- CellsrequiredfortransformationandpropagationofpJAZZ®Vectors.
- Highestavailabletransformationefficienciesforlibraryconstructionandscreening.
- OptimizedforhighyieldsofDNA.
BigEasy™-TSA™ElectrocompetentCells(>2×1010cfu/µgpKanRDNA)areforusewithLucigen’spJAZZ®-OCorOKLinearVectorsintheBigEasyv2.0LinearCloningSystem.TheTSACellshavethetelNgenerequiredforhighefficiencytransformation,andtheantAgenerequiredforcopynumbercontrolwiththepJAZZvector,integratedintothehostgenome.ThesecellsalsogivehighyieldandhighqualityplasmidDNAduetotheendA1andrecA1mutations.Theycontainthemcrandmrrmutations,allowingmethylatedgenomicDNAthathasbeenisolateddirectlyfrommammalianorplantcellstobeclonedwithoutdeletionsorrearrangements.
Table1.E.cloniCompetentCellsforBAC,LargeorDifficultFragmentCloning
E.cloniCellLines | TransformationEfficiency | CloningMethylatedDNA | BAC,CosmidCloning | Blue/WhiteScreening |
BigEasy-TSAElectrocompetent | >2×1010 | YES | No | YES |
BigEasy-TSA:F-mcrAΔ(mrr-hsdRMS-mcrBC)Φ80dlacZΔM15ΔlacX74endA1recA1araD139Δ(ara,leu)7697galUgalKrpsLnupG&lamBDa;-tonAAmpRsopABtelNantA
ORDERINFORMATION
CompetentCellsincludeControlDNAandRecoveryMedium,andarepackagedasSOLOs(1transformationpertube).RecoveryMediumisalsoavailableseparately.ThespecifiedtransformationefficienciesarewithpUCDNA,unlessindicatedotherwise.PLEASENOTE:Bulkquantities(10timeslargerthanthelargestretailpackagesizebelow)and/orcustompackagingareavailableatveryattractivepricesforallLucigenCompetentCells.PleasecontactLucigen.ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
从2011年科学家实现TALEN技术,2013年科学家实现CRISPR/Cas9技术,这些技术的迅速成熟都给基础生物学研究、临床医学研究提供了更为方便和快捷的分子生物学工具。技术进步必将在未来给科学研究及基因治疗研究带来更为广泛的发力!这在2014年以来的频频出现的Cas9技术在各个领域的应用进展中可以清晰看到。欢迎感兴趣的朋友联系我交流这些方面的进展。
关于这些技术的具体原理和操作细节,请查看我之前的帖子附件详细介绍,TALEN,CRISPER/Cas9技术做基因敲除技术资料-蚂蚁淘论坛。不清楚的请联系我咨询。此贴主要谈一谈在用这些技术进行癌细胞株阳性细胞克隆筛选的过程中,如何进行阳性克隆筛选,为初次接触这些新技术的研究者提供一些参考意见。
一般CRISPER-Cas9质粒转染后,采用有限稀释法接种到96孔板中长克隆,待到单个细胞长到几百到1000个细胞左右时,显微镜下仔细观察每一个孔的细胞,若发现非单克隆的细胞需要将其标注出来剔除筛选之外。传两代后,取出单个克隆的一部分细胞提取基因组DNA。
分析敲除位点的上下游序列,设计合适的引物,并从提取的基因组中扩出目的片段,然后选择部分阳性克隆进行PCR产物或做T载克隆送测序进行最终确认。
目前推崇的各种识别错配碱基的酶切鉴定方法及Surveyorassay试剂盒由于假阳性过高及过于昂贵,一般实验室我们不建议使用。少数试剂酶公司对于酶的推荐有利益因素驱动,希望各位战友注意甄别,土豪请忽略。(*^__^*)
运用CRISPER-Cas9技术进行癌细胞系的基因敲除,我们的经验是若设计的CRISPER-Cas9载体表达水平够高,敲除效率够高,此步骤多数时候可以直接省略。
详细的Protocol这里给出sigma最早ZFN的protocol,请查阅附件。这份protocol很经典,各位战友可以参考认真阅读一下。其他注意点如下,供参考。欢迎战友们补充。
建议一三事:(土豪别忽略)
1.土豪购买Surveyorassay的kit链接:
http://world.transgenomic.com/diagnostic-tools/genetic-analysis-kits/surveyor-mutation-detection-kits
2.转染的时候就按照转染试剂推荐的DNA用量转染就可以。目前有Cas9和gRNA分别在两个不同的载体上的,也有在同一个载体上的,两个载体上的那套体系,建议转染时质粒DNA用量摩尔比例1:1。
3.设计上下游引物时,PCR产物的大小最好是四五百bp长比较合适,gRNA的targeting位点并不需要正好在PCR产物的中间。
4.做surveyorassay时用的PCRmix我们就是用的Sigma的JumpStartReadyMix,这个是热启动的Taq酶,mix里面没有DNA染料,可以直接用于surveyorassay。
5.分完96孔板之后大概一个星期能长出大小比较合适的单克隆,因为分细胞的时候不能保证完全均匀,有的孔里可能会长出2个或更多细胞克隆,所以需要在显微镜下把有多个克隆的孔剔除掉。我们习惯将96孔板里的单克隆消化下来再转到一个新的96孔板里,长满之后1/4-1/5再传代,剩下的细胞裂解之后提基因组DNA做surveyorassay。挑克隆鉴定的工作量比较大。
6.5中的两次传代目的是为了去除掉细胞培养基及细胞内的参与相关CRISPER-Cas9载体,以免形成二次切割,所获得的克隆不纯。建议最好要做这样一部操作。
7.更多详细的实验细节操作,欢迎联系我咨询或仔细阅读附件中的文件。
此贴若对您实验有帮助,记得常回来踩踩,道声感谢,给个力赞、怒赞啥的,鄙人不图其他,图个能帮助到更多的蚂蚁淘的战友们。也欢迎跟帖提问。我不定期回答大家的疑问。欢迎分享、转发、收藏给您的好友、同事、同学及***等。好东西请别自己独自藏着掖着。
预祝您实验顺利!
