
ELISA Kit for Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF)
PK1; EGVEGF; PRK1, PROK1; Prokineticin 1; Black Mamba Toxin-Related Protein; Mambakine
- Product No.SEA024Hu
- Organism SpeciesHomo sapiens (Human) Same name, Different species.
- All
- Human
- Mouse
- Rat
- Cavia
- Rabbit
- Simian
- Caprine
- Ovine
- Equine
- Bovine
- Porcine
- Gallus
- Canine
- Others
- Multi-species
- Pan-species
- Test MethodDouble-antibody Sandwich
- Assay Length3h
- Detection Range15.6-1,000pg/mL
- SensitivityThe minimum detectable dose of this kit is typically less than 6.5pg/mL.
- Sample Typeserum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids
- DownloadInstruction Manual
- UOM48T96T96T*596T*1096T*100
- FOBUS$ 325 For more details, please contact local distributors!US$ 464 For more details, please contact local distributors!US$ 2088 For more details, please contact local distributors!US$ 3944 For more details, please contact local distributors!US$ 32480 For more details, please contact local distributors!
Specificity of the ELISA Kit for Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF)
This assay has high sensitivity and excellent specificity for detection of Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF).No significant cross-reactivity or interference between Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) and analogues was observed.
Recovery of the ELISA Kit for Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF)
Matrices listed below were spiked with certain level of recombinant Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) and the recovery rates were calculated by comparing the measured value to the expected amount of Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) in samples.
Matrix | Recovery range (%) | Average(%) |
serum(n=5) | 84-93 | 89 |
EDTA plasma(n=5) | 80-101 | 87 |
heparin plasma(n=5) | 90-104 | 98 |
Precision of the ELISA Kit for Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF)
Intra-assay Precision (Precision within an assay): 3 samples with low, middle and high level Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) were tested 20 times on one plate, respectively. Inter-assay Precision (Precision between assays): 3 samples with low, middle and high level Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) were tested on 3 different plates, 8 replicates in each plate. CV(%) = SD/meanX100 Intra-Assay: CV<10%>10%>Inter-Assay: CV<12%>12%>
Linearity of the ELISA Kit for Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF)
The linearity of the kit was assayed by testing samples spiked with appropriate concentration of Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) and their serial dilutions. The results were demonstrated by the percentage of calculated concentration to the expected.
Sample | 1:2 | 1:4 | 1:8 | 1:16 |
serum(n=5) | 95-102% | 83-96% | 82-96% | 80-103% |
EDTA plasma(n=5) | 85-92% | 92-99% | 78-104% | 95-105% |
heparin plasma(n=5) | 84-105% | 94-102% | 80-98% | 98-105% |
Stability of the ELISA Kit for Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF)
The stability of kit is determined by the loss rate of activity. The loss rate of this kit is less than 5% within the expiration date under appropriate storage condition. To minimize extra influence on the performance, operation procedures and lab conditions, especially room temperature, air humidity, incubator temperature should be strictly controlled. It is also strongly suggested that the whole assay is performed by the same operator from the beginning to the end.
Assay procedure summary of the ELISA Kit for Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF)
1. Prepare all reagents, samples and standards;2. Add 100µL standard or sample to each well. Incubate 1 hours at 37°C;3. Aspirate and add 100µL prepared Detection Reagent A. Incubate 1 hour at 37°C;4. Aspirate and wash 3 times;5. Add 100µL prepared Detection Reagent B. Incubate 30 minutes at 37°C;6. Aspirate and wash 5 times;7. Add 90µL Substrate Solution. Incubate 10-20 minutes at 37°C;8. Add 50µL Stop Solution. Read at 450nm immediately.
Test principle of the ELISA Kit for Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF)
The test principle applied in this kit is Sandwich enzyme immunoassay. The microtiter plate provided in this kit has been pre-coated with an antibody specific to Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF). Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated antibody specific to Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF). Next, Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. After TMB substrate solution is added, only those wells that contain Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF), biotin-conjugated antibody and enzyme-conjugated Avidin will exhibit a change in color. The enzyme-substrate reaction is terminated by the addition of sulphuric acid solution and the color change is measured spectrophotometrically at a wavelength of 450nm ± 10nm. The concentration of Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) in the samples is then determined by comparing the O.D. of the samples to the standard curve.
