Hydrolysisofα-D-glucansandα-D-gluco-oligosaccharidesbycladosporiumresinaeglucoamylases.
McCleary,B.V.&Anderson,M.A.(1980).CarbohydrateResearch,86(1),77-96.
LinktoArticle
ReadAbstract
Culturefiltratesof
CladosporiumresinaeATCC20495containamixtureofenzymesabletoconvertstarchandpullulanefficientlyintoD-glucose.Cultureconditionsforoptimalproductionofthepullulan-degr
ADIngactivityhavebeenestablished.Theamylolyticenzymepreparationwasfractionatedbyion-exchangeandmolecular-sievechromatography,andshowntocontainα-D-glucosidase,α-amylase,andtwoglucoamylases.Theglucoamylaseshavebeenpurifiedtohomogeneityandtheirsubstratespecificitiesinvestigated.Oneoftheglucoamylases(termedP)readilyhydrolysesthe(1→6)-α-Dlinkagesinpullulan,amylopectin,isomaltose,panose,and6
3-α-D-glucosylmaltotriose.Eachoftheglucoamylasescleavesthe(1→6)-α-Dlinkageinpanosemuchmorereadilythanthatinisomaltose.
Measurementofdietaryfibrecomponents:theimportanceofenzymepurity,activityandspecificity.
McCleary,B.V.(2001),“AdvancedDietaryFibreTechnology”,(B.V.McClearyandL.Prosky,Eds.),BlackwellScience,Oxford,U.K.,pp.89-105.
LinktoArticle
ReadAbstract
Interestindietaryfibreisundergoingadramaticrevival,thanksinparttotheintroductionofnewcarbohydratesasdietaryfibrecomponents.Muchemphasisisbeingplacedondetermininghowmuchfibreispresentinafood.Linkingaparticularamountoffibretoaspecifichealthbenefitisnowanimportantareaofresearch.Theterm"dietaryfibre"firstappearedin1953,andreferredtohemicelluloses,cellulosesandlignin(Theandere/tf/.1995).Trowell(1974)recommendedthistermasareplacementforthenolongeracceptableterm"crudefibre".Burkitt(1995)haslikenedtheinterestindietaryfibretothegrowthofariverfromitsfirsttrickletoamightytorrentHeobservesthatdietaryfibre"wasfirstviewedasmerelythelessdigest
IBLeconstituentoffoodwhichexertsalaxativeactionbyirritatingthegut",thusacquiringthedesignation"roughage"-atermlaterreplacedby"crudefibre"andultimatelyby"dietaryfibre".Variousdefinitionsofdietaryfibrehaveappearedovertheyears,partlyduetothevariousconceptsusedinderivingtheterm(i.e.originofmaterial,resistancetodigestion,fermentationinthecolon,etc.),andpartlytothedifficultiesassociatedwithitsmeasurementandlabelling(Mongeau
etal.1999).Theprincipalcomponentsofdietaryfibre,astraditionallyunderstood,arenon-starchpolysaccharides(whichinplantfibreareprincipallyhemicellulosesandcelluloses),andthenon-carbohydratephenoliccomponents,cutin,suberinandwaxes,withwhichtheyareassociatedinnature.In1976,thedefinitionofdietaryfibrewasmodifiedtoincludegumsandsomepecticsubstances,basedontheresistancetodigestionofthesecomponentsintheupperintestinaltract.Forthepurposesoflabelling,Englyst
etal.(1987)proposedthatdietaryfibrebedefinedas"non-starchpolysaccharides(NSP)inthedietthatarenotdigestedbytheendogenoussecretionsofthehumandigestivetract".MethodswereconcurrentlydevelopedtospecificallymeasureNSP(Englyst
etal.1994).
Dietaryfiberandavailablecarbohydrates.
McCleary,B.V.&Rossiter,P.C.(2007).“DietaryFiber:AnInternationalPerspectiveforHarmonizationofHealthBenefitsandEnergyValues”,(DennisT.GordonandToshinaoGoda,Eds.),AACCInternational,Inc.,pp.31-59.
LinktoArticle
ReadAbstract
Debatecontinuesonthedefinitionofdietaryfiber(DF),methodsformeasurementofDF,andmethodsformeasurementofthecarbohydratesthatarereadilyhydrolyzedandabsorbedinthehumansmallintestine.Hen
NEBergandStahmanndevelopedthe"Wende"proximatesystemforanalysisoffoodsin1860,andasetofvaluesobtainedusingthismethodwerepublishedbyAtwaterandBryantin1900.ThismethodisstillinuseintheUSAforthemeasurementoftotalcarbohydrate.Inthisprocedure,totalcarbohydrateismeasuredbydifferenceafterdeductingthemoisture,protein,fatandashfromthetotalweight.Carbohydratecalculatedinthiswaycontainsnotonlysugarandstarch,butalsothe"unavailablecarbohydrate"ofDF.However,thereareanumberofproblemswiththisapproach,asthe"bydifference"figureincludesanumberofnon-carbohydratecomponentssuchaslignin,organicacids,tannins,waxesandsomeMaillardproducts.Inadditiontothiserror,itcombinesalloftheanalyticalerrorsfromtheotheranalyses(FAO1997).AneedforinformationonthecarbohydratecompositionoffoodsfordiabeticspromptedMcCanceandLawrence(1929)toattempttomeasurecarbohydratecompositiontogainresultsthatwouldbeof
BIOLOGicalsignificance.Theydividedthecarbohydratesinfoodsintotwobroadgroups,"available"and"unavailable".Theavailablecarbohydrates,thatis,sugarplusstarch,weredefinedasthosethataredigestedandabsorbedbymanandareglucogenic.Theunavailablecarbohydratesweredefinedasthosethatarenotdigestedbytheendogenoussecretionsofthehumandigestivetract.Inthemid1920s,McCanceobtainedagrantof£30peryearfromtheMedicalResearchCounciltoanalyserawandcookedfruitsandvegetablesfortotal"availablecarbohydrate";valuesneededforcalculatingdiabeticdiets.
MeasurementofamyloglucosidaseusingP-nitrophenylβ-maltosideassubstrate.
McCleary,B.V.,Bouhet,F.&Driguez,H.(1991).BiotechnologyTechniques,5(4),255-258.
LinktoArticle
ReadAbstract
Anenzyme-linkedassayforthemeasurementofamyloglucosidaseincommercialenzymemixturesandcrudeculturefiltratesisdescribed.Amethodforthesynthesisofthesubstrateemployed,p-nitrophenylβ-D-maltoside,isalsodescribed.Thesubstrateisusedinthepresenceofsaturatinglevelsofβ-glucosidase.WitharangeofAspergillussp.culturefiltrates,anexcellentcorrelationwasfoundforvaluesobtainedwiththisassayandaconventionalassayemployingmaltoseassubstratewithmeasurementofreleasedglucose.
Measuringdietaryfibre.
McCleary,B.V.(1999).TheWorldofIngredients,50-53.
LinktoArticle
ReadAbstract
Interestindietaryfibreisundergoingadramaticrevivalthanksinparttotheintroductionofnewcarbohydratesasdietaryfibrecomponents.Muchemphasisisbeingplacedondetermininghowmuchfibreispresentinafood.Linkingaparticularamountoffibretoaspecifichealthbenefitisnowanimportantareaofresearch.TotalDietaryFibre.Theterm“dietaryfibre”firstappearedin1953andreferredtohemicelluloses,cellulosesandlignin(1).In1974,Trowell(2)recommendedthistermasareplacementforthenolongeracceptableterm“crudefibre”Burkitt(3)haslikenedtheinterestindietaryfibretothegrowthofariverfromitsfirsttrickletoamightytorrent.Heobservesthatdietaryfibre“wasviewedasmerelythelessdigestibleconstituentoffoodwhichexertsalaxativeactionbyirritatingthegut“thusacquiringthedesignation“roughage”atermwhichwaslaterreplacedby“crudefibre”andultimatelyby“dietaryfibre”Variousdefinitionsofdietaryfibrehaveappearedovertheyears,partlyduethevariousconceptsusedinderivingtheterm(i.e.originofmaterial,resistancetodigestion,fermentationinthecolonetc.),andpartlytothedifficultiesassociatedwithitsmeasurementandlabelling(4).Theprinciplecomponentsofdietaryfibre,astraditionallyunderstood,arenon-starchpolysaccharides,whichinplantfibreareprincipallyhemicellulosesandcelluloses,andthenon-carbohydratephenoliccomponents,cutin,suberinandwaxeswithwhichtheyareassociatedinNature.
