请使用支持JavaScript的浏览器! Echelon抗体,试剂,血清,细胞 正品Echelon Biosciences Incorporated生物试剂1,Rha(rac)C12C12 - Echelon Biosciences蚂蚁淘商城
商品信息
联系客服
Echelon/Rha(rac)C12C12/10 mg/RL12125
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
Echelon/Rha(rac)C12C12/10 mg/RL12125
品牌 / 
echelon-inc
货号 / 
RL12125
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616

Rhamnolipids are good foaming and wetting agents and increase aqueous solubility of hydrophobic compounds, making them excellent solubilizing and emulsifying agents for diverse applications. Use of rhamnolipids in cosmetics is just beginning to materialize, with some use in anti-aging creams, soaps, and other skin or facial treatments.

Physical Properties

Critical Micelle Concentration (CMC): ~200 μMSurface Tension (γCMC): ~28 mN/mpH = 6 – 8 in waterEstimated HLB: 10 (classified as a water-soluble emulsifier and wetting agent)

Produced in collaboration with GlycoSurf, LLC. (glycosurf.com.)

Categories

Lipids

Filter

Glycolipid

Storage

4 °C or below

美国埃施朗(Echelon)公司在快速发展低碳经济节约能源的大潮中,以美国埃施朗公司发明的LonWorks控制网络技术为基础的能源管理服务方案被越来越广泛的使用。在世界上有约9000万个内置埃施朗公司的智能网络芯片的终端设备被LonWorks控制网络连接在一起,由智能能源管理控制服务器通过Internet远程监视,控制,诊断和管理,如路灯、电表、执行器、传感器等等。其应用领域涉及楼宇、工厂、交通系统、家庭、公共设施,智能电网,绿色城市等。该能源管理服务方案包括150项专利,已有450多家OEM(原始设备制造商)厂商和90家特许集成商在为该方案提供产品和服务。通过Internet,无论是在办公楼里电梯门的开启和关闭,或者厂房间能源使用数据的采集,埃施朗公司的产品和服务使您在一个网络环境中管理设备。今天,LonWorks控制网络平台已成为全球控制网络技术的公认标准。我们在家庭、列车、半导体制造设备、智能楼宇、加油站、火车制动系统领域的网络系统解决方案,已经被许多世界标准组织采纳作为各自行业的标准,这包括:ISO/IEC对控制网络和楼宇管理规范的国际标准ISO/IEC14908-1,-2,-3和-4、中国控制联网标准GB/Z20177.1,.2,.3和.4、中国商业楼宇和住宅建设的国家标准GB/T20299.4-2006、AAR(美国铁路协会)、ANSI/CEA709.1,.2,.3和ANSI/CEA-852(美国国家标准协会),ASHRAE(美国暖通空调工程师协会),IEEE(电子电气工程师协会),IFSF(美国加油站标准论坛)和SEMI(半导体设备与材料协会)等。埃施朗公司在美国、英国、中国、日本、德国、法国、韩国和荷兰等地设立了办事处,在美洲、亚洲、欧洲各地都有商业伙伴,并为用户提供90多种产品。Echelon公司在NASDAQ股票交易所的交易代码是ELON。埃施朗公司中国代表处于一九九五年底成立,并于2001年初重新组建成埃施朗公司大中华区北京办事处至今,并设立多家代理更好地为广大中国用户提供产品和服务。其间,我们相继成立LonSupport大中华区技术支持中心、大中华区上海联络处、大中华区广州联络处。已经有超过百家中国厂商加入了LonWorks控制网络的OEM行列,从事开发新产品,承接公用事业、工业自动化、楼宇、小区智能化和运输等行业的项目。埃施朗公司将为中国的绿色,低碳,节能,环保的发展进入世界先进水平继续不懈地努力。

EchelonBiosciences成立于1997年10月3日,总部坐落于在美国犹他州。从1997到2004,EBI主要用于政府的补助金以及产品的销售收入来资助其研究工作。2005年初,EBI的依特钠Zentaris购买(NAS:AEZS)的MEP抗感染,PI3激酶小分子程序,目录业务,与科学专业。2007年末,前沿科学公司(FSI)在洛根,犹他州购买了EBI,专业从事卟啉和硼化学。自公司成立以来以来,EBI保留了开发研究试剂脂质新的检测方法。不断开拓**,从而推动药物研究的新发型。


EchelonBiosciences是美国杰出免疫学产品供应商,专业提供各种抗体、分析检测试剂盒、抑制剂等产品,尤其擅长以细胞信号、脂类代谢和标记物研究为主的相关产品。为研究治疗诸如癌症、糖尿病、炎症、感染和心脑血管疾病专家提供**有效工具。


EchelonBiosciences为生命科学社区提供的产品包括:

抗体           分析检测试剂盒

抑制剂          细胞信号产品

脂类代谢         标记物


一笔230万美元的国防部赠款将帮助神经科学家为急诊室和战场开发新的治疗方法。这项研究将集中于开发新的疗法,以帮助保护大脑和其他在创伤、心脏病发作或中风后处于危险中的器官。

罗彻斯特大学医学中心的神经学家MarcHalterman,M.D.,Ph.D该研究的首席研究员说:“虽然我们在中风或心脏骤停后恢复血液流动的能力方面取得了重大进展,但医学界并没有药物来防止这些事件发生后的继发性损害。“这项资助将进一步推进我们对一类既具有抗炎作用又具有细胞保护作用的药物的研究,我们相信这类药物将适用于军事和紧急情况。”该项目是与盐湖城的一个合成抗生素化学家团队合作开发的,该团队由MarkNelson,Ph.D领导,他将担任EchelonBiosciences的副研究员。





蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
位于旧金山的一支来自犹他大学和加州大学的科研团队,发现了一个编码酮体转运体的基因的突变可以导致脂肪和其它脂类在斑马鱼的肝脏聚集。这项发现 2 月 1 号发表在《基因学及其进展的发布》上,揭示酮体转运出肝脏是空腹时能量代谢的重要一步。故此项发现为研究人类脂肪肝疾病的发生发展提供了一种新的思路。 非酒精性脂肪肝疾病 (NAFLD), 或称肝脏异常高脂质聚集 查看更多>
美国Avanti Polar Lipids公司介绍 查看更多>
脂质代谢异常是先天性或获得性因素造成的血液及其他组织器官中脂质及其代谢产物质和量的异常。脂质的代谢包括脂类在小肠内消化、吸收,由淋巴系统进入血循环(通过脂蛋白转运),经肝脏转化,储存于脂肪组织,需要时被组织利用。脂质在体内的主要功用是氧化供能,脂肪组织是机体的能量仓库... 查看更多>
大环内酯类抗生素(macrolides antibiotics,MA)是一类分子结构中具有12-16 碳内酯环的抗菌药物的总称,通过阻断50s 核糖体中肽酰转移酶的活性来抑制细菌蛋白质合成,属于快速抑菌剂。 主要用于治疗需氧革兰阳性球菌和阴性球菌、某些厌氧菌以及军团菌、支原体、衣原体等感染。但最近的研究表明大环... 查看更多>
上海埃德斯生物科技有限公司在发布的成脂检测染液供应信息,浏览与成脂检测染液相关的产品或在搜索更多与成脂检测染液相关的内容。 查看更多>
脂肪代谢是体内重要且复杂的生化反应,指生物体内脂肪,在各种相关酶的帮助下,消化吸收、合成与分解的过程,加工成机体所需要的物质,保证正常生理机能的运作,对于生命活动具有重要意义。脂类是身体储能和供能的重要物质,也是生物膜的重要结构成分。脂肪代谢异常引发的疾病为现代社会... 查看更多>
血脂是血浆中的中性脂肪(甘油三酯)和类脂(磷脂、糖脂、固醇、类固醇)的总称,广泛存在于人体中。它们是生命细胞的基础代谢必需物质。一般说来,血脂中的主要成分是甘油三酯和胆固醇,其中甘油三酯参与人体内能量代谢,而胆固醇则主要用于合成细胞浆膜、类固醇激素和胆汁酸。... 查看更多>
研究解析了PlsY蛋白与底物、产物的共结晶高分辨率结构,提出一个全新的“底物协助催化”的脂酰转移机制。 查看更多>
根据本周在线发表在“ 自然 - 细胞生物学”杂志上的一项新研究,人胚胎干细胞(hESCs)可编程在小鼠体内形成两种不同类型的功能性脂肪细胞 。胚胎细胞是多能的,因为它们被认为保留了在人体内产生每种细胞类型的能力。人体的某些未成熟细胞也可以在实验室中诱导形成多种细胞类型。这些所谓的诱导人多能干细胞(hiPSC)也可用于开发各种人类疾病的模型。 由马萨诸塞州剑桥哈佛大学Chad Cowan领导的一组研究人员,包括多哈卡塔尔基金会的Heba Al-Siddiqi,分两 查看更多>
广州赛莱拉干细胞科技股份有限公司在发布的成脂诱导检测(油红O染色)供应信息,浏览与成脂诱导检测(油红O染色)相关的产品或在搜索更多与成脂诱导检测(油红O染色)相关的内容。 查看更多>
2021-08-02
Russell Pickford生物分析及质谱研究中心 UNSW作为一个大型的质谱研究中心,我们需要执行各种定制化和常规的小分子分析。目前我们正在越来越多地使用 Progenesis QI 分析项目中的代谢组学和脂类组学数据,这些项目涉及疾病代谢组学、基因敲除效应、海洋生物相互作用以及与体育运动相关的策划药等等。易用性和强大的分析功能相结合,有助于我们快速培训新用户,让他们在项 查看更多>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
为什么梗阻性肥厚型心肌病禁用硝酸脂类药物?,硝酸脂类药物扩张的是心肌动脉还是静脉?
脂类的食物来源123
洪燕桃2017-10-02
动物内脏、肥肉
水稀释法提取IgY123
evasongsong2021-07-22
前天将卵黄用六倍水稀释,调PH值5.2,过夜沉淀后,昨天离心发现上清夜很浑浊,根本离不下来。用0.22微米滤膜过滤也还是很浑的黄色,之前水稀释时搅拌的也不是很剧烈,为什么脂质颗粒这么小呢?会不会是鸡蛋的问题?
后来加PEG沉淀效果很好,上清夜很清,但是不知道会不会对后期测效价,纯化等有影响。
有没有别的简便方法可以去除脂类
哪位高手指教一下,感激不尽。
不是,两个概念。
脂质(Lipids)又称脂类,是脂肪及类脂的总称.这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂。并能为机体利用的重要有机化合物。脂质包括的范围广泛,其分类方法亦有多种。通常根据脂质的主要组成成分分为:简单脂质、复合脂质、衍生脂质、不皂化脂类。
基本介绍
不溶于水而能被乙醚、氯仿、苯等非极性有机溶剂抽提出的化合物,统称脂类。
脂类包括油脂(甘油三酯)和类脂(磷脂、蜡、萜类、甾类)。
脂类是机体内的一类有机小分子物质,它包括范围很广,其化学结构有很大差异,生理功能各不相同,其共同物理性质是不溶于水而溶于有机溶剂,在水中可相互聚集形成内部疏水的聚集体(如右图)。
脂类是油、脂肪、类脂的总称。食物中的油脂主要是油和脂肪,一般把常温下是液体的称作油,而把常温下是固体的称作脂肪.
固醇(sterol) 又称甾醇。类固醇的一种。固醇类化合物广泛分布于生物界。用碱性溶液提取动植物组织中的脂类,其中常有多少不等的、不能为碱所皂化的物质,它们均以环戊烷多氢菲为基本结构,并含有醇基,故称为固醇类化合物。胆固醇是高等动物细胞的重要组分。它与长链脂肪酸形成的胆固醇酯是血浆脂蛋白及细胞膜的重要组分。植物细胞膜则含有其它固醇如豆固醇及谷固醇。真菌和酵母则含有菌固醇。胆固醇是动物组织中其它固醇类化合物如胆汁醇、性激素、肾上腺皮质激素、维生素D3等的前体。
相关疾病:急性心肌梗死[请教]急性心梗心率>100次/分时能否应用硝酸甘油等硝酸脂类药物?
哪些食物胆固醇含量高?哪些食物甘油三酯含量高?哪些食物脂类含量低?
脂类,由脂肪酸和醇作用生成的酯及其衍生物统称为脂类,这是一类一般不溶于水而溶于脂溶性溶剂的化合物。导出地址表访问过滤EAF:EXHAUST AIR FAN,(排风),空调排风机,主要用于楼层的公共区域如走廊、楼梯前室的
各位同仁,
细胞分子生物学 (Cellular and Molecular Biology, http://www.cellmolbiol.com/), 影响因子为1.46, 现征集脂类信号通路方面的稿件。该杂志为open-access, 但该专刊所收录稿件为免费发表。稿件审稿由作者负责,联系两位审稿人,其中一位必须来自美国,根据审稿人的意见,作者对稿件进行修改,待审稿人确认稿件完成修改后,作者将稿件及审稿人意见上传至编辑部审核后发表。该专刊将在下个月中旬释放到网上发表。如感兴趣,请邮件联系, 以便将邀请函及相关材料发给您。