GIVEAWAYS
ELISA / CLIA Experiment Service
INCREMENT SERVICES
Single-component Reagents of Assay KitLysis Buffer Specific for ELISA / CLIAQuality Control of ELISA / CLIAELISA Kit Customized ServiceDisease Model Customized ServiceSerums Customized ServiceTGFB1 Activation ReagentReal Time PCR Experimental ServiceStreptavidin
Related products
Catalog No. | Organism species: Homo sapiens (Human) | Applications (RESEARCH USE ONLY!) |
RPA024Hu01 | Recombinant Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) | Positive Control; Immunogen; SDS-PAGE; WB. |
APA024Hu01 | Active Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) | Cell culture; Activity Assays. |
PAA024Hu01 | Polyclonal Antibody to Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) | WB; IHC; ICC; IP. |
MAA024Hu22 | Monoclonal Antibody to Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) | WB; IHC; ICC; IP. |
SEA024Hu | ELISA Kit for Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) | Enzyme-linked immunosorbent assay for Antigen Detection. |
SCA024Hu | CLIA Kit for Endocrine Gland Derived Vascular Endothelial Growth Factor (EG-VEGF) | Chemiluminescent immunoassay for Antigen Detection. |
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ和PIWI两个结构域,对于siRNA和目标mRNA相互作用,从而导致目标mRNA的切割或者翻译抑制过程,是必不可少的。同时,不同的AGO蛋白质有着不同的生物学功能。例如,在人当中,AGO2“筹划”了RISCs对于目标mRNA的切割过程;而AGO1 和AGO3则不具备这个功能。
Core RISC:是介导目标mRNA切割过程或者翻译抑制的最小的RNA-蛋白质复合物。在人和果蝇身上发现的分子量少于200kDa的RISCs可能就是core RISC的重要代表。AGO蛋白质和Core RISC密切相关。
Dicer (DCR):是RNAase Ⅲ家族中的一员,主要切割dsRNA或者茎环结构的RNA前体成为小RNAs分子。对应地,我们将这种小RNAs分子命名为siRNAs和miRNA。Dicer有着较多的结构域,最先在果蝇中发现,并且在不同的生物体上表现出很高的保守性。
Holo RISC:是在果蝇中发现的有着RISC活性的最大的RNA-蛋白质复合物(80S)。Holo RISC的生物学活性牵涉到几乎所有的RISC的成员,RLC成员,和一些其他通路上的蛋白质分子。Holo RISC的存在,表明了RISC组装不是孤立的,同时还是一个有序的过程。以RISC为中心的RNAi和miRNA通路与一些其他的通路密切联系,很可能借此调控生物体的生长发育过程。
Microprocessor:一种核内的复合物,主要由Drosha和Pasha两者组成,在miRNA的生物合成中促使原始的miRNA成为miRNA前体。
MicroRNA (miRNA):是含有茎环结构的miRNA前体,经过Dicer加工之后的一类非编码的小RNA分子(~21-23个核苷酸)。MiRNA,以及miRISCs(RNA-蛋白质复合物)在动物和植物中广泛表达。因之具有破坏目标特异性基因的转录产物或者诱导翻译抑制的功能,miRNA被认为在调控发育过程中有重要作用。
RISC loading complex (RLC):是一种促使RISC形成的复合物。RLC有方向性地调节小RNA双螺旋,为以后的RISC组装作好铺垫。siRISC loading complexes (siRLCs)在果蝇中研究最多。有研究者认为在果蝇中的siRLCs包含DCR2-R2D2异型二聚体和siRNA双螺旋;R2D2部分是非对称性的感受器,为RISC组装调整好siRNA的方向。miRISC loading complexes (miRLCs)的研究尚未报导,因为它的过程更为复杂,而且体外研究miRLCs的方法还没有建立。
RNA-induced initiation of transcriptional gene silencing (RITS):是一种组织染色质变型的复合物。RITS复合物也包含Dicer加工形成的siRNA和AGO蛋白质,通过结合到异染色质的基因池上来促使异染色质上基因的沉默。
RNA-induced silencing complex (RISC):一种RNA-蛋白质复合物,通过与目标mRNA完全或者部分的互补配对来实施切割或者翻译抑制功能。SiRNA组装siRISC,miRNA组装miRISC。RISCs(无论siRISC还是miRISC)包括两种类型:切割型和不切割型。研究表明,RISC当中的AGO蛋白质决定了RISC是切割型的还是不切割型的。
Slicer:在切割型RISC中的内切酶的另外一种表述方法。
Small interfering RNA (siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。向左转|向右转
请有经验的战友指点,若可以最好能提供几篇应用动物进行RNA干扰研究的文章.
非常感谢!
在细菌及古细菌中,CRISPR系统共分成3 类,其中Ⅰ类和Ⅲ类需要多种CRISPR相关蛋白(Cas蛋白)共同发挥作用,而Ⅱ类系统 。
将EntransterTM-invivo与AmbioninvivosiRNA(作用于凝血因子VII)和阴性siRNA通过尾静脉注射成年小鼠,2天后,取动物肝脏检测。在mRNA水平和蛋白水平观察干扰效果。见上图,图中最左侧组为对照组注射阴性siRNA为3mg/kg,后边3组为每kg动物注射阳性siRNA量分别为1mg/kg,2mg/kg和3mg/kg情况。
根据推荐用量注射EntransterTM-invivo和siRNA(作用于LaminA/C)和阴性siRNA到成年小鼠。注射后2天收集相应的组织,分离RNA,用qRT-PCR分析LaminA/C基因的表达水平。图4为尾静脉结果,图5为各器官分别局部注射结果。
英格恩生物体内转染试剂,3天可完成动物体内转染实验,让动物干扰,基因敲除实验变得简单、快速有效!