这个部分的PS也很重要,希望能够引起,特别是土豪们的注意。那就是关于癌细胞株用来从事科学研究之我见,供参考。欢迎战友们补充。土豪我们做朋友吧。嘻嘻!
PS一三事:(土豪请重视)
1.在癌细胞系上做基因敲除,科学家有此想法由来已久。HGP后,科学家能够读取基因信息,RNAi现象的发现被很快开发并运用到基因的敲低工作中来,虽然不能达到彻底敲除的目的,但至少在那个时代,在各方面数据及对照做足的情况下,给科学进步确实带来了很大帮助。
2.做过癌细胞株染色体相关的工作的科学家一定看过或者一定知道癌基因组的Variety是非常大的,很多时候对门实验室养的Hela细胞或者293T细胞和自己养的情况都不一定一样。染色体的各种缺失、多拷贝、异位、反转等等情况时有发现及发生,也不断在癌化当中。
3.针对2中的考虑,如果我们所研究的基因恰恰与癌细胞株的种种变异相关上,在此癌细胞株上做基因敲除就会有各种风险,土豪们需要额外注意选择一个合适的细胞系可能很关键。
4.所感兴趣基因的功能对于癌细胞本身的生长等是否会造成影响,这点的风险其实对于做基因敲除来讲也是存在的,虽然一般不会有大的影响。
5.根据我们的经验,至少CRISPER-Cas9技术基因敲除细胞系获得杂合子敲除(包含三整倍数aa的缺失或插入)阳性细胞克隆的获得概率约为10%;纯合子获得概率约为30%。不同基因情况不同,数据仅供参考,有时或高或低。
6.如果一次很难获得基因敲除纯合子的癌细胞克隆,癌细胞无法实现小鼠繁育类似的杂合子间交配获得纯合子,只能再次转染筛选。
7.不管是癌细胞培养还是RNAi技术(主要指shRNA),都是在一定的特殊历史时期或者科学家经费有限情况下的特殊时期的“无奈”选择。那个年代获得基因修饰动物及饲养动物成本要肯定远远比培养细胞高多了。
8.RNAi技术所在的一个特殊历史阶段,科学家无法很快及较低成本做到细胞系或小鼠个体水皮上的彻底敲除,只能退而求其次,实现在细胞或小鼠上敲低,再辅以其他数据与严格对着呼应。
9.如果土豪您有能力,请告诉我们您的心声,截止2014年获得CRISPER-Cas9基因敲除、基因敲入、基因条件性敲除、多基因、基因大片段(如两个,三个、甚至更多)敲除的小鼠获得的周期及成本越来越低。
10.动物水平实验研究的意义要远远超过细胞株实验的意义,这点自不必说。但细胞株实验的较高通量来筛选候选基因也有其固有的优势。
11.从整个细胞株建系周期及成本上看,和基因敲除动物相比,彼此彼此,没有绝对的优势。
CRISPER-Cas9技术筛选基因敲除细胞系阳性克隆Protocol-上海南方模式生物研究中心.pdf(310.12k)
CompoZrCustomZincFingerNuclease(ZFN)TechnicalBulletin-GenomeEditingProtocol.pdf(817.12k)
技术
近日,中国科学家利用基因编辑技术——CRISPR/Cas9,对抑制狗骨骼肌生长的基因(MSTN)进行了敲除,培育出两只肌肉发达的“大力神”狗,成功构建了世界首个基因敲除狗模型。
科研人员所使用的“基因编辑技术”,顾名思义,能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。
一、与诺奖“擦肩而过”的CRISPR/Cas9技术
这不是CRISPR/Cas9这项明星技术第一次得到人们的关注。在此之前,有着“豪华版”诺奖之称的“2015年度生命科学突破奖”颁发给了发现基因组编辑工具“CRISPR/Cas9”的两位美女科学家——珍妮弗?杜德娜和艾曼纽?夏邦杰。二人更是获得了2015年度化学领域的引文桂冠奖——素有诺奖“风向标”之称,曾被认为是今年诺贝尔化学奖的最有力竞争者。
那CRISPR/Cas9到底是一项什么技术,为何能够获得如此这般青睐,又何以在短短两三年时间内,发展成为生物学领域最炙手可热的研究工具之一,并有近700篇相关论文发表?它将来又会如何影响到我们的生活?
