
- Description
- Additional
Description
Details
RACTIVITY | Human |
SENSITIVITY | <1.1 ng/mL |
ASSAY RANGE | 1.1-80 ng/mL |
REAGENTS PROVIDED | SAA MICROTITER PLATESAA CONJUGATESAA STANDARDCALIBRATOR DILUENT ICALIBRATOR DILUENT IIWASH BUFFER (20X/96 wells, 30X/192 wells)SUBSTRATE ASUBSTRATE BSTOP SOLUTION |
INTENDED USE
This Human SAA ELISA Kit is to be used for the in vitro quantitative determination of human serum amyloid A (SAA) concentrations in serum, plasma, cell culture supernatant, and other biological fluids. This kit is intended FOR LABORTORY RESEARCH USE ONLY and is not for use in diagnostic or therapeutic procedures.
INTRODUCTION
Serum Amyloid A (SAA) is an acute-phase protein. During acute events, the rise in SAA levels is the most rapid and intense increase of all acute phase proteins. Cytokines such as IL-1, IL-6, and TNF are considered mediators of SAA protein synthesis. They stimulate hepatocytes in the liver to produce and release SAA into the bloodstream. When elevated above normal levels SAA is almost exclusively bound to High Density Lipoproteins (HDL), causing SAA to behave like an apolipoprotein - a protein moiety occurring in plasma lipoprotiens. SAA circulates at trace levels (1-5 µg/mL) during normal conditions; however 4-6 hours after inflammatory stimulus, SAA levels can increase by as much as 1000 fold to remarkably elevated levels (500-1000 µg/mL), thus making SAA a sensitive marker. 1,2
Structural analysis revealed this 104 amino acid (a.a.) polypeptide in its native state has a molecular mass of 12-14 kDa. Serum amyloid A is the serum precursor of amyloid A (AA) protein (8.5 kDa), which is formed when the first 76 a.a."s of SAA are cleaved. The human SAA protein is polymorphic being made up of a family of several related proteins (SAA1 to SAA4). SAA genes are located on chromosome 11p.1 SAA1 and SAA2 are similar genes, which differ by 7 amino acids or more, and encode acute-phase SAA"s. SAA3 appears to be a pseudogene and is substantially different from the others. SAA4 does not vary significantly during the acute phase response and is an isoform that is present on HDL during homeostasis.3,4 Each of the acute phase proteins have a unique function in modulating host immune responses but the role of SAA remains unclear. It is known that HDL inhibits SAA"s function. This suggests that SAA needs to be released from HDL complexes in order to become active.5 Recently it was reported that SAA may have an important pro-inflammatory and immunostimulating role by recruiting neutrophils, monocytes, and T-lymphocytes into inflammatory lesions.5,6 As a result of SAA"s association with HDL, a role in cholesterol metabolism has been proposed. SAA, after dissociation from HDL, may play a role in cholesterol transport at local tissues sites during inflammation by binding cholesterol.2,7
High levels of SAA can be seen in patients with acute and chronic inflammation. Secondary amyloidosis may develop as a result prolonged or repeated inflammatory conditions in which SAA levels remain elevated. This progressive, fatal condition is characterized by a gradual loss of organ function, in which fibrils are deposited in peripheral tissues and major organs. The fibrils are caused by the incomplete degradation of SAA in which the AA fragment (8.5 kDa) from the original SAA protein has been enzymatically cleaved. Measuring SAA levels in these patients may be a useful indicator of degree of inflammation and response to therapy. Inflammatory disorders such as rheumatoid arthritis, juvenile arthritis, ankylosing spondylitis, familial
mediterranean fever, progressive sclerosis as well as chronic infections such as tuberculosis and osteomyelitis are predisposed to developing amyloidosis.8,9 Measuring SAA levels is also significant in determining pulmonary inflammation in patients with cystic fibrosis,10 diagnosing and predicting renal allograft rejection,11 determining anti-microbial therapy response in urinary tract infections,12 opportunistic infections in AIDS,13 inflammation in acute viral infections,14 biocompatiblility of hemodialysis,15 tissue damage in post-acute myocardial infarction, 17 and the outcome in severe unstable angina.16 Also, a differential diagnosis of inflammatory disease may be employed by measuring SAA levels. Acute viral infections may be distinguished from bacterial infections by determining SAA levels.14-17 It may be useful to confirm diagnosis of acute viral diseases if SAA is assayed at the same time as C-reactive protein, which is a useful inflammatory marker for bacterial infections and does not rise during viral disease.16
This SAA ELISA is a 2.5-hour solid phase immunoassay readily applicable to measure SAA in serum, plasma, cell culture supernatant, and other biological fluids in the range of 0 to 80ng/mL. It showed no cross reactivity with other cytokines tested. This SAA ELISA is expected to be effectively used for further investigations into the relationship between SAA and the various conditions mentioned.