当然,如果考虑成本这块的话,义翘sinofection可以考虑哦~
http://www.addgene.org/crispr/guide/
两方面的证据提示转座子活性的抑制与siRNA有关
① 发现蠕虫mut-7 基因参与RNAi 并且与转座子的转座抑制有关;
② 在果蝇中, 参与RNAi 的RNA 解螺旋酶Spindle-E 的突变将导致该基因引起的基因沉默的缺失, 同时提高了反转录转座子活性。 RNAi抵御病毒感染
在拟南芥中研究转基因引起基因沉默时发现, sgs2/sde1基因突变的拟南芥对病毒的侵染表现出高度的敏感性 。 RNAi参与异染色质的形成和维持
Hall 等研究表明,着丝粒同源重复序列和RNAi 组分一起正负调节着异染色质的形成并共同促使异染色质组装成核;Vople 等在敲除裂殖酵母( S. pombe) 的RNAi 途径基因( 如Argonaute 、Dicer 、RDRP) 时发现异染色质转录得到的dsRNA可以在RNAi 途径的参与下, 加工成si RNA,si RNA 募集异染色质蛋白1( HP1) , 然后靶向性引起相应异染色质区域的转基因沉默。 RNAi参与机体的发育调控及生理代谢
RNAi 只抑制转录后的基因, 所以RNAi 在生物体发育学研究中具有优势。Chuang 等用RNAi 技术进一步证实了AG、CLV3 、AP1 、PAN 等已知功能基因在拟南芥花发育过程中的功能。在RNAi 过程中形成的RISC 复合物可根据不同情况分别利用si RNA 或stRNA 行使不同的功能, 但最终均导致特定基因沉默。向左转|向右转
各位同仁大家好,最近在尝试利用CRISPR/cas9技术敲除基因,苦于手里头资源有限,只有lentiCRISPRv2以及相应的包装体系,没有pSpCas9(BB)-2A-Puro(PX459)V2.0,无奈公司货期较久,想立刻开展实验,不知哪位同仁有此质粒并愿意交换,不甚感激。
分享到:
近年来,CRISPR/Cas9风暴席卷全球。这项基因组编辑技术在短短几年内迅速应用于世界各地的实验室,并催生了上千篇文章的发表。然而,麻省理工学院(MIT)的《Technology Review》杂志提出了一个问题,谁才是CRISPR技术的所有者?生物通 www.ebiotrade.com
一个月前,“科学突破奖”(Breakthrough Prize)揭晓。加州大学伯克利分校的Jennifer Doudna和德国亥姆霍兹传染研究中心的Emmanuelle Charpentier因在CRISPR技术方面的重要贡献而获奖,且每人获得了300万美元的奖金。
这一领域的另一位风云人物,Broad研究院的张锋(Feng Zhang)虽然没有获得科学突破奖,但在今年4月获得了CRISPR/Cas9的首个专利。他的研究中心控制着这一技术的每个重要商业应用。生物通 www.ebiotrade.com
那么问题来了,这个备受瞩目的奖项和专利为何会落入不同人的手中?究竟是谁发明了它?“这一领域的知识产权相当复杂,”CRISPR Therapeutics公司的CEO Rodger Novak谈道。Emmanuelle Charpentier是这家公司的创始人之一。
Tech Review的记者Antonio Regalado指出,张锋与Doudna共同创立了Editas Medicine公司,它获得了Broad的技术授权。不过,在张锋成功申请专利之后,Doudna就与该公司断绝了关系。她将她的知识产权(专利申请中)授予了另一家竞争性的公司Intellia Therapeutics。然而,让事情更加复杂的是,Charpentier又将她在同一专利申请中的权利出售给了CRISPR Therapeutics。生物通 www.ebiotrade.com
此外,围绕这一技术的科学信用,那也是错综复杂。2012年夏天,Doudna、Charpentier及她们的团队发表了一篇文章,证明CRISPR/Cas9系统可以作为一种可编程的DNA编辑工具。半年后,张锋博士以及哈佛大学的George Church发表文章称它可应用于人类细胞,不久后,Doudna也发表了类似的结果。
但是,张锋表示他对Doudna和Charpentier的工作知之甚少。为了支持他的专利申请,他提交了实验室笔记本的照片,表示他在2012年年初就开始了这方面的研究,早于Doudna和Charpentier。生物通 www.ebiotrade.com
Charpentier表示:“我可以说的是,我和Jennifer Doudna是在我的实验室中开展研究。这里的一切都很夸张,因为这是一项人们很容易学会的技术。事情发生得太快了。”
Regalado在文中写道:“目前还没有CRISPR药物。但是如果CRISPR真的如科学家想象得那么重要,对这一基本技术的商业控制将价值数十亿美元。”也许,这场专利之战才刚刚开始。(生物通 薄荷)