Enzymepurityandactivityinfibredeterminations.
McCleary,B.V.(1999).CerealFoodsWorld,44(8),590-596.
LinktoArticle
ReadAbstract
Dietaryfiberismainlycomposedofplantcellwallpolysaccharidessuchascellulose,hemicellulose,andpecticsubstances,butitalsoincludesligninandotherminorcomponents(1).Basically,itcoversthepolysaccharidesthatarenothydrolyzedbytheendogenoussecretionsofthehumandigestivetract(2,3).Thisdefinitionhasservedasthetargetforthosedevelopinganalyticalproceduresforthemeasurementofdietaryfiberforqualitycontrolandregulatoryconsiderations(4).Mostproceduresforthemeasurementoftotaldietaryfiber(TDF),orspecificpolysaccharidecomponents,eitherinvolvesomeenzymetreatmentstepsoraremainlyenzyme-based.InthedevelopmentofTDFproceduressuchastheProskymethod(AOACInternational985.29,AACC32—05)(5),theUppsalamethod(AACC32-25)(6),andtheEnglystmethod(7),theaimwastoremovestarchandproteinthroughenzymetreatment,andtomeasuretheresidueasdietaryfiber(afterallowingforresidual,undigestedproteinandash).Dietaryfiberwasmeasuredeithergravimetricallyorbychemicalorinstrumentalprocedures.Manyoftheenzymetreatmentstepsineachofthemethods,particularlytheprosky(5)andtheUppsala(6)methodsareverysimilar.Asanewrangeofcarbohydratesisbeingintroducedaspotentialdietaryfibercomponents,theoriginalassayprocedureswillneedtobereexamined,andinsomecasesslightlymodified,toensureaccurateandquantitativemeasurementofthesecomponentsandofTDF.These“new”dietaryfibercomponentsincluderesistantnondigestibleoligosaccharides;nativeandchemicallymodifiedpolysaccharidesofplantandalgalorigin(galactomannan,chemicallymodifiedcelluloses,andagarsandcarrageenans);andresistantstarch.Tomeasurethesecomponentsaccurately,thepurity,activity,andspecificityoftheenzymesemployedwillbecomemuchmoreimportant.Aparticularexampleofthisisthemesurementoffructan.Thiscarbohydrateconsistsofafractionwithahighdegreeofpolymerization(DP)thatisprecipitatedinthestandardProskymethod(5,8)andalowDPfractionconsequentlyisnotmeasured(9).Resistantstarchposesaparticularproblem.Thiscomponentisonlypartiallyresistanttodegradationbyα-amylase,sothelevelofenzymeusedandtheincubationconditions(timeandtemperature)arecritical.
Importanceofenzymepurityandactivityinthemeasurementoftotaldietaryfibreanddietaryfibrecomponents.
McCleary,B.V.(2000).JournalofAOACInternational,83(4),997-1005.
LinktoArticle
ReadAbstract
Astudywasmadeoftheeffectoftheactivityandpurityofenzymesintheassayoftotaldietaryfiber(AOACMethod985.29)andspecificdietaryfibercomponents:resistantstarch,fructan,andβ-glucan.Inthemeasurementoftotaldietaryfibercontentofresistantstarchsamples,theconcentrationofα-amylaseiscritical;however,variationsinthelevelofamyloglucosidasehavelittleeffect.Contaminationofamyloglucosidasepreparationswithcellulasecanresultinsignificantunderestimationofdietaryfibervaluesforsamplescontainingβ-glucan.Pureβ-glucanandcellulasepurifiedfromAspergillusnigeramyloglucosidasepreparationswereusedtodetermineacceptablecriticallevelsofcontamination.Sucrose,whichinterfereswiththemeasurementofinulinandfructooligosaccharidesinplantmaterialsandfoodproducts,mustberemovedbyhydrolysisofthesucrosetoglucoseandfructosewithaspecificenzyme(sucrase)followedbyborohydridereductionofthefreesugars.Unlikeinvertase,sucrasehasnoactiononlowdegreeofpolymerization(DP)fructooligosaccharides,suchaskestoseorkestotetraose.Fructanishydrolyzedtofructoseandglucosebythecombinedactionofhighlypurifiedexo-andendo-inulinases,andthesesugarsaremeasuredbythep-hydroxybenzoicacidhydrazidereducingsugarmethod.Specificmeasurementofβ-glucanincerealflourandfoodextractsrequirestheuseofhighlypurifiedendo-1,3:1,4β-glucanaseandA.nigerβ-glucosidase.β-glucosidasefromalmondsdoesnotcompletelyhydrolyzemixedlinkageβ-glucooligosaccharidesfrombarleyoroatβ-glucan.Contaminationoftheseenzymeswithstarch,maltosaccharide,orsucrose-hydrolyzingenzymesresultsinproductionoffreeglucosefromasourceotherthanβ-glucan,andthusanoverestimationofβ-glucancontent.Theglucoseoxidaseandperoxidaseusedintheglucosedeterminationreagentmustbeessentiallydevoidofcatalaseandα-andβ-glucosidase.
Twoissuesindietaryfibermeasurement.
McCleary,B.V.(2001).CerealFoodsWorld,46,164-165.
LinktoArticle
ReadAbstract
Enzymeactivityandpurityofthesetopics,theeasiesttodealwithistheimportanceofenzymepurityandactivity.Asascientistactivelyinvolvedinpolysaccharideresearchoverthepast25years,Ihavecometoappreciatetheimportanceofenzymepurityandspecificityinpolysaccharidemodificationandmeasurement(7).Thesefactorstranslatedirectlytodietaryfiber(DF)methodology,becausethemajorcomponentsofDFarecarbohydratepolymersandoligomers.ThecommitteereportpublishedintheMarchissueofCerealFOODSWORLDrefersonlytothemethodologyformeasuringenzymepurityandactivity(8)thatleduptheAOACmethod985.29(2).Inthisworkenzymepuritywasgaugedbythelackofhydrolysis(i.e.,completerecovery)ofaparticularDFcomponent(e.g.β-glucan,larchgalactanorcitruspectin).Enzymeactivitywasmeasuredbytheabilitytocompletelyhydrolyzerepresentativestarchandprotein(namelywheatstarchandcasein).Theserequirementsandrestrictionsonenzymepurityandactivitywereadequateatthetimethemethodwasinitiallydevelopedandservedasausefulworkingguide.However,itwasrecognizedthattherewasaneedformorestringentqualitydefinitionsandassayproceduresforenzymesusedinDFmeasurements.
Dietaryfibreanalysis.
McCleary,B.V.(2003).ProceedingsoftheNutritionSociety,62,3-9.
LinktoArticle
ReadAbstract
The"goldstandard"methodforthemeasurementoftotaldietaryfibreisthatoftheAssociationofOfficialAnalyticalChemists(2000;method985.29).Thisprocedurehasbeenmodifiedtoallowmeasurementofsolubleandinsolubledietaryfibre,andbuffersemployedhavebeenimproved.However,therecognitionofthefactthatnon-digestibleoligosaccharidesandresistantstarchalsobehavephysiologicallyasdietaryfibrehasnecessitatedare-examinationofthedefinitionofdietaryfibre,andinturn,are-evaluationofthedietaryfibremethodsoftheAssociationofOfficialAnalyticalChemists.Withthisrealisation,theAmericanAssociationofCerealChemistsappointedascientificreviewcommitteeandchargeditwiththetaskofreviewingand,ifnecessary,updatingthedefinitionofdietaryfibre.Itorganisedvariousworkshopsandacceptedcommentsfrominterestedpartiesworldwidethroughaninteractivewebsite.Morerecently,the(US)FoodandNutritionBoardoftheInstituteofHealth,NationalAcademyofSciences,undertheoversightoftheStandingCommitteeontheScientificEvaluationofDietaryReferenceIntakes,assembledapaneltodevelopaproposeddefinition(s)ofdietaryfibre.Variouselementsofthesedefinitionswereinagreement,butnotall.Whatwasclearfrombothreviewsisthatthereisanimmediateneedtore-evaluatethemethodsthatareusedfordietaryfibremeasurementandtomakeappropriatechangeswhererequired,andtofindnewmethodstofillgaps.Inthispresentation,the"stateoftheart"inmeasurementoftotaldietaryfibreanddietaryfibrecomponentswillbedescribedanddiscussed,togetherwithsuggestionsforfutureresearch.
