3-O-(α-D-吡喃型半乳糖基(1→6)-O-β-D吡喃型半乳糖基)-甘油。
此外,还有三半乳糖基甘油二酯,6-O-酰基单半乳糖基甘油二酯等。
2.糖硝脂(glycosphingolipids) 有人将此类物质列为鞘脂和鞘磷脂一起讨论,故又称鞘糖脂。糖鞘脂分子母体结构是神经酰胺。脂肪酸连接在长链鞘氨醇的C-2氨基上,构成的神经酰胺糖类是糖鞘脂的亲水极性头。含有一个或多个中性糖残基作为极性头的糖鞘脂类称为中性糖鞘脂或糖基神经酰胺,其极性头带电荷,最简单的脑苷脂是在神羟基上,以β糖苷链接一个糖基(葡萄糖或半乳糖)。
重要的糖鞘脂有脑苷脂和神经节苷脂。脑苷在脑中含量最多,肺、肾次之,肝、脾及血清也含有。脑中的脑苷脂主要是半乳糖苷脂,其脂肪酸主要为二十四碳脂酸;而血液中主要是葡萄糖脑苷脂神经节苷脂是一类含唾液酸的酸性糖鞘酯。唾液酸又称为N-乙酰神经氨酸它通过α-糖苷键与糖脂相连。神经节苷脂分子由半乳糖(Gal)、N-乙酰半乳糖(GalNAc)、葡萄糖(Glc)、N-脂酰硝氨醇(Cer)、唾液酸(NeuAc)组成。神经节苷脂广泛分布于全身各组织的细胞膜的外表面,以脑组织最丰富。
衍生脂质
1.脂肪酸及其衍生物前列腺素等。
2.长链脂肪醇,如鲸蜡醇等。
不皂化的脂质折叠
不皂化的脂质是一类不含脂肪酸的脂质。主要有类萜及类固醇。
(一)类萜(terpens)
类萜亦称异戊烯脂质。异戊烯是具有两个双键的五碳化合物,也叫做“2-甲基-1.3-丁二烯“。其结构式为:
CH3  |  CH2 = C-CH=CH2。
烯萜类化合物就是很多异戊二烯单位缩合体。两个异戊二烯单位头尾连接就形成单萜;含有4个、6个和8个异戊二烯单位的萜类化合物分别称为双萜、三萜或四萜。异戊二烯单位以头尾连接排列的是规则排列;相反尾尾连接的是不规则排列。两个一个半单萜以尾尾排列连接形成三萜,如鲨烯;两个双萜尾尾连接四萜,如β-胡罗卜素。还有些类萜化合物是环状化合物,有遵循头尾相连的规律,也有不遵循头尾相连的规律。另外还有一些化合物尽管与类萜有密切有关系,但其结构式并不是五碳单位的偶数倍数;例如莰稀是具有二环结构的单萜,结构相似的檀烯却缺少一个碳原子。异戊烯脂质包括多种结构不同物质,对这些自然界存在的复杂结构的物质给予系统的命名是困难的。现习惯上沿用的名称多来自该化合物的原料来源,更显得杂乱无章。
天然的异戊烯聚合物与其他多聚物的共同点为:①由具有通用结构的重复单位所组成(异戊烯骨架相当于糖,氨基酸或核苷酸单位);②此单位的结构在细节上可有所变动(例如在类异戊二烯中的双键)并按顺序排列;③链长变化极大,小到两个单位聚合而成单萜,多至数百倍的单位聚合而成的橡胶。不同点为:①重复单位以C-C键连接在一起;②相对地说它们是非极性的,属于脂质。异戊烯脂质一旦聚合,就不能再裂解回复到单体形式。
(二)类固醇
