
Product Details and Specifications | ||
Product Name | pLV-EF1a-MCS-IRES-GFP-Puro | ![]() |
Product Catalog Number | cDNA-pLV11 | |
Components | Each kit contains 40 ul plasmid DNA (250 ng/ul), 20 ul EF1a forward primer (10 uM), and 20 ul IRES reverse primer (10 uM) | |
Selectable Marker | GFP-Puro | |
Storage Conditions | Store your lentiviral gene expression vector and its sequencing primers at -20 degrees Celsius | |
Shipping Conditions | Our cDNA vectors are shipped at room temperature via overnight delivery. Please note that additional shipping charges may apply. | |
Download Map | Download Genbank | |
Download Protocol | Download PDF |
biosttia是一家总部位于圣地亚哥的公司,提供分子生物学产品和服务,支持全球的研究人员。利用我们高效的慢病毒系统,我们协助许多学术机构、生物技术和制药公司进行基因表达和抑制相关研究。Biosettia专门从事:shRNA载体系统的基因沉默慢病毒miRNA对基因的抑制作用慢病毒miRNA的功能筛选miRLocker–慢病毒miRNA抑制慢病毒的制备慢病毒基因表达诱导多能干细胞生成核酸纯化
RNA干扰(RNAi)是有效沉默或抑制目标基因表达的过程,该过程通过双链RNA(dsRNA)使得目标基因相应的mRNA选择性失活来实现的。RNA干扰由转运到细胞细胞质中的双链RNA激活。沉默机制可导致由小干扰RNA(siRNA)或短发夹RNA(shRNA)诱导实现靶mRNA的降解,或者通过小RNA(miRNA)诱导特定mRNA翻译的抑制。这篇综述将重点介绍shRNA和siRNA是如何导致蛋白质表达抑制的。通过几种蛋白的活性(下面讨论),通过短反义核酸(siRNA和shRNA序列)锁定细胞mRNA,从而实现其随后的降解。这反过来阻断了该蛋白的进一步表达/聚集,导致其水平的下降,最终实现抑制作用。[放大]图1. siRNA和shRNA结构。(A)siRNAs是短的RNA双链,在3‘端有两个碱基的游离。(B)shRNA由正义链和反义链通过环状序列隔开共同组成。(C)shRNA构建用于插入表达载体。源自[1, 2]。背景调控途径的发现和组成元件早在1984年人们就发现反义RNA能够抑制基因的表达。1993年,Nellen和Lichtenstein提出了一个模型来解释这个观察。然而,直到1998年,Fire等人发表了在线虫RNA干扰的结果,他们发现双链RNA在抑制基因表达方面实际上比单链RNA更有效。最终确定小RNA途径涉及的蛋白质组分有许多与RNA干扰途径一样。表一总结了RNA干扰机制的主要元件。它们包括锁定靶基因的双链RNA(siRNA或shRNA)、Dicer酶,Argonaute蛋白家族的蛋白质(具体来说是Ago-2)、Drosha、RISC、TRBP和PACT。
表一总结了RNA干扰机制的主要元件。它们包括锁定靶基因的双链RNA(siRNA或shRNA)、Dicer酶,Argonaute蛋白家族的蛋白质(具体来说是Ago-2)、Drosha、RISC、TRBP和PACT。术语描述siRNA小干扰(siRNA),有在3’端有两个碱基的游离,可激活RNA干扰,通过与目标mRNA互补结合序列特异性地实现mRNA降解。shRNA短发夹RNA(shRNA),包含一个环结构,可加工成siRNA,也可通过与目标mRNA互补结合序列特异性地实现靶mRNA降解.Drosha是一种核糖核酸酶III的酶,可加工细胞核中的前体-miRNA和shRNA。Dicer核糖核酸酶III酶,能够将双链RNA加工成在3‘端有两个碱基游离的20-25bp的siRNA。果蝇的Dicer-2能够剪切长的双链RNA,而Dicer-1对miRNA的加工有重要作用RISC最小RNA诱导沉默复合物(RISC)包含Argonaute蛋白和相关的siRNA。也可能包含PACT、TRBP和Dicer。需要注意的是RISC的组成尚未能得到确切的描述。TRBPDicer剪切双链RNA以及随后转运给RISC的过程中需要PACT蛋白R(PKR)-激活蛋白(PACT)。Dicer和TRBP参与双链RNA剪切相关.Argonautefamilyofproteins和单链的RNA(siRNA)共同组装形成RISC。绑定21-35个核苷酸的RNA,包括miRNA和siRNA以及相关的靶mRNA,然后通过其内切核酸酶功能发挥剪切作用。剪切作用发生在反义链(引导链)RNA的第10th和第11th个核苷酸之间。表一:RNAi机制的主要组成元件。