Measurementofnoveldietaryfibres.
McCleary,B.V.&Rossiter,P.(2004).JournalofAOACInternational,87(3),707-717.
LinktoArticle
ReadAbstract
Withtherecognitionthatresistantstarch(RS)andnondigestibleoligosaccharides(NDO)actphysiologicallyasdietaryfiber(DF),aneedhasdevelopedforspecificandreliableassayproceduresforthesecomponents.TheabilityofAOACDFmethodstoaccuratelymeasureRSisdependentonthenatureoftheRSbeinganalyzed.Ingeneral,NDOarenotmeasuredatallbyAOACDFMethods985.29or991.43,theoneexceptionbeingthehighmolecularweightfractionoffructo-oligosaccharides.ValuesobtainedforRS,ingeneral,arenotingoodagreementwithvaluesobtainedbyinvitroproceduresthatmorecloselyimitatetheinvivosituationinthehumandigestivetract.Consequently,specificmethodsfortheaccuratemeasurementofRSandNDOhavebeendevelopedandvalidatedthroughinterlaboratorystudies.Inthispaper,modificationstoAOACfructanMethod999.03toallowaccuratemeasurementofenzymicallyproducedfructo-oligosaccharidesaredescribed.SuggestedmodificationstoAOACDFmethodstoensurecompleteremovaloffructanandRS,andtosimplifypHadjustmentbeforeamyloglucosidaseaddition,arealsodescribed.
Anintegratedprocedureforthemeasurementoftotaldietaryfibre(includingresistantstarch),non-digestibleoligosaccharidesandavailablecarbohydrates.
McCleary,B.V.(2007).AnalyticalandBioanalyticalChemistry,389(1),291-308.
LinktoArticle
ReadAbstract
Amethodisdescribedforthemeasurementofdietaryfibre,includingresistantstarch(RS),non-digestibleoligosaccharides(NDO)andavailablecarbohydrates.Basically,thesampleisincubatedwithpancreaticα-amylaseandamyloglucosidaseunderconditionsverysimilartothosedescribedinAOACOfficialMethod2002.02(RS).Reactionisterminatedandhighmolecularweightresistantpolysaccharidesareprecipitatedfromsolutionwithalcoholandrecoveredbyfiltration.RecoveryofRS(formostRSsources)isinlinewithpublisheddatafromileostomystudies.Theaqueousethanolextractisconcentrated,desaltedandanalysedforNDObyhigh-performanceliquidchromatographybyamethodsimilartothatdescribedbyOkuma(AOACMethod2001.03),exceptthatforlogisticalreasons,D-sorbitolisusedastheinternalstandardinplaceofglycerol.Availablecarbohydrates,definedasD-glucose,D-fructose,sucrose,theD-glucosecomponentoflactose,maltodextrinsandnon-resistantstarch,aremeasuredasD-glucoseplusD-fructoseinthesampleafterhydrolysisofoligosaccharideswithamixtureofsucrase/maltaseplusβ-galactosidase.
Developmentandevaluationofanintegratedmethodforthemeasurementoftotaldietaryfibre.
McCleary,B.V.,Mills,C.&Draga,A.(2009).QualityAssuranceandSafetyofCrops&Foods,1(4),213–224.
LinktoArticle
ReadAbstract
Anintegratedtotaldietaryfibre(TDF)method,consistentwiththerecentlyacceptedCODEXdefinitionofdietaryfibre,hasbeendeveloped.TheCODEXCommitteeonNutritionandFoodsforSpecialDietaryUses(CCNFSDU)hasbeendeliberatingforthepast8yearsonadefinitionfordietaryfibrethatcorrectlyreflectsthecurrentconsensusthinkingonwhatshouldbeincludedinthisdefinition.Asthisdefinitionwasevolving,itbecameevidenttousthatneitherofthecurrentlyavailablemethodsforTDF(AOACOfficialMethods985.29and991.43),noracombinationoftheseandothermethods,couldmeettheserequirements.Consequently,wedevelopedanintegratedTDFprocedure,basedontheprincipalsofAOACOfficialMethods2002.02,991.43and2001.03,thatiscompliantwiththenewCODEXdefinition.Thisprocedurequantitateshigh-andlow-molecularweightdietaryfibresasdefined,givinganaccurateestimateofresistantstarchandnon-digestibleoligosaccharidesalsoreferredtoaslow-molecularweightsolubledietaryfibre.Inthispaper,themethodisdiscussed,modificationstothemethodtoimprovesimplicityandreproducibilityaredescribed,andtheresultsofthefirstroundsofinterlaboratoryevaluationarereported.
Determinationoftotaldietaryfiber(CODEXdefinition)byenzymatic-gravimetricmethodandliquidchromatography:collaborativestudy.
McCleary,B.V.,DeVries,J.W.,Rader,J.I.,Cohen,G.,Prosky,L.,Mugford,D.C.,Champ,M.&Okuma,K.(2010).JournalofAOACInternational,93(1),221-233.
LinktoArticle
ReadAbstract
Amethodforthedeterminationoftotaldietaryfiber(TDF),asdefinedbytheCODEXAlimentarius,wasvalidatedinfoods.BasedupontheprinciplesofAOACOfficialMethodsSM985.29,991.43,2001.03,and2002.02,themethodquantitateshigh-andlow-molecular-weightdietaryfiber(HMWDFandLMWDF,respectively).In2007,McClearydescribedamethodofextendedenzymaticdigestionat37°CtosimulatehumanintestinaldigestionfollowedbygravimetricisolationandquantitationofHMWDFandtheuseofLCtoquantitatelow-molecular-weightsolubledietaryfiber(LMWSDF).Themethodthusquantitatesthecompleterangeofdietaryfibercomponentsfromresistantstarch(byutilizingthedigestionconditionsofAOACMethod2002.02)todigestionresistantoligosaccharides(byincorporatingthedeionizationandLCproceduresofAOACMethod2001.03).ThemethodwasevaluatedthroughanAOACcollaborativestudy.Eighteenlaboratoriesparticipatedwith16laboratoriesreturningvalidassaydatafor16testportions(eightblindduplicates)consistingofsampleswitharangeoftraditionaldietaryfiber,resistantstarch,andnondigestibleoligosaccharides.Thedietaryfibercontentoftheeighttestpairsrangedfrom11.57to47.83.DigestionofsamplesundertheconditionsofAOACMethod2002.02followedbytheisolationandgravimetricproceduresofAOACMethods985.29and991.43resultsinquantitationofHMWDF.ThefiltratefromthequantitationofHMWDFisconcentrated,deionized,concentratedagain,andanalyzedbyLCtodeterminetheLMWSDF,i.e.,allnondigestibleoligosaccharidesofdegreeofpolymerization3.TDFiscalculatedasthesumofHMWDFandLMWSDF.Repeatabilitystandarddeviations(Sr)rangedfrom0.41to1.43,andreproducibilitystandarddeviations(SR)rangedfrom1.18to5.44.Theseresultsarecomparabletootherofficialdietaryfibermethods,andthemethodisrecommendedforadoptionasOfficialFirstAction.
Determinationofinsoluble,soluble,andtotaldietaryfiber(codexdefinition)byenzymatic-gravimetricmethodandliquidchromatography:CollaborativeStudy.