类固醇(steroid)是环戊稠全氢化菲的衍生物。天然的类固醇分子中的双键数目和位置,取代基团的类型、数目和位置,取代基团与环状核之间的构型,环与环之间的构型各不相同。其化学结构是由三个六碳环已烷(A、B、C)和一个五碳环(D)组成的稠和回环化合物。类固醇分子中的每个碳原子都按序编号,且不管任一位置有没有碳原子存在,在类固醇母体骨架结构中都保留该碳原子的编号。存在于自然界的类固醇分子中的六碳环A、B、C都呈“椅”式构象(环已结构),这也是最稳定的构象。唯一的例外是雌激素分子内的A环是芳香环为平面构象。类固醇的A环和B环之间的接界可能是顺式构型,也可能是反式构型;而C环与D环接界一般都是反式构型,但强心苷和蟾毒素是例外。
功能介绍
最佳的能量储存方式
能量贮存形式(动物、油料种子的甘油三酯)
体内的两种能源物质比较  
单位重量的供能:糖4.1千卡/克,脂9.3千卡/克。
储存体积:1糖元或淀粉:2水,脂则是纯的,体积小得多。
动用先后:糖优先,关于减肥和辟谷
生物膜的骨架
细胞膜的液态镶嵌模型:磷脂双酯层,胆固醇,蛋白质,糖脂,甘油磷脂和鞘磷脂。
电与热的绝缘体
动物的脂肪组织有保温,防机械压力等保护功能,植物的蜡质可以防止水分的蒸发。
电绝缘:神经细胞的鞘细胞,电线的包皮,神经短路
热绝缘:冬天保暖,企鹅、北极熊
其他
4.信号传递:固醇类激素
5.酶的激活剂:卵磷脂激活β-羟丁酸脱氢酶
6.糖基载体:合成糖蛋白时,磷酸多萜醇作为羰基的载体
7.激素、维生素和色素的前体(萜类、固醇类)
8.生长因子与抗氧化剂
9.参与信号识别和免疫(糖脂)
合成技术
脂肪酸的生物合成
脂肪酸的生物合成 biosynthesis of fattyacids 高级脂肪酸的合成,以乙酰CoA为基础,通过乙酰辅酶A羧化酶的作用,在ATP的分解的同时与CO2结合,产生丙二酸单酰CoA,开始这一阶段是控速步骤,为柠檬酸所促进。丙二酸单酰CoA与乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的软脂酸(或C18的硬脂酸),但这是包括在酰基载体蛋白(ACP)参与下的脱羧、C2单位缩合、以及由NADPH还原过程在内的反复进行的复杂过程。产生的脂肪酸作为CoA衍生物,在线粒体中与乙酰CoA,在微粒体中与丙二酸单酰CoA缩合,每次增加两个碳,不断延长碳链。而单不饱和脂肪酸,由饱和酰基CoA(或ACP)的好氧的不饱和化(微粒体,微生物等。必须有O2和NADH)而产生,或由脂肪酸生物合成途中的β-羟酰ACP的脱水反应(及碳键延长)而产生。多聚不饱和脂肪酸在高等动物不一定产生,可以从摄取的不饱和酸的碳素链的延长等而转变形成。另外环丙烷脂肪酸由S-腺苷甲硫氨酸的C1,结合于不饱和酸的双键上而产生。脂肪酸作为CoA衍生物,用于合成各种底物。
其他脂类的生物合成
磷脂的生成
磷脂酸是最简单的磷脂,也是其他甘油磷脂的前体。磷脂酸与CTP反应生成CDP-二酰甘油,在分别与肌醇、丝氨酸、磷酸甘油反应,生成相应的磷脂。磷脂酸水解成二酰甘油,再与CDP-胆碱或CDP-乙醇胺反应,分别生成磷脂酰胆碱和磷脂酰乙醇胺。
脂类脂肪
脂类
脂类定义为脂肪酸(多是4碳以上的长链一元羧酸)和醇(包括甘油醇、硝氨醇、高级一元醇和固醇)等所组成的酯类及其衍生物。包括单纯脂类、复合酯类及衍生脂质。
脂肪
一提到脂肪,我相信大家都会很明白那是啥东西,那么脂类呢?难道脂类和脂肪是一个概念的?