siRNA vs. shRNA作用机制两个在RNAi途径的基因沉默中具有实质利害关系的是双链小干扰RNA(siRNA)和基于载体的短发夹RNA(shRNA)。虽然siRNA和shRNA(图1)都可用于蛋白沉默,但它们的作用机制有所不同(图2)。不管是长的双链RNA还是短的约21bp碱基对的双链都能够直接被转运到组织培养的细胞中(参见转运机制获取更多细节)。虽然有一些报道提到siRNA在转染细胞时是被转运到细胞核中的,但更普遍的看法是它们在细胞质中聚集。长的双链RNA与Dicer一起形成复合物,双链特异性的核糖核酸酶III能够将它们处理成带有两个游离碱基的长度为21-23nt的siRNA。随后这些siRNA片段与RISC结合,RISC由Argonaute-2(Ago-2)、Dicer和TAR-RNA-结合蛋白(TRBP)组成。然后RNA的两条链分开,其中一条链从复合物上分离。5"端双链稳定性最低的那条链被选择出来,稳定的并入沉默复合物中。[放大]图2. RNAi介导的基因沉默机制。在细胞核表达后,shRNA被Drosha加工然后由Exportin-5蛋白转运到细胞质中,在细胞质中它们与Dicer结合去除环状序列。在这一点上,它们与siRNA的加工方式(以短的双链形态导入细胞,然后被Dicer识别)相同。在与RISC结合并去掉其中一条RNA链后,它们识别mRNA占有互补序列,导致其降解。源自[3]。shRNA在转染/转导细胞的细胞核中的合成,形成发夹结构,茎区成对的反义和正义链与未配对的成环核苷酸连接在一起(图1b和1c)。通过与miRNA的加工相同的RNAi机制,shRNA被加工成siRNA。使用细菌或病毒载体,shRNA被导入靶细胞的细胞核内,在某些情况下,载体可以稳定地整合到基因组中。根据驱动表达的启动子的不同,shRNA可被RNA聚合酶II或者III催化转录。在被Exportin-5转运到细胞质之前,这些初始的前体结构需要首先用Drosha及其双链RNA结合伴侣DGCR8加工形成pre-shRNA。pre-shRNA随后被Dicer和TRBP/PACT酶切,去除发卡结构,产生在两个3‘末端带有两个游离碱基的20-25nt的双链siRNA。这一有活性的siRNA随后被整合到沉默复合物上去。一旦被整合到RISC后,shRNA和siRNA识别靶mRNA和降解的过程基本上是相同的。作为RISC的一部分,siRNA通过碱基互补配对以序列特异性的方式结合到靶mRNA,从而利用Ago-2的核酸酶H样活性裂解靶RNA的双链中心附近的磷酸骨架。某些生物的这个系统有一个有趣的特点,siRNA与靶mRNA的退火使siRNA作为引物,而靶mRNA作为依赖于RNA的RNA聚合酶的模板。这就合成出一个新的双链RNA,然后由Dicer酶加工,形成正反馈循环,增加了siRNA的量。应当指出的siRNA通常需要完全同源才能诱导降解。该过程图2中有阐述。人们对RISC发现靶mRNA的过程还没有很好的理解。然而,Ameres等的报告显示细胞mRNA的靶序列的亲近性影响了它的剪切。他们还指出,RISC不是作用于未折叠的RNA。他们提出了一个模型,在该模型中,RISC非特异性的方式通过随机扩散与单链RNA接触,5"末端碱基配对比3"末端更有效率。这似乎决定了RISC与靶mRNA的稳定结合。
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
为了帮助临床医师客观地了解NSAIDs,避开制药公司的导向以便更好地指导临床实践,本报请广州中山大学附属第一医院风湿免疫内科杨岫岩教授向读者介绍NSAIDs临床应用的一些问题。
NSAIDs的发展
从乙酰水杨酸(阿司匹林)应用至临床到现在,已经超过100个年头。1948年第一个非水杨酸类的NSAIDs保泰松问世后,抗炎镇痛药的种类迅速增加,如吲哚美辛、双氯芬酸、布洛芬、萘普生等,使NSAIDs“家族”迅速壮大。作为其“元老”的保泰松,虽然具有很强的抗炎镇痛作用,但潜在的严重副作用(再生障碍性贫血等)使其被淘汰。
1971年,环氧化酶(COX)理论解释了NSAIDs的作用机制。NSAIDs通过抑制COX,阻止花生四烯酸转变为前列腺素,后者既是炎症介质,又有生理功能。因此NSAIDs在抗炎镇痛的同时可引起胃肠道反应。20年后,研究者发现,COX存在不同的异构体,从而提出了COX异构体理论。认为COX存在两个异构体,一个是构建型的,称COX-1,以维持生理平衡为主;另一个是诱导型的称COX-2,主要参与炎症性前列腺素合成。
1994年,氟舒胺成为第一个被报道在实验室证实具有选择性COX-2抑制作用的NSAIDs,但在1996年III期临床试验总结时发现,该药具有肝毒性而未能获准上市。1995年Lancet上首先称萘丁美酮、美洛昔康、尼美舒利等为“选择性COX-2抑制剂”,虽然同年该期刊刊出几篇读者来信,对此提法提出争议,但是后来人们仍普遍接受这种提法。1999年,针对COX异构体理论研制的昔布类药物(塞来昔布和罗非昔布)上市,被称为“特异性COX-2抑制剂”。
虽然COX异构体理论尚需完善,但它的确是新型NSAIDs研制的一个突破口。除已经问世的昔布类药物外,新的昔布类Etoricoxib、parecoxib、valdecoxib也将投入临床。新研制的COX-2抑制剂不只限于昔布类,磺酰苯胺类也是研制新型COX-2抑制剂的方向,如氟舒胺、NS-398、HN-56249等。另外,针对COX和脂氧化酶(5-lipoxygenase