McCleary,B.V.,DeVries,J.W.,Rader,J.I.,Cohen,G.,Prosky,P.,Mugford,D.C.,Champ,M.&Okuma,K.(2012).JournalofAOACInternational,95(3),824-844.
LinktoArticle
ReadAbstract
Amethodforthedeterminationofinsoluble(IDF),soluble(SDF),andtotaldietaryfiber(TDF),asdefinedbytheCODEXAlimentarius,wasvalidatedinfoods.BasedupontheprinciplesofAOACOfficialMethodsSM985.29,991.43,2001.03,and2002.02,themethodquantitateswater-insolubleandwater-solubledietaryfiber.ThismethodextendsthecapabilitiesofthepreviouslyadoptedAOACOfficialMethod2009.01,TotalDietaryFiberinFoods,Enzymatic-Gravimetric-LiquidChromatographicMethod,applicabletoplantmaterial,foods,andfoodingredientsconsistentwithCODEXDefinition2009,includingnaturallyoccurring,isolated,modified,andsyntheticpolymersmeetingthatdefinition.ThemethodwasevaluatedthroughanAOAC/AACCcollaborativestudy.Twenty-twolaboratoriesparticipated,with19laboratoriesreturningvalidassaydatafor16testportions(eightblindduplicates)consistingofsampleswitharangeoftraditionaldietaryfiber,resistantstarch,andnondigestibleoligosaccharides.Thedietaryfibercontentoftheeighttestpairsrangedfrom10.45to29.90%.DigestionofsamplesundertheconditionsofAOAC2002.02followedbytheisolation,fractionation,andgravimetricproceduresofAOAC985.29(anditsextensions991.42and993.19)and991.43resultsinquantitationofIDFandsolubledietaryfiberthatprecipitates(SDFP).Thefiltratefromthequantitationofwater-alcohol-insolubledietaryfiberisconcentrated,deionized,concentratedagain,andanalyzedbyLCtodeterminetheSDFthatremainssoluble(SDFS),i.e.,alldietaryfiberpolymersofdegreeofpolymerization=3andhigher,consistingprimarily,butnotexclusively,ofoligosaccharides.SDFiscalculatedasthesumofSDFPandSDFS.TDFiscalculatedasthesumofIDFandSDF.Thewithin-laboratoryvariability,repeatabilitySD(Sr),forIDFrangedfrom0.13to0.71,andthebetween-laboratoryvariability,reproducibilitySD(sR),forIDFrangedfrom0.42to2.24.Thewithin-laboratoryvariabilitysrforSDFrangedfrom0.28to1.03,andthebetween-laboratoryvariabilitysRforSDFrangedfrom0.85to1.66.Thewithin-laboratoryvariabilitysrforTDFrangedfrom0.47to1.41,andthebetween-laboratoryvariabilitysRforTDFrangedfrom0.95to3.14.Thisiscomparabletootherofficialandapproveddietaryfibermethods,andthemethodisrecommendedforadoptionasOfficialFirstAction.
MeasurementoftotaldietaryfiberusingAOACmethod2009.01(AACCInternationalapprovedmethod32-45.01):Evaluationandupdates.
McCleary,B.V.,Sloane,N.,Draga,A.&Lazewska,I.(2013).CerealChemistry,90(4),396-414.
LinktoArticle
ReadAbstract
TheCodexCommitteeonMethodsofAnalysisandSamplingrecentlyrecommended14methodsformeasurementofdietaryfiber,eightofthesebeingtypeImethods.OfthesetypeImethods,AACCInternationalApprovedMethod32-45.01(AOACmethod2009.01)istheonlyprocedurethatmeasuresallofthedietaryfibercomponentsasdefinedbyCodexAlimentarius.OthermethodssuchastheProskymethod(AACCIApprovedMethod32-05.01)givesimilaranalyticaldataforthehigh-molecular-weightdietaryfibercontentsoffoodandvegetableproductslowinresistantstarch.Inthecurrentwork,AACCIApprovedMethod32-45.01hasbeenmodifiedtoallowaccuratemeasurementofsampleshighinparticularfructooligosaccharides:forexample,fructotriose,which,intheHPLCsystemused,chromatographsatthesamepointasdisaccharides,meaningthatitiscurrentlynotincludedinthemeasurement.Incubationoftheresistantoligosaccharidesfractionwithsucrase/β-galactosidaseremovesdisaccharidesthatinterferewiththequantitationofthisfraction.Thedietaryfibervalueforresistantstarchtype4(RS4),variessignificantlywithdifferentanalyticalmethods,withmuchlowervaluesbeingobtainedwithAACCIApprovedMethod32-45.01thanwith32-05.01.ThisdifferenceresultsfromthegreatersusceptibilityofRS4tohydrolysisbypancreaticα-amylasethanbybacterialα-amylase,andalsoagreatersusceptibilitytohydrolysisatlowertemperatures.OnhydrolysisofsampleshighinstarchintheassayformatofAACCIApprovedMethod32-45.01(AOACmethod2009.01),resistantmaltodextrinsareproduced.Themajorcomponentisaheptasaccharidethatishighlyresistanttohydrolysisbymostofthestarch-degradingenzymesstudied.However,itishydrolyzedbythemaltase/amyloglucosidase/isomaltaseenzymecomplexpresentinthebrushborderliningofthesmallintestine.Asaconsequence,AOACmethods2009.01and2011.25(AACCIApprovedMethods32-45.01and32-50.01,respectively)mustbeupdatedtoincludeanadditionalincubationwithamyloglucosidasetoremovetheseoligosaccharides.
ModificationtoAOACOfficialMethods2009.01and2011.25toallowforminoroverestimationoflowmolecularweightsolubledietaryfiberinsamplescontainingstarch.
McCleary,B.V.(2014).JournalofAOACInternational,97(3),896-901.
LinktoArticle
ReadAbstract
AOACOfficialMethods2009.01and2011.25havebeenmodifiedtoallowremovalofresistantmaltodextrinsproducedonhydrolysisofvariousstarchesbythecombinationofpancreaticα-amylaseandamyloglucosidase(AMG)usedintheseassayprocedures.Themajorresistantmaltodextrin,63,65-di-α-D-glucosylmaltopentaose,ishighlyresistanttohydrolysisbymicrobialα-glucosidases,isoamylase,pullulanase,pancreatic,bacterialandfungalα-amylaseandAMG.However,thisoligosaccharideishydrolyzedbythemucosalα-glucosidasecomplexofthepigsmallintestine(whichissimilartothehumansmallintestine),andthusmustberemovedintheanalyticalprocedure.HydrolysisoftheseoligosaccharideshasbeenbyincubationwithahighconcentrationofapurifiedAMGat60°C.ThisincubationresultsinnohydrolysisorlossofotherresistantoligosaccharidessuchasFOS,GOS,XOS,resistantmaltodextrins(e.g.,Fibersol2)orpolydextrose.TheeffectofthisadditionalincubationwithAMGonthemeasuredleveloflowmolecularweightsolubledietaryfiber(SDFS)andoftotaldietaryfiberinabroadrangeofsamplesisreported.Resultsfromthisstudydemonstratethattheproposedmodificationcanbeusedwithconfidenceinthemeasurementofdietaryfiber.
Physical,microscopicandchemicalcharacterisationofindustrialryeandwheatbransfromtheNordiccountries.
Kamal-Eldin,A.,Lærke,H.N.,Knudsen,K.E.B.,Lampi,A.M.,Piironen,V.,Adlercreutz,H.,Katina,K.,Poutanen,K.&Aman,P.(2009).Food&nutritionresearch,53.