CITATIONS
1. Muriel Lavie et al. Serum amyloid A has antiviral activity against hepatitis C virus by inhibiting virus entry in a cell culture system.(2006) Hepatology. Volume 44, Issue 6, page 1626-1634.
2.Steven Bozinovski et al.Serum amyloid a is a biomarker of acute exacerbations of chronic obstructive pulmonary disease.Am. J. Respir. Crit. Care Med. Vol. 177, No. 3 (2008), pp. 269-278.
3.Sander I. van Leuven et al.Enhanced atherogenesis and altered high density lipoprotein in patients with Crohn"s disease.(2007) Journal of Lipid Research Volume 48. 2640-6.
4.Smith DJ et al.Reduced soluble receptor for advanced glycation end-products in COPD.(2011) Eur. Respir. J. 37(3):516-22.
5.Sukkar, MB. Soluble RAGE is deficient in neutrophilic asthma and COPD. (2012) Eur. Respir. J. 39(3):721-9.
6.Patricia G. Wilson et al.Serum Amyloid A, but Not C-Reactive Protein, Stimulates Vascular Proteoglycan Synthesis in a Pro-Atherogenic Manner.Am J Pathol. Dec 2008; 173(6): 1902–1910.
7.Qiulin Liao et al.Serum proteome analysis for profiling protein markers associated with carcinogenesis and lymph node metastasis in nasopharyngeal carcinoma.Clin Exp Metastasis. Jun 2008; 25(4): 465–476.
8.Hutchinson AF et al.Identifying viral infections in vaccinated Chronic Obstructive Pulmonary Disease (COPD) patients using clinical features and inflammatory markers.Influenza Other Respir Viruses. 2010 Jan; 4(1):33-9.
9.Nelson TL et al.Inflammatory markers are not altered by an eight week dietary alpha-linolenic acid intervention in healthy abdominally obese adult males and females.Cytokine. 2007 May; 38(2):101-6.
10.Johannes HM Levels et al.High-density lipoprotein proteome dynamics in human endotoxemia.Proteome Sci. 2011; 9: 34.
11.Wu TL et al. Establishment of an in-house ELISA and the reference range for serum amyloid A (SAA): complementarity between SAA and C-reactive protein as markers of inflammation.Clin Chim Acta. 2007 Feb; 376(1-2):72-6.
12.Leo Stockfelt et al.Short-term chamber exposure to low doses of two kinds of wood smoke does not induce systemic inflammation, coagulation or oxidative stress in healthy humans. Inhal Toxicol. Jul 2013; 25(8): 417–425.
13.José L López-Campos et al.Determination of inflammatory biomarkers in patients with COPD: a comparison of different assays.BMC Med Res Methodol. 2012; 12: 40.
14.Anna A Richards et al.Birth Weight, Season of Birth and Postnatal Growth Do Not Predict Levels of Systemic Inflammation in Gambian Adults.Am J Hum Biol. Jul 2013; 25(4): 457–464.
15.Guojun Zhang et al. Serum amyloid A: A new potential serum marker correlated with the stage of breast cancer. Oncol Lett. Apr 1, 2012; 3(4): 940–944.