我用HepG2细胞进行NAFLD的体外模型研究,现在想多合成和分泌的脂质进行检测,需要检测细胞和培养基中的甘油三酯,胆固醇酯,总胆固醇,和磷脂,请问应该怎么操作呢?有没有专门的试剂盒检测前面4种脂类呢?菜鸟一枚,实在是被这个弄得有点头大,求大神多多指教!万分感谢!

脂质(Lipids)又称脂类,是脂肪及类脂的总称.这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂。并能为机体利用的重要有机化合物。脂质包括的范围广泛,其分类方法亦有多种。通常根据脂质的主要组成成分分为:简单脂质、复合脂质、衍生脂质、不皂化脂类。
基本介绍
不溶于水而能被乙醚、氯仿、苯等非极性有机溶剂抽提出的化合物,统称脂类。
脂类包括油脂(甘油三酯)和类脂(磷脂、蜡、萜类、甾类)。
脂类是机体内的一类有机小分子物质,它包括范围很广,其化学结构有很大差异,生理功能各不相同,其共同物理性质是不溶于水而溶于有机溶剂,在水中可相互聚集形成内部疏水的聚集体(如右图)。
脂类是油、脂肪、类脂的总称。食物中的油脂主要是油和脂肪,一般把常温下是液体的称作油,而把常温下是固体的称作脂肪.
分类介绍
1. 油脂(fat)
即甘油三酯或称之为脂酰甘油(triacylglycerol),是油和脂肪的统称。一般将常温下呈液态的油脂称为油,而将其呈固态时称为脂肪。
脂肪是由甘油和脂肪酸脱水合成而形成的。脂肪酸的羧基中的—OH 与甘油羟基中的—H 结合而失去一分子说,于是甘油与脂肪酸之间形成酯键,变成了脂肪分子。
脂肪中的三个酰基(无机或有机含氧酸除去羟基后所余下的原子团)一般是不同的,来源与碳十六、碳十八或其他脂肪酸。有双键的脂肪酸称为不饱和脂肪酸,没有双键的则称为饱和脂肪酸。、
动物的脂肪中,不饱和脂肪酸很少,植物油中则比较多。膳食中饱和脂肪太多会引起动脉粥样硬化,因为脂肪和胆固醇均会在血管内壁上沉积而形成斑块,这样就会妨碍血流,产生心血管疾病。也由于此,血管壁上有沉淀物,血管变窄,使肥胖症患者容易患上高血压等疾病。
油脂分布十分广泛,各种植物的种子、动物的组织和器官中都存有一定数量的油脂,特别是油料作物的种子和动物皮下的脂肪组织,油脂含量丰富。人体内的脂肪约占体重的10%~20%。人体内脂肪酸种类很多,生成甘油三酯时可有不同的排列组合方式,因此,甘油三酯具有多种存在形式。贮存能量和供给能量是脂肪最重要的生理功能。1克脂肪在体内完全氧化时可释放出38kJ(9.3kcal)的能量,比1克糖原或蛋白质所释放的能量多两倍以上。脂肪组织是体内专门用于贮存脂肪的组织,当机体需要能量时,脂肪组织细胞中贮存的脂肪可动员出来分解供给机体的需要。此外,高等动物和人体内的脂肪,还有减少身体热量损失,维持体温恒定,减少内部器官之间摩擦和缓冲外界压力的作用。
2. 类脂(lipids)
包括磷脂(phospholipids),糖脂(glycolipid)和胆固醇及其酯(cholesterol and cholesterol ester)三大类。①磷脂是含有磷酸的脂类,包括由甘油构成的甘油磷脂(phosphoglycerides)与由鞘氨醇构成的鞘磷脂(sphingomyelin)。在动物的脑和卵中,大豆的种子中,磷脂的含量较多。②糖脂是含有糖基的脂类。③还有,胆固醇及甾类化合物(类固醇)等物质主要包括胆固醇、胆酸、性激素及维生素D等。这些物质对于生物体维持正常的新陈代谢和生殖过程,起着重要的调节作用。另外,胆固醇还是脂肪酸盐和维生素D3以及类固醇激素等的合成原料,对于调节机体脂类物质的吸收,尤其是脂溶性维生素(A,D,E,K)的吸收以及钙、磷代谢等均起着重要作用。这三大类类脂是生物膜的重要组成成分,构成疏水性的“屏障”(barrier),分隔细胞水溶性成分及将细胞划分为细胞器/核等小的区室,保证细胞内同时进行多种代谢活动而互不干扰,维持细胞正常结构与功能等。
按化学组成分
1.单纯脂:定义:脂肪酸与醇脱水缩合形成的化合物。
蜡:高级脂肪酸与高级一元醇,幼植物体表覆盖物,叶面,动物体表覆盖物,蜂蜡。
甘油脂:高级脂肪酸与甘油,最多的脂类。
2.复合脂:定义:单纯脂加上磷酸等基团产生的衍生物。
磷脂:甘油磷脂(卵、脑磷脂)、鞘磷脂(神经细胞中含量丰富)。
3.脂的前体及衍生物
萜类(音tiē)和甾类(音zāi)及其衍生物:不含脂肪酸,都是异戊二烯的衍生物。
衍生脂:上述脂类的水解产物,包括脂肪酸及其衍生物、甘油、鞘氨醇等。
高级脂肪酸、甘油、固醇、前列腺素。
4.结合脂:定义:脂与其它生物分子形成的复合物。
糖脂:糖与脂类通过糖苷键连接起来的化合物(共价键),如霍乱毒素。
脂蛋白:脂类与蛋白质在肝脏内通过非共价结合形成的产物,如血液中的几种脂蛋白,VLDL、LDL、HDL、VHDL是脂类的运输方式。
化学结构