LinktoArticle
ReadAbstract
Background:Epidemiologicalstudiesshowinverserelationshipbetweenintakeofwholegraincerealsandseveralchronicdiseases.Componentsandmechanismsbehindpossibleprotectiveeffectsofwholegraincerealsarepoorlyunderstood.Objective:Tocharacterisecommercialryebranpreparations,comparedtowheatbran,regardingstructureandcontentofnutrientsaswellasanumberofpresumablybioactivecompounds.Design:SixdifferentryebransfromSweden,DenmarkandFinlandwereanalysedandcomparedwithtwowheatbransregardingcolour,particlesizedistribution,microscopicstructuresandchemicalcompositionincludingproximalcomponents,vitamins,mineralsandbioactivecompounds.Results:Ryebransweregenerallygreenerincolourandsmallerinparticlesizethanwheatbrans.Theryebransvariedconsiderablyintheirstarchcontent(13.2–;28.3%),whichreflectedvariableinclusionofthestarchyendosperm.Althoughryeandwheatbranscontainedcomparablelevelsoftotaldietaryfibre,theydifferedintherelativeproportionsoffibrecomponents(i.e.arabinoxylan,β-glucan,cellulose,fructanandKlasonlignin).Generally,ryebranscontainedlesscelluloseandmoreβ-glucanandfructanthanwheatbrans.Withinsmallvariations,theryeandwheatbranswerecomparableregardingthecontentsoftocopherols/tocotrienols,totalfolate,sterols/stanols,phenolicacidsandlignans.Ryebranhadlessglycinebetaineandmorealkylresorcinolsthanwheatbrans.Conclusions:Theobservedvariationinthechemicalcompositionofindustriallyproducedryebranscallsfortheneedofstandardisationofthiscommodity,especiallywhenusedasafunctionalingredientinfoods.
Relationshipofgrainfructancontenttodegreeofpolymerisationindifferentbarleys.
Nemeth,C.,Andersson,A.A.M.,Andersson,R.,Mangelsen,E.,Sun,C.&Åman,P.(2014).FoodandNutritionSciences,5,581-589.
LinktoArticle
ReadAbstract
Fructansareimportantinthesurvivalofplantsandalsovaluableforhumansaspotentiallyhealthpromotingfoodingredients.Inthisstudyfructancontentandcompositionweredeterminedingrainsof20barleybreedinglinesandcultivarswithawidevariationinchemicalcomposition,morphologyandcountryoforigin,grownatonesiteinChile.Therewassignificantgenotypicvariationingrainfructancontentrangingfrom0.9%to4.2%ofgraindryweight.Fructandegreeofpolymerisation(DP)wasanalysedusinghigh-performanceanion-exchangechromatographywithpulsedamperometricdetection(HPAEC-PAD).Changesinthedistributionofdifferentchainlengthsandthepatternofstructuresoffructanweredetectedwithincreasingamountoffructaninthedifferentbarleys.Apositivecorrelationwasfoundbetweenfructancontentandtherelativeamountoflongchainfructan(DP>9)(r=0.54,p=0.021).Ourresultsprovideabasisforselectingpromisingbarleylinesandcultivarsforfurtherresearchonfructaninbarleybreedingwiththeaimtoproducehealthyfoodproducts.
Howdoesthepreparationofryeporridgeaffectmolecularweightdistributionofextractabledietaryfibers?
Rakha,A.,Åman,P.&Andersson,R.(2011).Internationaljournalofmolecularsciences,12(5),3381-3393.
LinktoArticle
ReadAbstract
Extractabledietaryfiber(DF)playsanimportantroleinnutrition.ThisstudyonporridgemakingwithwholegrainryeinvestigatedtheeffectofresttimeofflourslurriesatroomtemperaturebeforecookingandamountofflourandsaltintherecipeonthecontentofDFcomponentsandmolecularweightdistributionofextractablefructan,mixedlinkage(1→3)(1→4)-β-D-glucan(β-glucan)andarabinoxylan(AX)intheporridge.ThecontentoftotalDFwasincreased(fromabout20%to23%ofdrymatter)duringporridgemakingduetoformationofinsolubleresistantstarch.Asmallbutsignificantincreaseintheextractabilityofβ-glucan(P=0.016)andAX(P=0.002)duetoresttimewasalsonoted.ThemolecularweightofextractablefructanandAXremainedstableduringporridgemaking.However,incubationoftheryeflourslurriesatincreasedtemperatureresultedinasignificantdecreaseinextractableAXmolecularweight.Themolecularweightofextractableβ-glucandecreasedgreatlyduringaresttimebeforecooking,mostlikelybytheactionofendogenousenzymes.Theamountofsaltandflourusedintherecipehadsmallbutsignificanteffectsonthemolecularweightofβ-glucan.TheseresultsshowthatwholegrainryeporridgemadewithoutaresttimebeforecookingcontainsextractableDFcomponentsmaintaininghighmolecularweights.Highmolecularweightismostlikelyofnutritionalimportance.
Baselinesrepresentingbloodglucoseclearanceimproveinvitropredictionoftheglycaemicimpactofcustomarilyconsumedfoodquantities.
Monro,J.A.,Mishra,S.&Venn,B.(2010).BritishJournalofNutrition,103(2),295-305.
LinktoArticle
ReadAbstract
Glycaemicresponsestofoodsreflectthebalancebetweenglucoseloadinginto,anditsclearancefrom,theblood.Current
invitromethodsforglycaemicanalysisdonottakeintoaccountthekeyroleofglucosedisposal.Thepresentstudyaimedtodevelopafoodintake-sensitivemethodformeasuringtheglycaemicimpactoffoodquantitiesusuallyconsumed,asthedifferencebetweenreleaseofglucoseequivalents(GGE)fromfoodduring
invitrodigestionandacorrespondingestimateofclearanceofthemfromtheblood.Fivefoods–whitebread,fruitbread,mueslibar,mashedpotatoandchickpeas–wereconsumedonthreeoccasionsbytwentyvolunteerstoprovidebloodglucoseresponse(BGR)curves.GGEreleaseduring
invitrodigestionofthefoodswasalsoplotted.GlucosedisposalratesestimatedfromdownwardslopesoftheBGRcurvesallowedGGEdose-dependentcumulativeglucosedisposaltobecalculated.Bysubtractingcumulativeglucosedisposalfromcumulative
invitroGGErelease,accuracyinpredictingthe
invitroglycaemiceffectfrom
invitroGGEvalueswasgreatlyimproved.GGE
invivo=0·99GGE
invitro+0·75(
R20·88).Fur
Thermore,thedifferencebetweenthecurvesofcumulativeGGEreleaseanddisposalcloselymimicked
invivoincrementalBGRcurves.Weconcludethatvalidmeasurementoftheglycaemicimpactoffoodsmaybeobtained
invitro,andexpressedasgramsofglucoseequivalentsperfoodquantity,bytakingaccountnotonlyofGGEreleasefromfoodduring
invitrodigestion,butalsoofbloodglucoseclearanceinresponsetothefoodquantity.
Effectofprocessingonslowlydigestiblestarchandresistantstarchinpotato.
Mishra,S.,Monro,J.&Hedderley,D.(2008).Starch‐Stärke,60(9),500-507.
LinktoArticle
ReadAbstract
Theeffectofanumberoflaboratory-scalepretreatmentsontheproportionsofrapidlydigested(RDS),slowlydigested(SDS)andresistantstarch(RS)inrawandcookedpotatohasbeenexaminedusinganinvitrodigestionprocedure.PotatoesofthevarietyFrisiawerepreparedinthreestates:raw,cooked,andcookedfollowedbyacoldtreatment(4°C,twodays).Eachpreparationwasthensubjectedintriplicatetofreeze-drying,coarselymincing,pasting,freezing,dry-millingafterfreeze-drying,in22differentcombinations,beforedigesting.Inrawpotato,verylittleRDSandSDS(<5% total="" starch="" (ts))="" were="" present,="" and="" the="" mechanical="" treatments="" of="" the="" potato="" did="" not="" affect="" the="" amounts="" of="" rds="" and="" sds.="" cooking="" resulted="" in="" an="" almost="" complete="" conversion="" to="" rds="" (="">95%TS)infreshly-cookedpotato,butafterpost-cookingcoldtreatmentmuchoftheRDStransformedtoSDS,whichreachedamaximumofabout45%TS.SDSformationwasindependentofthedegreeoftissuedisruptionaftercooking,andwasgenerallyassociatedwithformationofRS,however,freezingaftercookingallowedSDSformationwithoutprolongedcoldtreatmentandwithverylittleassociatedRS(SDS35%andRS4%ofTS).Freeze-dryingcausedanincreaseinRSinmosttreatmentsofthecookedpotatoes.Theobservedeffectsprovidedguidanceforsamplehandlinginpotatoresearch,butalsosuggestedseveralapproachestotheenrichmentofSDSand/orRS,withaconcurrentreductioninRDS,thatcouldbeusedtoimprovethenutritionalprofileofpotatoproductsbydecreasingRDS(loweredglycaemicimpact),andincreasingSDS(moresustainedenergyavailability)andRS(prebioticbenefits).5%>
InvestigationofdigestibilityinvitroandphysicochemicalpropertiesofA-andB-typestarchfromsoftandhardwheatflour.