16.Hutchinson AF, Black J, Thompson MA, Bozinovski S, Brand CA, Smallwood DM, Irving LB, Anderson GP.Identifying viral infections in vaccinated Chronic Obstructive Pulmonary Disease (COPD) patients using clinical features and inflammatory markers. Influenza Other Respir Viruses 2010; 1(4):33-9. 17.Franssen R, Schimmel AW, van Leuven SI, Wolfkamp SC, Stroes ES, Dallinga-Thie GM.In Vivo Inflammation Does Not Impair ABCA1-Mediated Cholesterol Efflux Capacity of HDL. Cholesterol 2012; (2012):610741. 18.Stockley R, De Soyza A, Gunawardena K, Perrett J, Forsman-Semb K, Entwistle N, Snell N.Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir Med 2013; 4(107):524-33. 19.Santoso A, Kaniawati M, Bakri S, Yusuf I. Secretory Phospholipase A2 Is Associated with the Odds of Acute Coronary Syndromes through Elevation of Serum Amyloid-A Protein. Int J Angiol 2013; 1(22):49-54. 20.Thompson JC, Jayne C, Thompson J, Wilson PG, Yoder MH, Webb N, Tannock LR. A brief elevation of serum amyloid A is sufficient to increase atherosclerosis. J Lipid Res 2015; 2(56):286-93. 20.Wilson PG, Thompson JC, Shridas P, McNamara PJ, de Beer MC, de Beer FC, Webb NR, Tannock LR.Serum Amyloid A Is an Exchangeable Apolipoprotein. Arterioscler Thromb Vasc Biol 2018; 8(38):1890-1900. 20.Arellano-Orden E, Calero C, López-Ramírez C, Sánchez-López V, López-Villalobos JL, Abad Arranz M, Blanco-Orozco A, Otero-Candelera R, López-Campos JL.Evaluation of lung parenchyma, blood vessels, and peripheral blood lymphocytes as a potential source of acute phase reactants in patients with COPD. Int J Chron Obstruct Pulmon Dis 2019; (14):1323-1332.
Additional
Additional Information
Product Specificity | Human SAA ELISA Kit |
---|---|
Application | Refer to Insert |
Size | 96 wells |
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
血清为去除纤维蛋白原后的无形成分,颜色微黄,透亮。
血清的基本成分是水,水中溶有蛋白质、脂肪、糖、无机盐、维生素等营养成分,也溶有人体代谢产物。血清中有抗体,这是被称作免疫球蛋白的蛋白质。
1.以沉淀形式保存在高浓度的硫酸铵中。
2.添加50%甘油冷冻,尤其适用于酶类。
3.如果样品要用于生物学检测,避免使用防腐剂。在体内实验中不能添加防腐剂,而应当将样品分装成小份冷冻。
4.可使用无菌滤器以延长保存时间。
5.添加稳定剂,如甘油(5-20%)、血清白蛋白(10mg/ml)、配基(浓度取决于活性蛋白的浓度)以帮助维持生物活性。
6.避免反复冻融或冻干重溶解过程,这样很可能会降低生物活性。
7.一些冷沉淀蛋白会在4度沉淀出来,包括一些小鼠IgG3亚族的抗体,不能保存在4度冰箱中,可添加防腐剂保存在室温中。
①在用超滤除白蛋白,IgG中硫酸铵盐时,膜包该如何选择?选择几个?
②如用凝胶过滤来分级纯化血清中65%硫酸铵盐析出的白蛋白和纯化33%硫酸铵盐析出的IgG,其填充介质应选择什么?其洗脱缓冲液应用什么好?
下面有些关于这方面的数据,供参考:
①牛血清白蛋白:分子量:66210;分子形状:椭圆形;分子大小:
40Å*140Å;等电点:4.7;血浆中的含量:52.0g/L。
②IgG:分子量:15300;分子形状:球状;等电点:5.8—7.3;血浆中含量:2.0g/L。
③另外,我从书上看到说:凝胶过滤在分级方法中分辨率为中等,但对脱盐效果优良;流速较低,对分级每周期约≥8小时,对脱盐仅30分钟;适用于大规模纯化的最后步骤,在纯化过程的任何阶段均可进行脱盐处理,尤其适用于两种缓冲液交替时。
期待您的帮助,谢谢您。
1. 血细胞与血清分离:
取人血液 1000ml,放置10min, 1000rpm离心20min .弃沉淀,留上清备用(沉淀为血细胞,上部为血清).
2. 乳糜粒分离:4000rpm 10°C离心10分钟,采用密度梯度离心
梯度液配置:离心管下部3/4容积加血浆,上部1/4容积加0.5MnaCl+0.3MEDTA,PH7.4 乳糜粒上浮,将乳糜粒吸出,留其余液体备用.
3. 血清蛋白分离:除去球蛋白,白蛋白及其它蛋白质.