其实脂类和脂肪并不是一个意思,脂肪是脂类的一种,脂类包括固醇类、脂肪、类脂等
相关介绍
消化和吸收
正常人一般每日每人从食物中消化的脂类,其中甘油三脂占到90%以上,除此以外还有少量的磷脂、胆固醇及其酯和一些游离脂肪酸(free fatty acids)。食物中的脂类在成人口腔和胃中不能被消化,这是由于口腔中没有消化脂类的酶,胃中虽有少量脂肪酶,但此酶只有在中性PH值时才有活性,因此在正常胃液中此酶几乎没有活性(但是婴儿时期,胃酸浓度低,胃中PH值接近中性,脂肪尤其是乳脂可被部分消化)。脂类的消化及吸收主要在小肠中进行,首先在小肠上段,通过小肠蠕动,由胆汁中的胆汁酸盐使食物脂类乳化,使不溶于水的脂类分散成水包油的小胶体颗粒,提高溶解度增加了酶与脂类的接触面积,有利于脂类的消化及吸收。在形成的水油界面上,分泌入小肠的胰液中包含的酶类,开始对食物中的脂类进行消化,这些酶包括胰脂肪酶(pancreatic lipase),辅脂酶(colipase),胆固醇酯酶(pancreatic cholesteryl ester hydrolase or cholesterol esterase)和磷脂酶A2(phospholipase A2)。
食物中的脂肪乳化后,被胰脂肪酶催化,水解甘油三酯的1和3位上的脂肪酸,生成2-甘油一酯和脂肪酸。此反应需要辅脂酶协助,将脂肪酶吸附在水界面上,有利于胰脂酶发挥作用。食物中的磷脂被磷脂酶A2催化,在第2位上水解生成溶血磷脂和脂肪酸,胰腺分泌的是磷脂酶A2原,是一种无活性的酶原形成,在肠道被胰蛋白酶水解释放一个6肽后成为有活性的磷脂酶A 催化上述反应。食物中的胆固醇酯被胆固醇酯酶水解,生成胆固醇及脂肪酸。食物中的脂类经上述胰液中酶类消化后,生成甘油一酯、脂肪酸、胆固醇及溶血磷脂等,这些产物极性明显增强,与胆汁乳化成混合微团(mixed micelles)。这种微团体积很小(直径20nm),极性较强,可被肠粘膜细胞吸收。
脂类的吸收主要在十二指肠下段和盲肠。甘油及中短链脂肪酸(<=10C)无需混合微团协助,直接吸收入小肠粘膜细胞后,进而通过门静脉进入血液。长链脂肪酸及其它脂类消化产物随微团吸收入小肠粘膜细胞。长链脂肪酸在脂酰CoA合成酶(fattyacyl CoA synthetase)催化下,生成脂酰CoA,此反应消耗ATP。脂酰CoA可在转酰基酶(acyltransferase)作用下,将甘油一酯、溶血磷脂和胆固醇酯化生成相应的甘油三酯、磷脂和胆固醇酯。体内具有多种转酰基酶,它们识别不同长度的脂肪酸催化特定酯化反应。这些反应可看成脂类的改造过程,在小肠粘膜细胞中,生成的甘油三酯、磷脂、胆固醇酯及少量胆固醇,与细胞内合成的载脂蛋白(apolipprotein)构成乳糜微粒(chylomicrons),通过淋巴最终进入血液,被其它细胞所利用。可见,食物中的脂类的吸收与糖的吸收不同,大部分脂类通过淋巴直接进入体循环,而不通过肝脏。因此食物中脂类主要被肝外组织利用,肝脏利用外源的脂类是很少的。
脂类的水解产物,如脂肪酸、甘油一酯和胆固醇等,都不溶解于水。它们与胆汁中的胆盐形成水溶性微胶粒后,才能通过小肠粘膜表面的静水层而到达微绒毛上。在这里,脂肪酸、甘油一酯等从微胶粒中释出,它们通过脂质膜进入肠上皮细胞内,胆盐则回到肠腔。进入上皮细胞内的长链脂肪酸和甘油一酯,大部份重新合成甘油三酯,并与细胞中的载脂蛋白合成乳糜微粒,若干乳糜微粒包裹在一个囊泡内。当囊泡移行到细胞膜侧时,便以出胞作用的方式离开上皮细胞,进入淋巴循环。然后归入血液。中、短链甘油三酯水解产生的脂肪酸和甘油一酯是水溶性的,可直接进入门静脉而不入淋巴。
脂类的酶促水解
1.脂肪酶广泛存在于动物、植物和微生物中。在人体内,脂肪的消化主要在小肠,由胰脂肪酶催化,胆汁酸盐和辅脂肪酶的协助使脂肪逐步水解生成脂肪酸和甘油。
2.磷脂酶有多种,作用于磷脂分子不同部位的酯键。作用于1位、2位酯键的分别称为磷脂酶A1及 A2,生成溶血磷脂和游离脂肪酸。作用于3位的称为磷脂酶C,作用磷酸取代基间酯键的酶称磷脂酶D。作用溶血磷脂1位酯键的酶称磷脂酶B1。
3.胆固醇酯酶水解胆固醇酯生成胆固醇和脂肪酸。
4.小肠可吸收脂类的水解产物。胆汁酸盐帮助乳化,结合载脂蛋白(apoprotein,apo)形成乳糜微粒经肠粘膜细胞吸收进入血循环。所以乳糜微粒(chylomicron,CM)是转运外源性脂类(主要是TG)的脂蛋白。
水稀释法提取IgY123
evasongsong2021-07-22
前天将卵黄用六倍水稀释,调PH值5.2,过夜沉淀后,昨天离心发现上清夜很浑浊,根本离不下来。用0.22微米滤膜过滤也还是很浑的黄色,之前水稀释时搅拌的也不是很剧烈,为什么脂质颗粒这么小呢?会不会是鸡蛋的问题?