脂质(Lipids)又称脂类,是脂肪及类脂的总称.这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂。并能为机体利用的重要有机化合物。脂质包括的范围广泛,其分类方法亦有多种。通常根据脂质的主要组成成分分为:简单脂质、复合脂质、衍生脂质、不皂化脂类。
脂质包括多种多样的分子,其特点是主要由碳和氢两种元素以非极性的共价键组成。由于这些分子是非极性的,所以和水不能相容,因此是疏水的。严格地说,脂质不是大分子,因为它们的相对分子质量不如糖类、蛋白质和核酸的那么大,而且它们也不是聚合物。
简单脂质
简单脂质是脂肪酸与各种不同的醇类形成的酯,简单脂质包括酰基甘油酯和蜡。
(一)酰基甘油酯
酰基甘油酯又称脂肪是以甘油为主链的脂肪酸酯。如三酰基甘油酯的化学结构为甘油分子中三个羟基都被脂肪酸酯化,故称为甘油三酯(triglyceride)或中性脂肪。甘油分子本身无不对称碳原子。但它的三个羟基可被不同的脂肪酸酯化,则甘油分子的中间一个碳原子是一个不对称原子,因而有两种不同的构型(L-构型和D-构型)。天然的甘油三酯都是L-构型。酰基甘油酯分为甘油一酯、甘油二酯、甘油三酯、烷基醚(或α、β烯基醚)酰基甘油酯。
(二)蜡
蜡(waxes)是不溶于水的固体,是高级脂肪酸和长链一羟基脂醇所形成的酯,或者是高级脂肪酸甾醇所形成的酯。常见有真蜡、固醇蜡等。
真蜡是一类长链一元醇的脂肪酸酯。
固酯蜡是固醇与脂肪酸形成的酯,如维生素A酯、维生素D酯等。
复合脂质
复合脂质(complx lipids)即含有其他化学基团的脂肪酸酯,体内主要含磷脂和糖脂两种复合脂质。
(一)磷脂
磷脂(phospholipid)是生物膜的重要组成部分,其特点是在水解后产生含有脂肪酸和磷酸的混合物。根据磷脂的主链结构分为磷酸甘油反和鞘磷脂。
1.磷酸甘油酯(phosphoglycerides)主链为甘油-3-磷酸,甘油分子中的另外两个羟基都被脂肪酸所酯化,噒酸基团又可被各种结构不同的小分子化合物酯化后形成各种磷酸甘油酯。体内含量较多的是磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺(脑磷脂)、磷脂酰丝氨酸、磷脂酰甘油、二磷脂酰甘油(心磷酯)及磷酯酰肌醇等,每一磷脂可因组成的脂肪酸不同而有若干种。
从分子结构可知甘油分子的中央原子是不对称的。因而有不同的立体构型。天然存在的磷酸甘油酯都具有相同的主体化学构型。按照化学惯例。这些分子可以用二维投影式来表示。D-和L甘油醛的构型就是根据其X射线结晶学结果确定的。右旋为D构型,左旋为L构型。磷酸甘油酯的立化化学构型及命名由此而确定。
2.鞘磷脂(sphingomyelin)鞘磷脂是含硝氨醇或二氢鞘氨醇的磷脂,其分子不含甘油,是一分子脂肪酸以酰胺键与鞘氨醇的氨基相连。鞘氨醇或二氢鞘氨醇是具有脂肪族长链的氨基二元醇。有疏水的长链脂肪烃基尾和两个羟基及一个氨基的极性头。
鞘磷脂含磷酸,其末端痉基取代基团为磷酸胆碱酸乙醇胺。人体含量最多的鞘磷脂是神经鞘磷脂,由鞘氨醇、脂肪酸及磷酸胆碱构成。神经鞘磷酯是构成生物膜的重要磷酯。它常与卵磷脂并存细胞膜外侧。
(二)糖脂
糖脂(glycolipids)这是一类含糖类残基的复合脂质化学结构各不相同的脂类化合物,且不断有糖脂的新成员被发现。糖脂亦分为两大类:糖基酰甘油和糖鞘脂。糖鞘脂又分为中性糖鞘脂和酸性糖鞘脂。
1.糖基酰基甘油(glycosylacylglycerids),糖基酰甘油结构与磷脂相类似,主链是甘油,含有脂肪酸,但不含磷及胆碱等化合物。糖类残基是通过糖苷键连接在1,2-甘油二酯的C-3位上构成糖基甘油酯分子。已知这类糖脂可由各种不同的糖类构成它的极性头。不仅有二酰基油酯,也有1-酰基的同类物。
自然界存在的糖脂分子中的糖主要有葡萄糖、半乳糖,脂肪酸多为不饱和脂肪酸。根据国际生物化学名称委员会的命名:单半乳糖基甘油二酯和二半乳糖基甘油二酯的结构分别为1,2-二酰基-3-O-β-D-吡喃型半乳糖基-甘油和1,2-二酰基-3-O-(α-D-吡喃型半乳糖基(1→6)-O-β-D吡喃型半乳糖基)-甘油。
此外,还有三半乳糖基甘油二酯,6-O-酰基单半乳糖基甘油二酯等。
2.糖硝脂(glycosphingolipids) 有人将此类物质列为鞘脂和鞘磷脂一起讨论,故又称鞘糖脂。糖鞘脂分子母体结构是神经酰胺。脂肪酸连接在长链鞘氨醇的C-2氨基上,构成的神经酰胺糖类是糖鞘脂的亲水极性头。含有一个或多个中性糖残基作为极性头的糖鞘脂类称为中性糖鞘脂或糖基神经酰胺,其极性头带电荷,最简单的脑苷脂是在神羟基上,以β糖苷链接一个糖基(葡萄糖或半乳糖)。