5000rpm 10°C离心1h,密度梯度离心
梯度.液配置:管容量1/3为血清,2/3为1.31g/ml,NaCl+NaBr,搅拌后终密度为1.21g/ml .管上部1/6容积为血清脂蛋白,下部5/6为其它蛋白.
4.取2ml下部5/6血清于小试管中,加0.9%氯化钠溶液2.0ml,边搅拌混匀边缓慢滴加饱和硫酸铵溶液乙4.0ml,加入PBS洗脱液2ml,混匀后于室温中放置10min,此步骤可重复1~2次
3000rpm 离心5min.沉淀物即是ǐ-球蛋白.
二.凝胶层析提纯血清ǐ-球蛋白(1)装柱:海绵垫装入玻璃柱底端,作为柱底支持物,装入定量的蒸馏水(约为柱体积的1/5),以避免胶粒直接冲击柱底支持物;用玻璃棒小心排除柱底支持物.将密实洗净的层析柱保持垂直位置,关闭出口,柱内留下约2.0ml洗脱液.边搅拌凝胶,边向柱内缓慢,连续,均匀地加入凝胶,(打开柱底端的螺旋夹)不要中断,使胶粒均匀沉降,以免胶面一次性将疑胶从塑料接口加入层析柱内,打开柱底部出口,调节流速0.3ml/min.凝腔随柱内溶液慢慢流下而均匀沉降到层析柱底部倾斜和发生断层;检查装好的凝胶柱用眼观察有无凝胶分层.沟流和气泡现象.最后使凝胶床达20厘米高,床面上保持有洗脱液,操作过程中注意不能让凝胶床表面露出液面并防止层析床内出现“纹路”.用缓冲液平衡凝胶柱,流速控制在3-5s/滴.(2)上样与洗脱:小心控制凝胶柱下端活塞,使柱上的缓冲液面刚好下降至凝胶床表面,关紧下端出口,用长滴管吸取盐析法制备的球蛋白混合样品,将装有上样液的滴管头插入床面以上1-2cm处,小心缓慢地贴壁加到凝胶床表面.柱上样量控制在柱体积的2%-5%.打开下端出口,将流速控制在0.25ml/min使样品进入凝胶床内.关闭出口,小心加入少量0.0175mol/L磷酸盐缓冲液(pH6.3)洗柱内壁.打开下端出口,待缓冲液进入凝胶床后再加少量缓冲液.如此重复三次,以洗净内壁上的样品溶液.然后可加入适量缓冲液开始洗脱.加样开始应立即收集洗脱液.洗脱时接通蠕动泵,流速为0.5ml/min,用部分收集器收集,每管1ml.(3)洗脱液中NH4+与蛋白质的检查:取比色板两个(其中一个为黑色背底),按洗脱液的顺序每管取一滴,分别滴入比色板中,前者加双缩脲2滴,出现蓝色混浊即示有蛋白质析出,由此可估计蛋白质在洗脱各管中的分布及浓度;于另一比色板中,加人奈氏试剂l滴,以观察NH4+出现的情况. 合并球蛋白含量高的各管,混匀.除留少量作电泳鉴定外,其余用DEAE纤维素阴离子交换柱进一步纯化.三.纯化――DEAE纤维素阴离子交换层析用DEAE纤维素装柱约8-10cm高度,并用0.0175mol/L磷酸盐缓冲液(pH6.3)平衡,然后将脱盐后的球蛋白溶液缓慢加于DEAE纤维素阴离子交换柱上,用同一缓冲液洗脱、分管收集.用20%磺基水杨酸溶液检查蛋白质分布情况.(装柱、上样、洗脱,收集及蛋白质检查等操作步骤同凝胶层析).四.浓缩经DEAE纤维素阴离于交换柱纯化的γ-球蛋白液往往浓度较低.为便于鉴定,常需浓缩.收集较浓的纯化的γ-球蛋白溶液2m1,按每ml加0.2~ 0.25gSephadex G一25干胶,摇动2~3min, 3000r/min 离心5min.上清液即为浓缩的γ-球蛋白溶液.五. 乙酸纤维素薄膜电泳鉴定ǐ-球蛋白(一)仪器与薄膜的准备1.醋酸纤维素薄膜的润洗与选择用竹夹子取一片薄膜,小心地平放在盛有缓冲液的平皿中,若漂浮于液面的薄膜在15—30s内迅速润湿,整条薄膜色泽深浅一致,则此膜均匀可用于电泳;若薄膜润湿缓慢,色泽深浅不一或有条纹及斑点等,则表示薄膜厚薄不均匀应弃去,以免影响电泳结果.将选好的薄膜用竹子轻压,使其完全浸泡于缓冲液中约30min后,方可用于电泳.