Liu,Q.,Gu,Z.,Donner,E.,Tetlow,I.&Emes,M.(2007).CerealChemistry,84(1),15-21.
LinktoArticle
ReadAbstract
Inthisstudy,thefunctionalpropertiesofA-andB-typewheatstarchgranulesfromtwocommercialwheatflourswereinvestigatedfordigestibilityinvitro,chemicalcomposition(e.g.,amylose,protein,andashcontent),gelatinization,retrogradation,andpastingproperties.ThebranchchainlengthandchainlengthdistributionoftheseA-andB-typewheatstarchgranuleswerealsodeterminedusinghigh-performanceanionexchangechromatography(HPAEC).Wheatstarcheswithdifferentgranularsizesnotonlyhaddifferentdegreesofenzymatichydrolysisandthermalandpastingproperties,butalsodifferentmolecularcharacteristics.Differentamylosecontent,proteincontent,andbranchchainlengthofamylopectininA-andB-typewheatstarchgranulescouldalsobethemajorfactorsbesidesgranularsizefordifferentdigestibilityandotherfunctionalpropertiesofstarch.ThedataindicatethatdifferentwheatcultivarswithdifferentproportionofA-andB-typegranularstarchcouldresultindifferentdigestibilityinwheatproducts.
Determinationofresistantshort-chaincarbohydrates(non-digestibleoligosaccharides)usinggas–liquidchromatography.
Quigley,M.E.,Hudson,G.J.&Englyst,H.N.(1999).FoodChemistry,65(3),381-390.
LinktoArticle
ReadAbstract
Wehaveproposedthetermshort-chaincarbohydrates(SCC)forthosespecies,otherthanthefreesugars,thataresolublein80%ethanolunderwell-definedconditions.WedescribeatechniqueforthemeasurementofresistantSCC(RSCC),whicharenotsusceptibletopancreaticamylaseorthebrushborderenzymesandthereforesometimestermednon-digestibleoligosaccharides.Intheprocedure,alpha-glucans(starchandmaltodextrins)arehydrolysedenzymaticallytoglucoseandthenon-starchpolysaccharides(NSP)areprecipitatedinethanol.Fructansarehydrolysedenzymaticallyandthemonosaccharideconstituentsarereducedtoacid-stablealditolderivativesbeforetheremainingRSCCarehydrolysedwithsulphuricacid.Alltheconstituentsugarsaremeasuredasalditolacetatederivativesbygas–liquidchromatography.TheprotocolallowsboththemeasurementoftotalRSCCandaseparate,specificmeasurementoffructans.
Thephysicochemicalpropertiesandinvitrodigestibilityofselectedcereals,tubersandlegumesgrowninChina.
Liu,Q.,Donner,E.,Yin,Y.,Huang,R.L.&Fan,M.Z.(2006).FoodChemistry,99(3),470-477.
LinktoArticle
ReadAbstract
Digestibility,gelatinization,retrogradationandpastingpropertiesofstarchinvariouscereal,tuberandlegumefloursweredetermined.Rapidlyandslowlydigestiblestarchandresistantstarchwerepresentin11selectedflours.Ingeneral,cerealstarchesweremoredigestiblethanlegumestarchesandtuberstarchescontainedahighamountofresistantstarch.Thermalandrheologicalpropertiesoffloursweredifferentdependingonthecropsource.
Developmentandphysicochemicalcharacterizationofnewresistantcitratestarchfromdifferentcornstarches.
Xie,X.S.&Liu,Q.(2004).Starch‐Stärke,56(8),364-370.
LinktoArticle
ReadAbstract
Resistantstarchhasdrawnbroadinterestforbothpotentialhealthbenefitsandfunctionalproperties.Inthisstudy,atechnologywasdevelopedtoincreaseresistantstarchcontentofcornstarchusingesterificationwithcitricacidatelevatedtemperature.Waxycorn,normalcornandhigh-amylosecornstarcheswereusedasmodelstarches.Citricacid(40%ofstarchdryweight)wasreactedwithcornstarchatdifferenttemperatures(120–150°C)fordifferentreactiontimes(3–9h).Theeffectofreactionconditionsonresistantstarchcontentinthecitratecornstarchwasinvestigated.Whenconductingthereactionat140°Cfor7h,thehighestresistantstarchcontentwasfoundinwaxycorncitratestarch(87.5%)withthehighestdegreeofsubstitution(DS,0.16)ofallstarches.High-amylosecornstarchhad86.4%resistantstarchcontentand0.14DS,andnormalcornstarchhad78.8%resistantstarchand0.12DS.Thephysicochemicalpropertiesofthesecitratestarcheswerecharacterizedusingvariousanalyticaltechniques.Inthepresenceofexcesswateruponheating,citratestarchmadefromwaxycornstarchhadnopeakintheDSCthermogram,andsmallpeakswerefoundfornormalcornstarch(0.4J/g)andHylonVIIstarch(3.0J/g)inthethermograms.Thisindicatesthatcitratesubstitutionchangesgranuleproperties.Therearenoretrogradationpeaksinthethermogramswhenstarchwasreheatedafter2weeksstorageat5°C.AllthecitratestarchesshowednopeaksinRVApastingcurves,indicatingcitratesubstitutionchangesthepastingpropertiesofcornstarchaswell.Moreover,citratestarchfromwaxycornismorethermallystablethantheothercitratestarches.
Determinationof“NetCarbohydrates”usinghigh-performanceanionexchangechromatography.
Lilla,Z.,Sullivan,D.,Ellefson,W.,Welton,K.&Crowley,R.(2005).JournalofAOACInternational,88(3),714-719.
LinktoArticle
ReadAbstract
Forlabelingpurposes,thecarbohydratecontentoffoodshastraditionallybeendeterminedbydifference.Thisvalueincludessugars,starches,fiber,dextrins,sugaralcohols,polydextrose,andvariousotherorganiccompounds.Insomecases,thecurrentmethodmaylacksufficientspecificity,precision,andaccuracy.Thesearesubsequentlyquantitatedbyhighperformanceanionexchangechromatographywithpulsedamperometricdetectionandexpressedastotalnonfibersaccharidesorpercent“netcarbohydrates.”Inthisresearch,anewmethodwasdevelopedtoaddressthisneed.Themethodconsistsofenzymedigestionstoconvertstarches,dextrins,sugars,andpolysaccharidestotheirrespectivemonosaccharidecomponents.Thesearesubsequentlyquantifiedbyhigh-performanceanionexchangechromatographywithpulsedamperometricdetectorandexpressedastotalnonfibersaccharidesorpercent“netcarbohydrates.”Hydrolyzedendproductsofvariousnovelfibersandsimilarcarbohydrateshavebeenevaluatedtoensurethattheydonotregisterasfalsepositivesinthenewtestmethod.Thedatageneratedusingthe“netcarbohydrate”methodwere,inmanycases,significantlydifferentthanthevaluesproducedusingthetraditionalmethodology.Therecoveriesobtainedinafortifieddrinkmatrixrangedfrom94.9to105%.Thecoefficientofvariationwas3.3%.
CerealByproductshavePrebioticPotentialinMiceFedaHigh-fatDiet.