重要的糖鞘脂有脑苷脂和神经节苷脂。脑苷在脑中含量最多,肺、肾次之,肝、脾及血清也含有。脑中的脑苷脂主要是半乳糖苷脂,其脂肪酸主要为二十四碳脂酸;而血液中主要是葡萄糖脑苷脂神经节苷脂是一类含唾液酸的酸性糖鞘酯。唾液酸又称为N-乙酰神经氨酸它通过α-糖苷键与糖脂相连。神经节苷脂分子由半乳糖(Gal)、N-乙酰半乳糖(GalNAc)、葡萄糖(Glc)、N-脂酰硝氨醇(Cer)、唾液酸(NeuAc)组成。神经节苷脂广泛分布于全身各组织的细胞膜的外表面,以脑组织最丰富。
衍生脂质
1.脂肪酸及其衍生物前列腺素等。
2.长链脂肪醇,如鲸蜡醇等。
不皂化的脂质折叠
不皂化的脂质是一类不含脂肪酸的脂质。主要有类萜及类固醇。
(一)类萜(terpens)
类萜亦称异戊烯脂质。异戊烯是具有两个双键的五碳化合物,也叫做“2-甲基-1.3-丁二烯“。其结构式为:
CH3  |  CH2 = C-CH=CH2。
烯萜类化合物就是很多异戊二烯单位缩合体。两个异戊二烯单位头尾连接就形成单萜;含有4个、6个和8个异戊二烯单位的萜类化合物分别称为双萜、三萜或四萜。异戊二烯单位以头尾连接排列的是规则排列;相反尾尾连接的是不规则排列。两个一个半单萜以尾尾排列连接形成三萜,如鲨烯;两个双萜尾尾连接四萜,如β-胡罗卜素。还有些类萜化合物是环状化合物,有遵循头尾相连的规律,也有不遵循头尾相连的规律。另外还有一些化合物尽管与类萜有密切有关系,但其结构式并不是五碳单位的偶数倍数;例如莰稀是具有二环结构的单萜,结构相似的檀烯却缺少一个碳原子。异戊烯脂质包括多种结构不同物质,对这些自然界存在的复杂结构的物质给予系统的命名是困难的。现习惯上沿用的名称多来自该化合物的原料来源,更显得杂乱无章。
天然的异戊烯聚合物与其他多聚物的共同点为:①由具有通用结构的重复单位所组成(异戊烯骨架相当于糖,氨基酸或核苷酸单位);②此单位的结构在细节上可有所变动(例如在类异戊二烯中的双键)并按顺序排列;③链长变化极大,小到两个单位聚合而成单萜,多至数百倍的单位聚合而成的橡胶。不同点为:①重复单位以C-C键连接在一起;②相对地说它们是非极性的,属于脂质。异戊烯脂质一旦聚合,就不能再裂解回复到单体形式。
(二)类固醇
类固醇(steroid)是环戊稠全氢化菲的衍生物。天然的类固醇分子中的双键数目和位置,取代基团的类型、数目和位置,取代基团与环状核之间的构型,环与环之间的构型各不相同。其化学结构是由三个六碳环已烷(A、B、C)和一个五碳环(D)组成的稠和回环化合物。类固醇分子中的每个碳原子都按序编号,且不管任一位置有没有碳原子存在,在类固醇母体骨架结构中都保留该碳原子的编号。存在于自然界的类固醇分子中的六碳环A、B、C都呈“椅”式构象(环已结构),这也是最稳定的构象。唯一的例外是雌激素分子内的A环是芳香环为平面构象。类固醇的A环和B环之间的接界可能是顺式构型,也可能是反式构型;而C环与D环接界一般都是反式构型,但强心苷和蟾毒素是例外。
功能介绍
最佳的能量储存方式
能量贮存形式(动物、油料种子的甘油三酯)
体内的两种能源物质比较  
单位重量的供能:糖4.1千卡/克,脂9.3千卡/克。
储存体积:1糖元或淀粉:2水,脂则是纯的,体积小得多。
动用先后:糖优先,关于减肥和辟谷
生物膜的骨架
细胞膜的液态镶嵌模型:磷脂双酯层,胆固醇,蛋白质,糖脂,甘油磷脂和鞘磷脂。
电与热的绝缘体
动物的脂肪组织有保温,防机械压力等保护功能,植物的蜡质可以防止水分的蒸发。
电绝缘:神经细胞的鞘细胞,电线的包皮,神经短路
热绝缘:冬天保暖,企鹅、北极熊
其他
4.信号传递:固醇类激素
5.酶的激活剂:卵磷脂激活β-羟丁酸脱氢酶
6.糖基载体:合成糖蛋白时,磷酸多萜醇作为羰基的载体
7.激素、维生素和色素的前体(萜类、固醇类)
8.生长因子与抗氧化剂
9.参与信号识别和免疫(糖脂)
合成技术
脂肪酸的生物合成
脂肪酸的生物合成 biosynthesis of fattyacids 高级脂肪酸的合成,以乙酰CoA为基础,通过乙酰辅酶A羧化酶的作用,在ATP的分解的同时与CO2结合,产生丙二酸单酰CoA,开始这一阶段是控速步骤,为柠檬酸所促进。丙二酸单酰CoA与乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的软脂酸(或C18的硬脂酸),但这是包括在酰基载体蛋白(ACP)参与下的脱羧、C2单位缩合、以及由NADPH还原过程在内的反复进行的复杂过程。产生的脂肪酸作为CoA衍生物,在线粒体中与乙酰CoA,在微粒体中与丙二酸单酰CoA缩合,每次增加两个碳,不断延长碳链。而单不饱和脂肪酸,由饱和酰基CoA(或ACP)的好氧的不饱和化(微粒体,微生物等。必须有O2和NADH)而产生,或由脂肪酸生物合成途中的β-羟酰ACP的脱水反应(及碳键延长)而产生。多聚不饱和脂肪酸在高等动物不一定产生,可以从摄取的不饱和酸的碳素链的延长等而转变形成。另外环丙烷脂肪酸由S-腺苷甲硫氨酸的C1,结合于不饱和酸的双键上而产生。脂肪酸作为CoA衍生物,用于合成各种底物。
其他脂类的生物合成
磷脂的生成