后来加PEG沉淀效果很好,上清夜很清,但是不知道会不会对后期测效价,纯化等有影响。
有没有别的简便方法可以去除脂类
哪位高手指教一下,感激不尽。
脂类物质具体是什么?
通常意义上讲,脂肪单指甘油三酸脂,而脂质的范围更广一些。脂质也叫脂类,包括两大类,一是脂肪,二是类脂。其中类脂又包括两类,一是磷脂,二是类脂。即:脂类包括油脂(甘油三酯)和类脂(磷脂、固醇类)。向左转|向右转
1、脂质是脂肪、类脂、固醇的总称在强调类别时,脂质也叫做脂类。
2、脂类是油、脂肪、类脂的总称.食物中的油脂主要是油和脂肪,一般把常温下是液体的称作油,而把常温下是固体的称作脂肪.
3、脂肪是由甘油和脂肪酸组成的三酰甘油酯,其中甘油的分子比较简单,而脂肪酸的种类和长短却不相同.因此脂肪的性质和特点主要取决于脂肪酸,不同食物中的脂肪所含有的脂肪酸种类和含量不一样.自然界有40多种脂肪酸,因此可形成多种脂肪酸甘油三酯.脂肪酸一般由4个到24个碳原子组成.
1食物中脂类的来源
各种食物,无论是动物性的或是植物性的,都含有脂肪,只不过含量有多有少。
各类食物脂肪含量比较少,约含0.3~3.2%。但玉米和小米可达4%,而且约大部分的脂肪是集中在谷胚中。例如,小麦粒的脂肪含量约为1.5%,而小麦的谷胚中则含14%。在稻谷加工成大米时,可得到占稻谷总重5~6.5%的米糠。玉米提胚制粉时,一般可得到占玉米重量4~8%的玉米胚。米糠含有较多的脂肪,其含量与大豆相当。米糠油是优质食用油,不饱和脂肪酸占80%左右,还含有维生素B1、B2、E及磷脂等。米糠油不仅营养丰富,人体的吸收率也较高,一般可达92~94%。经研究表明,米糠油具有降低人体血清胆固醇的作用。玉米胚的特点是富含脂肪,可作为良好的食用油。玉米胚油是优质食用油,可作凉拌用。它含不饱和脂肪酸85%以上,亚油酸占47.8%。人体吸收率可达97%以上。实验证实食用玉米胚油可降低人体血胆固醇的含量,对冠心病有一定预防效果。玉米胚油中还含有较丰富的维生素E,每100g油中约含10mg。因此,玉米胚油不易氧化,性质稳定,耐储存。维生素E对人体亦有重要的营养意义。这两种油都是近年来开辟的食用油新资源。
常用的蔬菜类脂肪含量则更少,绝大部分都在1%以下。但是一些油料植物种籽、硬果及黄豆中的脂肪量却很丰富(表3-4)。因此,人们常利用其中一些油作为烹调用油,如豆油、花生油、菜籽油、芝麻油等。
表3-4植物种籽和硬果中的脂肪含量
食物名称脂肪含量(%)食物名称脂肪含量(%)
黄豆18花生仁30~39
芥茉28~37香榧子44
大麻31~38落花生48
亚麻29~45榛子49
芝麻47杏仁47~52
葵花子44~54松子63
可可55核桃仁63~69
动物性食物中含脂肪最多的是肥肉和骨髓,高达90%,其次是肾脏和心脏周围的脂肪组织、肠系膜等。这些动物性脂肪,如猪油、牛油、羊油、禽油等亦常被用作烹调或食物用。动物内脏的脂肪含量并不很高,大部分都在10%以下。在各种乳中,脂肪含量随动物的种类、栖居地的气候以及营养情况而定。鱼类含的脂肪量差别较大,低的像大黄鱼只有0.8%,高的像鲥鱼达17%。近年来,发现有些海产鱼油中含有高量的廿碳五烯酸和廿二碳六烯酸。这两种脂肪酸具有扩张血管、降低血脂、抑制血小板聚集、降血压等作用,可以防止脑血栓、心肌梗塞、高血压等老年病(13)。