Berger,K.,Falck,P.,Linninge,C.,Nilsson,U.,Axling,U.,Grey,C.,Stålbrand,H.,Karlsson,E.N.,Nyman,M.,Holm,C.&Adlercreutz,P.(2014).JournalofAgriculturalandFoodChemistry,62(32),8169-8178.
LinktoArticle
ReadAbstract
Barleyhusks,ryebran,andafiberresiduefromoatmilkproductionwereprocessedbyheatpretreatment,variousseparationsteps,andtreatmentwithanendoxylanaseinordertoimprovetheprebioticpotentialofthesecerealbyproducts.Metabolicfunctionswereintendedtoimprovealongwithimprovedmicrobialactivity.Theproductsobtainedwereincludedinahigh-fatmousedietsothatalldietscontained5%dietaryfiber.Inaddition,high-fatandlow-fatcontrolsaswellaspartiallyhydrolyzedguargumwereincludedinthestudy.Thesolublefiberproductobtainedfromryebrancausedasignificantincreaseinthebifidobacteria(logcopiesof16SrRNAgenes;median(25–75percentile):6.38(6.04–6.66)and7.47(7.30–7.74),respectively;p<0.001)=""in=""parallel=""with=""a=""tendency=""of=""increased=""production=""of=""propionic=""acid=""and=""indications=""of=""improved=""metabolic=""function=""compared=""with=""high-fat=""fed=""control=""mice.=""the=""oat-derived=""product=""caused=""an=""increase=""in=""the=""pool=""of=""cecal=""propionic=""(from=""0.62=""±=""0.12=""to=""0.94=""±=""0.08)=""and=""butyric=""acid=""(from=""0.38=""±=""0.04=""to=""0.60=""±=""0.04)=""compared=""with=""the=""high-fat=""control,=""and=""it=""caused=""a=""significant=""increase=""in=""lactobacilli=""(log=""copies=""of=""16s=""rrna=""genes;=""median=""(25–75=""percentile):=""6.83=""(6.65–7.53)=""and=""8.04=""(7.86–8.33),=""respectively;="">p<0.01)=""in=""the=""cecal=""mucosa.=""however,=""no=""changes=""in=""measured=""metabolic=""parameters=""were=""observed=""by=""either=""oat=""or=""barley=""products.="">
Extractionofβ-glucanfromoatsforsolubledietaryfiberqualityanalysis.
Doehlert,D.C.,Simsek,S.&McMullen,M.S.(2012).CerealChemistry,89(5),230-236.
LinktoArticle
ReadAbstract
Extractionprotocolsforβ-glucanfromoatflourweretestedtodetermineoptimalconditionsforβ-glucanqualitytesting,whichincludedextractabilityandmolecularweight.Wefoundmassyieldsofβ-glucanwereconstantatalltemperatures,pHvalues,andflour-to-waterratios,aslongassufficienttimeandenoughrepeatextractionswereperformedandnohydrolyticenzymeswerepresent.Extractscontainedabout30–60%β-glucan,withlowerproportionsassociatedwithhigherextractiontemperaturesinwhichmorestarchandproteinwereextracted.Allcommercialstarchhydrolyticenzymestested,eventhosethatareconsideredhomogenous,degradedβ-glucanapparentmolecularweightasevaluatedbysize-exclusionchromatography.Higherconcentrationβ-glucansolutionscouldbepreparedbycontrollingtheflour-to-waterratioinextractions.Eightgramsofflourper50mLofwatergeneratedthehighestnativeβ-glucanconcentrations.Routineextractionscontained2gofenzyme-inactivatedflourin50mLofwaterwith5mMsodiumazide(asanantimicrobial),whichwerestirredovernight,centrifuged,andthesupernatantboiledfor10min.Thepolymerextractedhadamolecularweightofabout2millionandwasstableatroomtemperatureforatleastamonth.
Effectofdietarystarchsourceongrowthperformances,digestibilityandqualitytraitsof
蚂蚁淘电商平台
ebiomall.com
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台,
该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁
淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、
运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
正品保证: 全球直采 在线追溯
蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧
蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事
蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务
蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
产品名称: 小鼠αN已酰氨基葡糖苷酶(αNAG)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 产品简介: 小鼠αN已酰氨基葡糖苷酶(αNAG)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 小鼠αN已酰氨基葡糖苷酶(αNAG)ELISA Kit(elisa试剂盒) 国
查看更多>
产品名称: 小鼠超氧化物歧化酶(SOD)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 产品简介: 小鼠超氧化物歧化酶(SOD)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 小鼠超氧化物歧化酶(SOD)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 进
查看更多>
产品名称: 髓过氧物酶试剂盒 国内优质ELISA厂家 产品简介: 髓过氧物酶试剂盒 国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 髓过氧物酶试剂盒 国内优质ELISA厂家 进口试剂采购网,上海通善生物科技有限公司(BioLeaf)旗下生命科学研究B2C一站式采购平台。 进口试剂采购网髓过氧物酶试剂盒 国内优质ELISA厂家
查看更多>
产品名称: 人乙醛脱氢酶(ALDH)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 产品简介: 人乙醛脱氢酶(ALDH)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 人乙醛脱氢酶(ALDH)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 进口试剂采购网
查看更多>
产品名称: 羧肽酶活性肽 ELISA试剂盒 国内优质ELISA厂家 产品简介: 羧肽酶活性肽 ELISA试剂盒 国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 羧肽酶活性肽 ELISA试剂盒 国内优质ELISA厂家 进口试剂采购网,上海通善生物科技有限公司(BioLeaf)旗下生命科学研究B2C一站式采购平台。 进口试剂采购
查看更多>
产品名称: 人胰淀粉酶(PAMY)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 产品简介: 人胰淀粉酶(PAMY)ELISA Kit(elisa试剂盒)国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 人胰淀粉酶(PAMY)ELISA Kit(elisa试剂盒)国内优质ELISA厂家 进口试剂采购网,上海通
查看更多>
产品名称: 小鼠αL岩藻糖苷酶 elisa 国内优质ELISA厂家 产品简介: 小鼠αL岩藻糖苷酶 elisa 国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 小鼠αL岩藻糖苷酶 elisa 国内优质ELISA厂家 进口试剂采购网,上海通善生物科技有限公司(BioLeaf)旗下生命科学研究B2C一站式采购平台。 进口试剂采购
查看更多>
产品名称: 小鼠脱碘酶 elisa 国内优质ELISA厂家 产品简介: 小鼠脱碘酶 elisa 国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 小鼠脱碘酶 elisa 国内优质ELISA厂家 进口试剂采购网,上海通善生物科技有限公司(BioLeaf)旗下生命科学研究B2C一站式采购平台。 进口试剂采购网小鼠脱碘酶 elisa
查看更多>
产品名称: 人脂蛋白磷脂酶A2(Lp-PL-A2)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 产品简介: 人脂蛋白磷脂酶A2(Lp-PL-A2)ELISA Kit(elisa试剂盒) 国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 人脂蛋白磷脂酶A2(Lp-PL-A2)ELISA Kit(elisa试剂盒
查看更多>
产品名称: 小鼠脂蛋白相关磷脂酶试剂盒 国内优质ELISA厂家 产品简介: 小鼠脂蛋白相关磷脂酶试剂盒 国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 小鼠脂蛋白相关磷脂酶试剂盒 国内优质ELISA厂家 进口试剂采购网,上海通善生物科技有限公司(BioLeaf)旗下生命科学研究B2C一站式采购平台。 进口试剂采购网小鼠脂蛋白
查看更多>
产品名称: 兔抗凝血酶 elisa 国内优质ELISA厂家 产品简介: 兔抗凝血酶 elisa 国内优质ELISA厂家 ELISA试剂盒 国产现货 SIXIN生产的优质ELISA试剂盒直供全国。http://www.aatbio.com.cn/elisa/ 兔抗凝血酶 elisa 国内优质ELISA厂家 进口试剂采购网,上海通善生物科技有限公司(BioLeaf)旗下生命科学研究B2C一站式采购平台。 进口试剂采购网兔抗凝血酶 elisa
查看更多>
位点特异核酸内切酶涉及核酸生物化学的许多方面。限制酶及相关酶已成为作用于 DNA 的酶的典范。通过理性蛋白设计,投入了无数的精力试图改变其特异性。本实验来源「现代蛋白质工程实验指南」〔德〕K.M.阿恩特、K.M.米勒编著。
查看更多>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑;
Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员,
或拨打4000-520-616,除此之外客户可在
联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
我的质粒抽提自DH5a大肠杆菌,用EcoRI37℃酶切2h,之前还用这个酶切条件酶切了其他质粒都会出现拖带,酶量适中没有加过量,电泳上样量在200ng左右,我以为是酶不好了,用了两个牌子的酶,都会这样,我是真不明白,为什么会有这样的拖带,哪位大神可以指教一下,感激不尽!