磷脂酸是最简单的磷脂,也是其他甘油磷脂的前体。磷脂酸与CTP反应生成CDP-二酰甘油,在分别与肌醇、丝氨酸、磷酸甘油反应,生成相应的磷脂。磷脂酸水解成二酰甘油,再与CDP-胆碱或CDP-乙醇胺反应,分别生成磷脂酰胆碱和磷脂酰乙醇胺。
脂类脂肪
脂类
脂类定义为脂肪酸(多是4碳以上的长链一元羧酸)和醇(包括甘油醇、硝氨醇、高级一元醇和固醇)等所组成的酯类及其衍生物。包括单纯脂类、复合酯类及衍生脂质。
脂肪
一提到脂肪,我相信大家都会很明白那是啥东西,那么脂类呢?难道脂类和脂肪是一个概念的?
其实脂类和脂肪并不是一个意思,脂肪是脂类的一种,脂类包括固醇类、脂肪、类脂等
相关介绍
消化和吸收
正常人一般每日每人从食物中消化的脂类,其中甘油三脂占到90%以上,除此以外还有少量的磷脂、胆固醇及其酯和一些游离脂肪酸(free fatty acids)。食物中的脂类在成人口腔和胃中不能被消化,这是由于口腔中没有消化脂类的酶,胃中虽有少量脂肪酶,但此酶只有在中性PH值时才有活性,因此在正常胃液中此酶几乎没有活性(但是婴儿时期,胃酸浓度低,胃中PH值接近中性,脂肪尤其是乳脂可被部分消化)。脂类的消化及吸收主要在小肠中进行,首先在小肠上段,通过小肠蠕动,由胆汁中的胆汁酸盐使食物脂类乳化,使不溶于水的脂类分散成水包油的小胶体颗粒,提高溶解度增加了酶与脂类的接触面积,有利于脂类的消化及吸收。在形成的水油界面上,分泌入小肠的胰液中包含的酶类,开始对食物中的脂类进行消化,这些酶包括胰脂肪酶(pancreatic lipase),辅脂酶(colipase),胆固醇酯酶(pancreatic cholesteryl ester hydrolase or cholesterol esterase)和磷脂酶A2(phospholipase A2)。
食物中的脂肪乳化后,被胰脂肪酶催化,水解甘油三酯的1和3位上的脂肪酸,生成2-甘油一酯和脂肪酸。此反应需要辅脂酶协助,将脂肪酶吸附在水界面上,有利于胰脂酶发挥作用。食物中的磷脂被磷脂酶A2催化,在第2位上水解生成溶血磷脂和脂肪酸,胰腺分泌的是磷脂酶A2原,是一种无活性的酶原形成,在肠道被胰蛋白酶水解释放一个6肽后成为有活性的磷脂酶A 催化上述反应。食物中的胆固醇酯被胆固醇酯酶水解,生成胆固醇及脂肪酸。食物中的脂类经上述胰液中酶类消化后,生成甘油一酯、脂肪酸、胆固醇及溶血磷脂等,这些产物极性明显增强,与胆汁乳化成混合微团(mixed micelles)。这种微团体积很小(直径20nm),极性较强,可被肠粘膜细胞吸收。
脂类的吸收主要在十二指肠下段和盲肠。甘油及中短链脂肪酸(<=10C)无需混合微团协助,直接吸收入小肠粘膜细胞后,进而通过门静脉进入血液。长链脂肪酸及其它脂类消化产物随微团吸收入小肠粘膜细胞。长链脂肪酸在脂酰CoA合成酶(fattyacyl CoA synthetase)催化下,生成脂酰CoA,此反应消耗ATP。脂酰CoA可在转酰基酶(acyltransferase)作用下,将甘油一酯、溶血磷脂和胆固醇酯化生成相应的甘油三酯、磷脂和胆固醇酯。体内具有多种转酰基酶,它们识别不同长度的脂肪酸催化特定酯化反应。这些反应可看成脂类的改造过程,在小肠粘膜细胞中,生成的甘油三酯、磷脂、胆固醇酯及少量胆固醇,与细胞内合成的载脂蛋白(apolipprotein)构成乳糜微粒(chylomicrons),通过淋巴最终进入血液,被其它细胞所利用。可见,食物中的脂类的吸收与糖的吸收不同,大部分脂类通过淋巴直接进入体循环,而不通过肝脏。因此食物中脂类主要被肝外组织利用,肝脏利用外源的脂类是很少的。
脂类的水解产物,如脂肪酸、甘油一酯和胆固醇等,都不溶解于水。它们与胆汁中的胆盐形成水溶性微胶粒后,才能通过小肠粘膜表面的静水层而到达微绒毛上。在这里,脂肪酸、甘油一酯等从微胶粒中释出,它们通过脂质膜进入肠上皮细胞内,胆盐则回到肠腔。进入上皮细胞内的长链脂肪酸和甘油一酯,大部份重新合成甘油三酯,并与细胞中的载脂蛋白合成乳糜微粒,若干乳糜微粒包裹在一个囊泡内。当囊泡移行到细胞膜侧时,便以出胞作用的方式离开上皮细胞,进入淋巴循环。然后归入血液。中、短链甘油三酯水解产生的脂肪酸和甘油一酯是水溶性的,可直接进入门静脉而不入淋巴。
脂类的酶促水解
1.脂肪酶广泛存在于动物、植物和微生物中。在人体内,脂肪的消化主要在小肠,由胰脂肪酶催化,胆汁酸盐和辅脂肪酶的协助使脂肪逐步水解生成脂肪酸和甘油。
2.磷脂酶有多种,作用于磷脂分子不同部位的酯键。作用于1位、2位酯键的分别称为磷脂酶A1及 A2,生成溶血磷脂和游离脂肪酸。作用于3位的称为磷脂酶C,作用磷酸取代基间酯键的酶称磷脂酶D。作用溶血磷脂1位酯键的酶称磷脂酶B1。
3.胆固醇酯酶水解胆固醇酯生成胆固醇和脂肪酸。
4.小肠可吸收脂类的水解产物。胆汁酸盐帮助乳化,结合载脂蛋白(apoprotein,apo)形成乳糜微粒经肠粘膜细胞吸收进入血循环。所以乳糜微粒(chylomicron,CM)是转运外源性脂类(主要是TG)的脂蛋白。