亚油酸的最好食物来源是植物油类(表3-5),但常吃的植物油中,菜油和茶油中的亚油酸含量比其它植物油少。小麦胚芽油中含量很高,1g油中含亚油酸502mg,同时还含亚麻酸57mg,在国内外已列入健康食品的行列。动物脂肪中亚油酸含量一般比植物油低,但相对说来,猪油的含量比牛、羊油多,而禽类油又比猪油高。鸡蛋内的含量亦不少,达13%。动物内脏含量高于肌肉,而肉类中亦以禽肉比猪、牛、羊肉的含量丰富。瘦猪肉却比肥肉含量高。
植物性食物不含胆固醇,而含植物固醇。胆固醇只存在于动物性食物中。一些常用食物中胆固醇的含量列于表3-6。
表3-5食物中亚油酸含量(脂肪总量的%)
食物名称含量食物名称含量食物名称含量
棉子油55.6牛油3.9鸡肉24.2
豆油52.2羊油2.0鸭肉22.8
小麦胚芽油50.2鸡油24.7猪心24.4
玉米胚油47.8鸭油19.5猪肝15.0
芝麻油43.7黄油3.6猪肾16.8
花生油37.6瘦猪肉13.6猪肠14.9
米糠油34.0肥猪肉8.1羊心13.4
菜子油14.2牛肉5.8鸡蛋粉13.0
茶油7.4羊肉9.2鲤鱼16.4
猪油6.3兔肉20.9鲫鱼6.9
从表3-6的数值看来,几种兽肉中胆固醇的含量大致相近,而肥肉则比瘦肉高。内脏则更高,脑中的含量特别多,竟达3100mg%。蛋类的含量亦不低,一个蛋的含量就约有300多mg。鱼类除少数外,一般和瘦肉的含量差不多,不过罐头凤尾鱼的含量不低。小白虾的胆固醇含量虽不高,但虾米、虾皮的含量却高出10倍多。脱脂奶粉比全脂奶粉低4倍。海蜇的含量很少,而海参则根本没有。
所有的动物均含有卵磷脂,但富含于脑、心、肾、骨髓、肝、卵黄、大豆中。脑磷脂和卵磷脂并存于各组织中,而神经组织内含量比较高。脑和神经组织含神经磷脂特别多。
2脂类的营养价值
脂类营养价值的评价主要以下列四点为标准:
(1)消化率在正常情况下,一般脂类都是容易消化和吸收的。婴儿膳食中的乳脂。吸收最为迅速。食草动物的体脂,含硬脂酸多,较难消化。植物油的消化率相当高。中碳链脂肪酸容易水解、吸收和运输,所以,临床上常用于某些肠道吸收不良的病入。
(2)必需脂肪酸的含量多烯不饱和脂肪酸的亚油酸、亚麻酸和花生四烯酸,人体均不能合成,故称为必需脂肪酸。亚油酸在人体内能转变为亚麻酸和花生四烯酸。故不饱和脂肪酸中最为重要的是亚油酸及其含量。亚油酸能明显降低血胆固醇,而饱和脂肪酸却显著增高血胆固醇。
表3-6常用食物中胆固醇含量(mg/100g-1)
食物名称含量食物名称含量食物名称含量
猪肉(瘦)77脱脂奶粉28风尾鱼(罐头)330
猪肉(肥)107全脂奶粉104墨斗鱼275
猪心158鸭蛋634小白虾54
猪肚159松花蛋649对虾150
猪肝368鸡蛋680青虾158
猪肾405鲳鱼68虾皮608
猪脑3100大黄鱼79小虾米738
牛肉(瘦)63草鱼83海参0
牛肉(肥)194鲫鱼83海蜇头5