CRISPR/Cas9是继“锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代“基因组定点编辑技术”。与前两代技术相比,其成本低、制作简便、快捷高效的优点,让它迅速风靡于世界各地的实验室,成为科研、医疗等领域的有效工具。
二、CRISPR/Cas系统的灵感来源
CRISPR/Cas9技术的灵感来源于细菌的一种获得性免疫系统。与哺乳动物的二次免疫应答类似,细菌在抵抗病毒或外源质粒入侵时,会产生相应的“记忆”,来抵抗该种外源遗传物质的再次入侵,而这种获得性免疫正是由细菌的CRISPR/Cas系统实现的。
在细菌的基因组上,存在着串联间隔排列的“重复序列”,这些重复序列相对保守,我们称之为CRISPR序列(Clustered Regularly Interspersed Short Palindromic Repeats—成簇的规律间隔的短回文重复序列)。
1、“记录”入侵者档案
其中的“间隔序列”来源于病毒或外源质粒的一小段DNA,是细菌对这些外来入侵者的“记录”。(如图A所示)。
图1 CRISPR序列示意图
其中,菱形框表示高度可变的间隔序列,正方形表示相对保守的重复序列
病毒或外源质粒上,存在“原间隔序列”,“间隔序列”正是与它们互相对应。“原间隔序列”的选取并不是随机的,这些原间隔序列的两端向外延伸的几个碱基往往都很保守,我们称为PAM(Protospacer adjacent motifs-原间隔序列临近基序)。
当病毒或外源质粒DNA首次入侵到细菌体内时,细菌会对外源DNA潜在的PAM序列进行扫描识别,将临近PAM的序列作为候选的“原间隔序列”,将其整合到细菌基因组上CRISPR序列中的两个“重复序列”之间。这就是“间隔序列”产生的过程。
2、打击二次入侵者
当外源质粒或病毒再次入侵宿主菌时,会诱导CRISPR序列的表达。同时,在CRISPR序列附近还有一组保守的蛋白编码基因,称为Cas基因。CRISPR序列的转录产物CRISPR RNA和Cas基因的表达产物等一起合作,通过对PAM序列的识别,以及“间隔序列”与外源DNA的碱基互补配对,来找到外源DNA上的靶序列,并对其切割,降解外源DNA。这也就实现了对病毒或外源质粒再次入侵的免疫应答。
正是基于细菌的这种后天免疫防御机制,CRISPR/Cas9技术应运而生,从而使科学家们利用RNA引导Cas9核酸酶实现对多种细胞基因组的特定位点进行修饰。
三、CRISPR/Cas9技术的实现需要什么?
在CRISPR/Cas9技术中,我们把即将被编辑的细胞基因组DNA看作病毒或外源DNA。基因编辑的实现只需要两个工具——向导RNA(guide RNA, gRNA)和Cas9蛋白。
其中,向导RNA的设计并不是随机的,待编辑的区域附近需要存在相对保守的PAM序列(即三碱基序列NGG,其中N可以是任意碱基),而且向导RNA要与PAM上游的序列碱基互补配对。以基因敲除为例,如图3所示,在待敲除基因的上下游各设计一条向导RNA(向导RNA1,向导RNA2),将其与含有Cas9蛋白编码基因的质粒一同转入细胞中,向导RNA通过碱基互补配对可以靶向PAM附近的目标序列,Cas9蛋白会使该基因上下游的DNA双链断裂。
对于DNA双链的断裂这一生物事件,生物体自身存在着DNA损伤修复的应答机制,会将断裂上下游
尽量简洁
是的,确切来说是大量表达。 大肠杆菌是基因重组技术中常用的细菌,将外源目的基因(如人胰岛素基因)导入大肠杆菌后可在大肠杆菌内表达目的蛋白(如胰岛素),由于细菌繁殖速度快,通过发酵便可在短时间内获得大量胰岛素,再经多步分离、纯化便得到了药用胰岛素。
流程大概是这样的:首先获得小鼠ES细胞系,测试ES细胞嵌合入受体囊胚的能力之后根据不同基因、不同目的设计并构建打靶载体,将打靶载体转入一定数目ES细胞中,然后鉴定出带有发生正确同源重组的突变中靶ES细胞。通过显微注射或者胚胎融合的方法将经过遗传修饰的ES细胞引入受体胚胎内。经过遗传修饰的ES细胞可以发育为嵌合体动物的生殖细胞,是的经过修饰的遗传信息经生殖系遗传,从而得到带有修饰基因的突变小鼠,而后可以对其进行表型分析。
大家好,我是CRISPR新手。在设计一个白蛋白基因相关的sgRNA,但是白蛋白的序列有17多kb,很多设计工具都无法导入。请问大家我这个问题该怎么解决呀??