2.电泳槽的准备根据电泳槽膜支架的宽度,剪裁尺寸合适的滤纸条.在两个电极槽中,各倒入等体积的电极缓冲液,在电泳槽的两个膜支架上,各放两层滤纸条,使滤纸一端的长边与支架前沿对齐,另一端浸入电极缓冲液内.当滤纸条全部润湿后,用玻璃棒轻轻挤压在膜支架上的滤纸以驱赶气泡,使滤纸的一端能紧贴在膜支架上.滤纸条是两个电极槽联系醋酸纤维素薄膜的桥梁,因而称为滤纸桥.
3.电极槽的平衡用平衡装置(或自制平衡管)连接两个电泳槽,使两个电极槽内的缓冲液彼此处于同一水平状态,一般需平衡15——20min.注意,取出平衡装置时应将活塞关紧.
(二)点样
1.制备点样模板取一张干净滤纸(10×10cm),在距纸边1.5cm处用铅笔划一平行线,此线为点样标志区.
2.点样用竹夹子取出浸透的薄膜,夹在两层滤纸间以吸去多余的缓冲液.无光泽面向上平放在点样模板上,使其底边与模板底边对齐.点样区距阴极端1.5cm处.点样时,先用玻璃棒或血色素吸管取2—3��L血清,均匀涂在加样器上,再将点样器轻轻印在点样区内,使血清完全渗透至薄膜内,形成一定宽度、粗细均匀的直线.此步是实验的关键,点样前应在滤纸上反复练习,掌握点样技术后再正式点样.
(三).电泳用竹夹子将点样端的薄膜平贴在阴极电泳槽支架的滤纸桥上(点样面朝下),另一端平贴在阳极端支架上,要求薄膜紧贴滤纸桥并绷直,中间不能下垂.如一电泳槽中同时安放几张薄膜,则薄膜之间应相隔几毫米.盖上电泳槽盖,使薄膜平衡10min.用导线将电泳槽的正、负极与电泳仪的正、负极分别连接,注意不要接错.在室温下电泳,打开电源开关,用电泳仪上细调节旋扭调到每厘米膜宽电流强度为0.3mA(8片薄膜则为4.8mA).通电10—15min后,将电流调节到每厘米膜宽电流强度为0.5mA(8片共8 mA),电泳时间约50—80min.电泳后调节旋扭使电流为零,关闭电泳仪切断电源.
(四).染色与漂洗
1.血清蛋白染色与漂洗脱色用解剖镊子取出电泳后的薄膜,放在含0.5%氨基黑10B染色液的培养皿中,浸染5min,取出后再用漂洗液浸洗脱色,每隔10min 换漂洗液一次,连续数次,直至背景蓝色脱尽.取出薄膜放在滤纸上,用吹风机的冷风将薄膜吹干.
(五)透明将脱色吹干后的薄膜浸入透明甲液中2min,立即放入透明乙液中浸泡1min,取出后立即紧贴于干净玻璃板上,两者间不能有气泡,约2—3min薄膜完全透明.若透明太慢可用滴管取透明乙液少许在薄膜表面淋洗一次,垂直放置待其自然干燥,或用吹风机冷风吹干且无酸味.再将玻璃板放在流动的自来水下冲洗,当薄膜完全润湿后用单面刀片撬开薄膜的一角,用手轻轻将透明的薄膜取下,用滤纸吸干所有的水分,最后将薄膜置液体石蜡中浸泡3min,再用滤纸吸干液体石蜡,压平.此薄膜透明,区带着色清晰,可用于光吸收计扫描.长期保存不褪色.
(六)结果判断与定量血清蛋白电泳经蛋白染色后,可显示出区带,未经透明处理的电泳图谱可直接用于定量测定.可采用洗脱法或光吸收扫描法,测定各蛋白组分相对百分含
55KDa与24KDa目的条带处的目的条带为什么成“小草”一样,旁边没有mark的话就没有条带,有mark就出现“小草”样的条带,请各位大神答疑解难?感激不尽