羊肉(瘦)65麻哈鱼86海蜇皮16
羊肉(肥)173鲫鱼93猪油85
鸭肉101带鱼97牛油89
鸡肉117梭鱼128奶油168
牛奶13鳗鲡186黄油295
(3)脂溶性维生素的含量脂溶性维生素为A、D、E、K。维生素A和D存在于多数食物的脂肪中,以鲨鱼肝油的含量为最多,奶油次之,猪油内不含维生素A和D,所以营养价值较低。
维生素E广泛分布于动植物组织内,其中以植物油类含量最高。每克麦胚油中高达1194ug,而鸡蛋内仅含11ug。
(4)脂类的稳定性稳定性的大小与不饱和脂肪酸的多少和维生素E含量有关。不饱和脂肪酸是不稳定的,容易氧化酸败。维生素E有抗氧化作用,可防止脂类酸败。
奶油的营养价值很高,就是因为它含有维生素A和D。同时,它所含的脂肪酸种类亦完全,而且多是低级脂肪酸,消化率很高。猪油的消化率虽与奶油相等,但它不含有维生素,且其脂肪酸主要为油酸,故其营养价值与奶油相比,相差很多。牛、羊脂肪则更差。植物油多为液体,其消化率均相当高,所含脂肪酸亦相当完全,而且不含胆固醇,且亚油酸的含量却很多,可以防止高脂血症和冠心病,虽然多不饱和脂肪酸易在体内形成过氧化脂质,但维生素E有保护作用。而植物油中维生素E含量很丰富,例如,每g花生油含维生素E189ug,菜籽油236ug,麦胚油高达1194ug,而猪油中仅有12ug。因此,植物油有其独特的营养价值,宜于中老年人使用。同时,稳定性强,不易酸败。
3食用油脂在烹调中的作用
通常所用的食用植物油有豆油、花生油、菜籽油、芝麻油、棉籽油、茶籽油、葵花籽油、米糠油及玉米油等。除椰子油外,其它植物油中饱和脂肪酸含量少,多不饱和脂肪酸含量高,对防止高脂血症和冠心病有一定的益处。
食用动物油脂中猪油的熔点低,易为人体吸收,并有良好的口味和色泽,它是普遍使用的食用油。但猪油含饱和脂肪酸高,故中老年人宜少用。牛油和羊油的熔点高于人体的体温,不易消化吸收,且山羊油有膻味,在烹调中很少使用。
实用油脂在烹调中应用广泛,是烹调菜肴不可缺少的原料。油脂不仅能增加菜肴的色泽、口味、促进食欲,而且由于食用油脂的沸点很高,加热后容易得到高温,所以能加快烹调的速度,缩短食物的成熟时间,使原料保持鲜嫩。食用油脂还用于食品工业,生产糕点等。
高温加热可使油脂中的维生素A、E和胡萝卜素等遭受破坏。油脂中的不饱和脂肪酸经加热能产生各种聚合物,其中的二聚体可被人体吸收一部分,它的毒性较强,可使动物生长停滞、肝脏肿大、生育功能和肝功能障碍,甚至可能有致癌作用。不过在一般烹调过程中,油脂加热的温度不高,时间亦短,对营养价值的影响和聚合物的形成不很明显。但在食品工业中油炸食物时,油脂长期反复使用,加热温度又高,有可能降低营养价值和生成聚合物。因此,应尽量避免温度过高,减少反复使用的次数,或加入较多的新油,防止聚合物的形成。
相关疾病:急性心肌梗死[请教]急性心梗心率>100次/分时能否应用硝酸甘油等硝酸脂类药物?
细胞培养基干粉配置过程中,脂类物质比如亚油酸,亚麻酸等不饱和脂肪酸等,不太容易溶解。
即使用乙醇,还是可能有后期溶出的问题。
大家有何经验吗?比如,加热?或者添加分散剂?