【认领须知】
1、认领翻译的战友请跟帖注明“认领本文翻译,48小时内未完成,请其他战友认领!
2、请根据自己专业背景选择认领,如使用翻译软件翻译,被发现者扣分1-2分
3、经常认领而不能及时提供优质稿件者将被列入黑名单,取消认领资格,请大家注意!
4、翻译时请参照版规:点击查看
5、在首位认领战友未超过规定时间的其他任何认领属违规认领,将不会给予蚁豆或加分!
6、翻译完成后加分(或蚁豆)的时限为三日,请耐心等待,若超过时限未加者可进行申诉:点击进入
7、本文题目仅供译者参考,篇幅较长者可申请适当延时
8、翻译前请查一下有无重复帖
9、为保证翻译质量,每人每天最多只能认领两篇
原文链接:http://www.medpagetoday.com/Rheumatology/Arthritis/42192
ErosiveHandOALinkedtoLipids
Erosiveosteoarthritis(OA)ofthehandisasevereformofrADIographichandOA,ratherthanadistinctclinicalentity,andmaybedrivenbythepresenceofmetabolicabnormalities,researchersreported.
ThepatternofjointinvolvementinerosiveOAwassimilartothatseeninseverenon-erosivedisease,particularlyforsymmetry,withanadjustedoddsratioof6.5(95%CI3-14.1)forinvolvementofthesamejointintheoppositehand,accordingtoMichelleMarshall,PhD,ofKeeleUniversityinStaffordshire,England,andcolleagues.
ButindividualswitherosivehandOAhadmorethantwicetheriskofmetabolicsyndrome(OR2.7,95%CI1-7.1)andmorethanfourtimestheriskofdyslipidemia(OR4.7,95%CI2.1-10.6)comparedwithpatientswhohadseverenon-erosiveOA,theresearchersreportedonlineinAnnalsoftheRheumaticDiseases.
ErosivehandOAdiffersfromnon-erosivediseaseinseveralways.Forinstance,theonsetofsymptomssuchasswelling,stiffness,andpaintendstobeabrupt,andradiographsreveal"gull-wing"or"saw-tooth"deformitiesandcollapseofthesubchondralbone.
Followingapparentwideningofthejointspace,remodelingoccurs,resultingintheappearanceoflargeosteophytesandanirregularsubchondralplate.
Andoverall,worseclinicalandradiographicoutcomes--alongwithsystemicriskfactors--havebeenreportedforerosiveOA.
ButthecauseandpathogenicprocessesassociatedwitherosiveOAhavenotbeenfullyestablished,andtheEuropeanLeagueAgainstRheumatismhassuggestedthaterosivediseasemaybeasubsetofgeneralizedhandOA.
TodeterminewhethererosivehandOAactuallyisaseparateentityorpartofacontinuumofseverityandtoidentifypotentialriskfactors,MarshallandcolleaguesrecruitedpatientsfromaclinicalassessmentstudyofhandOAandalsofromastudyofkneeOAtoprovidealarger,enrichedsample.