2017年11月14日,糖生物实验室在NatureCommunications发表了题为“O-GlcNAcylationofSIRT1enhancesitsdeacetylaseactivityandpromotescytoprotectionunderstress”(《在应激条件下O-GlcNAc修饰促进SIRT1的脱乙酰化酶活性和细胞保护作用》)的最新研究成果(论文链接:https://www.nature.com/articles/s41467-017-01654-6),发现了长寿基因SIRT1活性调控的新机制。
衰老是生命进程中一个不可逆的过程,延年益寿则是人类的一个普遍期望,也是衰老研究的终极目标。SIRT1是一种高度保守的NAD+依赖性的脱乙酰化酶,通过对底物蛋白的脱乙酰化抵抗各种压力应激和修复基因突变,发挥细胞保护作用;SIRT1参与了许多重要的生理和病理过程,如代谢调节、基因组稳定性、代谢应激、衰老等;在多种模式生物中,SIRT1均被证实能延长寿命,并能够通过抑制各种老年性疾病的发生发展发挥延长“健康寿命”的作用。因此,SIRT1是目前最受关注的长寿基因,SIRT1激活剂已成为医药领域研究与开发的前沿和热点。然而,机体对抗衰老时SIRT1激活的分子机制并不十分清楚。
O-GlcNAc糖基化修饰是一种细胞内普遍存在、动态可逆的蛋白质翻译后修饰现象。O-GlcNAc可以通过影响蛋白稳定性、细胞定位和酶活性等调节蛋白质功能并在生理和病理过中发挥重要作用。该研究成果首次发现了SIRT1蛋白具有O-GlcNAc修饰,且修饰位点是549位的丝氨酸。SIRT1的O-GlcNAc修饰增加其与底物蛋白的亲和力并提高SIRT1的脱乙酰化酶活性。进一步研究表明,在应激(氧化应激、代谢应激和基因毒等)条件下,细胞内SIRT1的O-GlcNAc修饰显著增加,并促进其对p53、FOXO3等靶蛋白的脱乙酰化从而发挥细胞保护作用。众所周知,卡路里限制能降低衰老相关疾病的发生和延年益寿。本研究成果表明,卡路里限制能可能通过O-GlcNAc修饰激活SIRT1而起到细胞保护作用,从而揭示了节食延年益寿的一个新的分子机制。综上所述,该研究发现了SIRT1活性调控的新机制,首次证明了O-GlcNAc修饰是SIRT1抵抗应激的分子开关,表明O-GlcNAc修饰可能成为抗衰老和老年性疾病的新靶点,为抗老年性疾病药物和长寿药物的研究开辟了新途径,具有重要的理论意义和明确的应用前景。
该研究成果由糖生物学实验室独立完成,博士研究生韩翠芳、单慧和顾玉超副教授是该论文的共同第一作者,顾玉超副教授和于文功教授是共同通讯作者。该研究由NSFC-山东省海洋科学研究中心联合基金项目(No.U1606403)、青岛海洋科学与技术国家实验室鳌山科技创新计划项目(No.2015ASKJ02)、国家自然科学基金面上项目(No.81272264)等资助。
于文功教授和顾玉超副教授长期从事糖生物学研究,发现了蛋白质的O-GlcNAc糖基化修饰促进肿瘤发生和转移并阐明了其分子机制(CancerRes.2010Aug1;70(15):6344-51;BiochimBiophysActa.2011Apr;1812(4):514-9.)。经过多年的积累,该团队已经建立了系统的O-GlcNAc糖基化修饰研究技术体系,目前正在进行O-GlcNAc修饰对肿瘤和糖尿病等重大疾病发生过程中关键蛋白的调控作用和机制研究,以期阐明相关疾病发生的机制并发现新的治疗靶点。
DNMT3a,Dnmt3a,DNMT3A三者有何区别呢,在大鼠或者小鼠身上,用来指酶或者基因时,应该如何表达呢?谢谢
比如说,胃蛋白酶能否分解其他蛋白质性质的消化酶,
如果能分解,那小肠液中的消化酶如何大量共存,如果不能
那它如何识别其他蛋白质物质是不是消化酶?
是不是别构酶自己变构,共价调节酶让别的酶给他变构?
用得最频繁的估计应该是以下几种:
1、洗碗用的洗洁精,含脂肪酶,能快速水解油脂,还可能含其他酶成分
2、洗头用的洗发水,含脂肪酶,能快速水解油脂,还可能含其他酶成分
3、洗澡用的沐浴露,含脂肪酶,能快速水解油脂,还可能含其他酶成分
4、洗衣用的洗衣粉或洗衣液,含有多种酶,比如脂肪酶、蛋白酶等
除了以上用的频繁外,还有一些可能用到的,
比如某些促进消化的药片,含有脂肪酶、蛋白酶、淀粉酶等
厨房用的嫩肉粉,含有蛋白酶等
蛋白酶分布在外(界)环境中,不分布在内环境。
蛋白酶分布广泛,主要存在于人和动物消化道中,而消化道通过口与肛门与外界相通,属于外环境或外界环境
(溶菌酶、凝血酶原等)分布在内环境
(消化)酶分布在消化道
我认为人体自身的酶带有标记,比如特殊的肽段,酶相互之间可以识别,不会分解自身的酶
铼_123
yxh58282512018-03-30
在酶的概念中,强调了酶是生物体活细胞产生的,但在许多情况下,细胞内生成的酶,可以分泌到细胞外或转移到其它组织器官中发挥作用。通常把由细胞内产生并在细胞内部起作用的酶称为胞内酶(endoenzyme),而把由细胞内产生后分泌到细胞外面起作用的酶称为胞外酶(extroenzyme)。一般主要是水解酶类,如淀粉酶、脂肪酶(lipase)、人体消化道中的各种蛋白酶(proteinase)都属胞外酶。而水解酶类以外的其它酶类都属胞内酶。
大神求教,酶促反应动力学与双相动力学的区别?如何准确求出相应动力学的km值,S型动力学与双相动力学一般都有会有两个km,如何选用km进行后期研究?谢谢
共价调节和别构调节。
共价调节酶(covalent regulatory enzyme) 是一类由其它酶对其结构进行可逆共价修饰,使其处于活性和非活性的互变状态,从而调节酶活性。共价调节酶一般都存在相对无活性和有活性两种形式,两种形式之间互变的正、逆向反应由不同的酶催化。磷酸化是可逆共价修饰中最常见的类型。因为信号激酶能作用于很多靶分子,通过磷酸化作用信号能被极大地放大。蛋白激酶的调节作用能被催化水解磷酸基团的蛋白质磷酸酶逆转。通过磷酸化和脱磷酸化作用,使酶在活性形式和非活性形式之间互变。
别构调节:酶分子的非催化部位与某些化合物可逆地非共价结合后发生构象的改变,进而改变酶活性状态,称为酶的别构调节。有些酶分子在空间至少有两个不同的部位,一个为催化部位,一个为调节部位。某些物质可以与这种酶的调节部位相互作用而使酶分子构象发生改变,进而使催化部位受到影响,导致酶的催化活性改变,这种现象称为酶的别构调节,或称别位调节、变构调节
异柠檬酸酶辅酶分NAD和NADP并且“依赖NAD作为辅酶的异柠檬酸酶”只存在于线粒体内
那糖酵解中依赖NAD的酶不是要在线粒体内反应?