谢谢
生物化学脂类代谢123
温瞳19462021-07-29
人吃多了糖为什么长胖
脂肪代谢 123
卢海宁0072021-07-21
一、甘油三酯的合成代谢
合成部位:肝、脂肪组织、小肠,其中肝的合成能力最强。
合成原料:甘油、脂肪酸
1、甘油一酯途径(小肠粘膜细胞)
脂酰CoA转移酶脂酰CoA转移酶
2-甘油一酯+脂酰CoA———————→1,2-甘油二酯+脂酰CoA————————→甘油三酯 2、甘油二酯途径(肝细胞及脂肪细胞)
脂酰CoA转移酶脂酰CoA转移酶
葡萄糖→3-磷酸甘油+脂酰CoA——————→1脂酰-3-磷酸甘油+脂酰CoA———————→
磷脂酸磷酸酶 脂酰CoA转移酶
磷脂酸——————→1,2甘油二酯+脂酰CoA——————→甘油三酯
二、甘油三酯的分解代谢
1、脂肪的动员 储存在脂肪细胞中的脂肪被脂肪酶逐步水解为游离脂肪酸(FFA)及甘油并释放入血以供其它组织氧化利用的过程。
激素敏感性甘油三酯脂肪酶
甘油三酯————————————→甘油二酯+FFA→甘油一酯+FFA→甘油+FFA→α-磷酸甘油→磷酸二羟丙酮→糖酵解或糖异生途径
2、脂肪酸的β-氧化
1)脂肪酸活化(胞液中)
脂酰CoA合成酶
脂酸+ATP———————→脂酰CoA(含高能硫酯键)+AMP
2)脂酰CoA进入线粒体
3)脂肪酸β-氧化
脂酰CoA进入线粒体基质后,进行脱氢、加水、再脱氢及硫解等四步连续反应,生成1分子比原来少2个碳原子的脂酰CoA、1分子乙酰CoA、1分子FADH2和1分子NADH。以上生成的比原来少2个碳原子的脂酰CoA,可再进行脱氢、加水、再脱氢及硫解反应。如此反复进行,以至彻底。4)能量生成
以软脂酸为例,共进行7次β-氧化,生成7分子FADH2、7分子NADH及8分子乙酰CoA,即共生成(7*2)+(7*3)+(8*12)-2=129
5)过氧化酶体脂酸氧化 主要是使不能进入线粒体的廿碳,廿二碳脂酸先氧化成较短链脂酸,以便进入线粒体内分解氧化,对较短链脂酸无效。
三、酮体的生成和利用
组织特点:肝内生成肝外用。
合成部位:肝细胞的线粒体中。
酮体组成:乙酰乙酸、β-羟丁酸、丙酮。
1、生成
(代谢流程~~~~)
2、利用
丙酮可随尿排出体外,部分丙酮可在一系列酶作用下转变为丙酮酸或乳酸,进而异生成糖。在血中酮体剧烈升高时,从肺直接呼出。
四、脂酸的合成代谢
1、 软脂酸的合成
合成部位:线粒体外胞液中,肝是体体合成脂酸的主要场所。
合成原料:乙酰CoA、ATP、NADPH、HCO3-、Mn++等。
合成过程:
1)线粒体内的乙酰CoA不能自由透过线粒体内膜,主要通过柠檬酸-丙酮酸循环转移至胞液中。
2)乙酰CoA羧化酶
乙酰CoA———————→丙二酰CoA
3)丙二酰CoA通过酰基转移、缩合、还原、脱水、再还原等步骤,碳原子由2增加至4个。经过7次循环,生成16个碳原子的软脂酸。更长碳链的脂酸则是对软脂酸的加工,使其碳链延长。在内质网脂酸碳链延长酶体系的作用下,一般可将脂酸碳链延长至二十四碳,以十八碳的硬脂酸最多;在线粒体脂酸延长酶体系的催化下,一般可延长脂酸碳链至24或26个碳原子,而以硬脂酸最多。
2、不饱和脂酸的合成
人体含有的不饱和脂酸主要有软油酸、油酸、亚油酸,亚麻酸及花生四烯酸等,前两种单不饱和脂酸可由人体自身合成,而后三种多不饱和脂酸,必须从食物摄取。
五、前列腺素及其衍生物的生成
六、甘油磷脂的合成与代谢
1、 合成
除需ATP外,还需CTP参加。CTP在磷脂合成中特别重要,它为合成CDP-乙醇胺、CDP-胆碱及CDP-甘油二酯等活化中间物所必需。
1)甘油二酯途径
(代谢流程~~)
2)CDP-甘油二酯途径
(代谢流程~~~)
2、降解
生物体内存在能使甘油磷脂水解的多种磷脂酶类,根据其作用的键的特异性不同,分为磷脂酶A1和A2,磷脂酶B,磷脂酶C和磷脂酶D。