Allparticipantsreportedhandpainandstiffnessforatleast"afew"dayswithinthepastmonth.
X-raysofthehandswerescoredaccordingtotheKellgrenandLawrence(KL)system,andthepresenceoferosivechangeswasevaluatedaccordingtotheVerbruggen-Veysprogressionscale.
Atotalof1,167patientsand8,608handjointswereincludedintheanalysis.
OntheKLgradingscale,1,754jointsweregrades2orhigher,indicatingpossIBLeordefiniteosteophytesandnarrowingofthejointspace.
Moderate-to-severeKLscoresof3orhigherwerefoundin425joints,indicatingthepresenceofmultipleosteophytes,jointspacenarrowing,sclerosis,andpossiblebonedeformities.
Severescoresof4,withlargeosteophytes,markedjointspacenarrowing,severesclerosis,anddefinitebonedeformitieswerefoundin112joints.
Erosivediseasewasidentifiedin207jointsin80patients.
Theseconddistalinterphalangealjointwasmostoftenaffected,andsignificantassociationswerefoundfortheoverallrankedorderofinvolvedjointsinbotherosiveandnon-erosiveOA(r>0.95).
Aswithsymmetry,thepatternofinvolvementacrossthejointsofthesamehandandthesamefingerwassimilarforbotherosiveandnon-erosivedisease.
Patientswitherosiveandnon-erosivediseaseweresimilarinmanycharacteristics,includingage,sex,thepresenceofkneeOA,afamilyhistoryofarthritis,andbodymassindex.Themaindifferencewasinthepresenceofdyslipidemiaandmetabolicsyndrome.
Amongpatientswithnon-erosiveKL3,atotalof6.2%hadabnormallevelsofcholesterol,asdid8.8%ofthosewithnon-erosiveKL4.
Incontrast,21.2%ofthosewitherosivediseasehadlipidabnormalities.
AndforpatientswithKL3and4,ratesofmetabolicsyndromewere4.1%and2.9%,respectively,whiletheratewas11.2%forthosewitherosivedisease.
Thepatternsofinvolvementinthehandjointssuggestthatthereare"strongsimilarities"betweenerosiveOAandmoderate-to-severenon-erosiveOA,andmayrepresentanevolutionmediatedthroughmetabolicpathways,theresearchersexplained.
"Theexactmechanismisnotyetknownbutosteoarthritisisbelievedtosharesimilarbiochemicalandinflammatorypathwaystometabolicdisorders,anddyslipidemiamayalterlipidmetabolisminanumberofjointtissues,"theywrote.
Alimitationofthestudywastherelativelysmallnumberofpatientswitherosivedisease.