磷脂酶A2特异地催化磷酸甘油酯中2位上的酯键水解,生成多不饱和脂肪酸和溶血磷脂。后者在磷脂酶B作用,生成脂肪酸及甘油磷酸胆碱或甘油磷酸乙醇胺,再经甘油酸胆碱水解酶分解为甘油及磷酸胆碱。磷脂酶A1催化磷酸甘油酯1位上的酯键水解,产物是脂肪酸和溶血磷脂。
七、胆固醇代谢
1、 合成
合成部位:肝是主要场所,合成酶系存在于胞液及光面内质网中。
合成原料:乙酰CoA(经柠檬酸-丙酮酸循环由线粒体转移至胞液中)、ATP、NADPH等。
合成过程:
1) 甲羟戊酸的合成(胞液中)
HMGCoA还原酶
2×乙酰CoA→乙酰乙酰CoA→HMGCoA+NADPH———————→甲羟戊酸
2) 鲨烯的合成(胞液中)
3)胆固醇的合成(滑面内质网膜上)
合成调节:
1)饥饿与饱食 饥饿可抑制肝合成胆固醇,相反,摄取高糖、高饱和脂肪膳食后,肝HMGCoA还原酶活性增加,胆固醇合成增加。
2) 胆固醇 胆固醇可反馈抑制肝胆固醇的合成。主要抑制HMGCoA还原酶活性。
3)激素 胰岛素及甲状腺素能诱导肝HMGCoA还原酶的合成,增加胆固醇的合成。胰
高血糖素及皮质醇则能抑制并降低HMGCoA还原酶的活性,因而减少胆固醇的合成;甲状腺素除能促进合成外,又促进胆固醇在肝转变为胆汁酸,且后一作用较强,因而甲亢时患者血清胆固醇含量反而下降。
2、 转化
1)胆固醇在肝中转化成胆汁酸是胆固醇在体内代谢的主要去路,基本步骤为:
(代谢流程~~~)
2)转化为类固醇激素 胆固醇是肾上腺皮质、睾丸,卵巢等内分泌腺合成及分泌类固醇激素的原料,如睾丸酮、皮质醇、雄激素、雌二醇及孕酮等。
3)转化为7-脱氢胆固醇 在皮肤,胆固醇可氧化为7-脱氢胆固醇,后者经紫外光照射转变为维生素D。
3、胆固醇酯的合成
细胞内游离胆固醇在脂酰胆固醇脂酰转移酶(ACAT)的催化下,生成胆固醇酯;
血浆中游离胆固醇在卵磷脂胆固醇脂酰转移酶(LCAT)的催化下,生成胆固醇酯和溶血卵磷酯。
八、血浆脂蛋白
1、分类
1)电泳法:α、前β、β及乳糜微粒
2)超速离心法:乳糜微粒(含脂最多),极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL),分别相当于电泳分离的CM、前β-脂蛋白、β-脂蛋白及α-脂蛋白等四类。
2、组成
血浆脂蛋白主要由蛋白质、甘油三酯、磷脂、胆固醇及其酯组成。乳糜微粒含甘油三酯最多,蛋白质最少,故密度最小;VLDL含甘油三酯亦多,但其蛋白质含量高于CM;LDL含胆固醇及胆固醇酯最多;含蛋白质最多,故密度最高。
血浆脂蛋白中的蛋白质部分,基本功能是运载脂类,称载脂蛋白。HDL的载脂蛋白主要为apoA,LDL的载脂蛋白主要为apoB100,VLDL的载脂蛋白主要为apoB、apoC,CM的载脂蛋白主要为apoC。
3、生理功用及代谢
1)CM 运输外源性甘油三酯及胆固醇的主要形式。成熟的CM含有apoCⅡ,可激活脂蛋白脂肪酶(LPL),LPL可使CM中的甘油三酯及磷脂逐步水解,产生甘油、脂酸及溶血磷脂等,同时其表面的载脂蛋白连同表面的磷脂及胆固醇离开CM,逐步变小,最后转变成为CM残粒。
2)VLDL 运输内源性甘油三酯的主要形式。VLDL的甘油三酯在LPL作用下,逐步水解,同时其表面的apoC、磷脂及胆固醇向HDL转移,而HDL的胆固醇酯又转移到VLDL。最后只剩下胆固醇酯,转变为LDL。
3)LDL 转运肝合成的内源性胆固醇的主要形式。肝是降解LDL的主要器官。apoB100水解为氨基酸,其中的胆固醇酯被胆固醇酯酶水解为游离胆固醇及脂酸。游离胆固醇在调节细胞胆固醇代谢上具有重要作用:①抑制内质网HMGCoA还原酶;②在转录水平上阴抑细胞LDL受体蛋白质的合成,减少对LDL的摄取;③激活ACAT的活性,使游离胆固醇酯化成胆固醇酯在胞液中储存。
4)HDL 逆向转运胆固醇。HDL表面的apoⅠ是LCAT的激活剂,LCAT可催化HDL生成溶血卵磷脂及胆固醇酯。
脂质类激素也就是其化学本质是脂类的激素。
有些是类固醇化合物(甾体激素),有些事脂肪酸衍生物
类固醇激素例如:肾上腺皮质激素、性激素等。
脂肪酸衍生物例如:前列腺素等。