商品信息
联系客服

郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
HighpuritydyedandcrosslinkedinsolubleAZCL-Pachymanforidentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Substratefortheassayofendo-1,3-β-D-glucanase.
Developmentofβ-1,3‐glucanaseactivityingerminatedtomatoseeds.
Morohashi,Y.&Matsushima,H.(2000).JournalofExperimentalBotany,51(349),1381-1387.
LinktoArticle
ReadAbstract
Laminarin‐hydrolysingactivitydevelopedintheendospermoftomato(Lycopersiconesculentum)seedsfollowinggermination.Theenzymewasbasic(pI>10)andtheapparentmolecularmasswasestimatedtobe35 kDabySDS‐PAGE.Itwasspecificforlinearβ-1,3‐glucansubstrates.Laminarinwashydrolysedbytheenzymetoyieldamixtureofoligoglucosides,indicatingthattheenzymehadanendo‐actionpattern.Thus,theenzymewasidentifiedasβ-1,3‐endoglucanase(EC3.2.1.39).TheactivityoftheenzymedevelopedintheendospermafterrADIcleprotrusion(germination)hadoccurredandtheenzymeactivitywaslocalizedexclusivelyinthemicropylarregionoftheendospermwheretheradiclehadpenetrated.Whenthelateralendospermregion,wherenoinductionoftheenzymeoccurred,waswounded(cutorpunctured),therewasamarkedenhancementofβ-1,3‐glucanaseactivity.Thusthepost‐germinativeβ-1,3‐glucanaseactivityinthemicropylarendospermportionmightbebroughtaboutbywoundingresultingfromendospermrupturebyradiclepenetration.
Purification,characterizationandstructuralanalysisofanabundantβ-1,3‐glucanasefrombananafruit.
Peumans,W.J.,Barre,A.,Derycke,V.,Rougé,P.,Zhang,W.,May,G.D.,Delcour,J.A.,VanLeuven,F.&VanDamme,E.J.(2000).EuropeanJournalofBiochemistry,267(4),1188-1195.
LinktoArticle
ReadAbstract
Anabundant,catalyticallyactiveβ-1,3-endoglucanase(EC3.2.1.39)hasbeenisolatedfromthepulpofripebananas.Biochemicalanalysisofthepurifiedprotein,molecularmodelling,andmolecularcloningofthecorrespondinggeneindicatethatthisbananaenzymecloselyresemblespreviouslycharacterizedplantβ-glucanaseswithrespecttoitsamino-acidsequence,structureandbiologicalactivity.Theresultsdescribedinthispaperdemonstrateboththeoccurrenceofanabundantactiveβ-1,3-endoglucanasesinfruitsandalsoreaddressthequestionofthepossIBLeinvolvementoftheseenzymesintheripeningand/orsofteningprocess.
Lentinulaedodestlg1encodesathaumatin-likeproteinthatisinvolvedinlentinandegradationandfruitingbodysenescence.
Sakamoto,Y.,Watanabe,H.,Nagai,M.,Nakade,K.,Takahashi,M.&Sato,T.(2006).PlantPhysiology,141(2),793-801.
LinktoArticle
ReadAbstract
LentinanisanantitumorproductthatispurifiedfromfreshLentinulaedodesfruitingbodies.Itisacellwallcomponent,comprisingβ-1,3-glucanwithβ-1,6-linkedbranches,whichbecomesdegradedduringpostharvestpreservationasaresultofincreasedglucanaseactivity.Inthisstudy,weusedN-terminalaminoacidsequencetoisolatetlg1,ageneencodingathaumatin-like(TL)proteininL.edodes.TheCDNAclonewasapproximately1.0kbwhereasthegenomicsequencewas2.1kb,andcomparisonofthetwoindicatedthattlg1contains12introns.Thetlg1geneproduct(TLG1)waspredictedtocomprise240aminoacids,withamolecularmassof25kDandisoelectricpointvalueof3.5.Theputativeaminoacidsequenceexhibitsapproximately40%identitywithplantTLproteins,andafungalgenomedatabasesearchrevealedthattheseTLproteinsareconservedinmanyfungiincludingthebasidiomycotaandascomycota.Transcriptionoftlg1wasnotdetectedinvegetativemyceliumoryoungandfreshmushrooms.However,transcriptionincreasedfollowingharvest.Western-blotanalysisdemonstratedariseinTLG1levelsfollowingharvestandsporediffusion.TLG1expressedinEscherichiacoliandAspergillusoryzaeexhibitedβ-1,3-glucanaseactivityand,whenpurifiedfromtheL.edodesfruitingbody,demonstratedlentinandegradingactivity.Thus,wesuggestthatTLG1isinvolvedinlentinanandcellwalldegradationduringsenescencefollowingharvestandsporediffusion.
Effectsofbenzothiadiazoleandacetylsalicylicacidonβ-1,3‐glucanaseactivityanddiseaseresistanceinpotato.
Bokshi,A.I.,Morris,S.C.&Deverall,B.J.(2003).PlantPathology,52(1),22-27.
LinktoArticle
ReadAbstract
Benzothiadiazole(BTH),asBionWG50,andacetylsalicylicacid(ASA)treatmentsofpotatofoliageoffield-andglasshouse-grownpotatoplantswerecomparedforcontroloftwofoliardiseases,earlyblight(Alternariasolani)andpowderymildew(Erysiphecichoracearum).Theeffectofthesetreatmentsonharvestedtuberswound-inoculatedwiththedryrotfungus(Fusariumsemitectum)wasalsoevaluated.BTH(50mga.i.L-1)gavealmostcompletecontrolofbothfoliarpathogensoninoculatedglasshouse-grownplantsandreducedtheseverityofleafspottingdiseases(mainlyearlyblight)inthefield.BTH(100mga.i.L-1)andASA(400mga.i.L-1)reducedtheseverityofdryrotinfield-growntubersinsomepost-harvestwound-inoculatedtreatmentsbutnotothersandasimilarreductionoccurredwithtubersinoculatedpost-harvestfromBTH-treatedplantsgrownunderglasshouseconditions.BTHtreatmentincreasedβ-1,3-glucanaseactivityinleaves>stem>tubers>stolonsbutnotinroots.Increasedenzymeactivitywasrecordedforupto45dayspost-treatment.
Endo-β-1,3-glucanaseGLU1,fromthefruitingbodyofLentinulaedodes,belongstoanewglycosidehydrolasefamily.
Sakamoto,Y.,Nakade,K.&Konno,N.(2011).AppliedandEnvironmentalMicrobiology,77(23),8350-8354.
LinktoArticle
ReadAbstract
ThecellwallofthefruitingbodyofthemushroomLentinulaedodesisdegradedafterharvestingbyenzymessuchasβ-1,3-glucanase.Inthisstudy,anovelendo-typeβ-1,3-glucanase,GLU1,waspurifiedfromL.edodesfruitingbodiesafterharvesting.Thegeneencodingit,glu1,wasisolatedbyrapidamplificationofcDNAends(RACE)-PCRusingprimersdesignedfromtheN-terminalaminoacidsequenceofGLU1.Theputativeaminoacidsequenceofthematureproteincontained247aminoacidresidueswithamolecularmassof26kDaandapIof3.87,andrecombinantGLU1expressedinPichiapastorisexhibitedβ-1,3-glucanaseactivity.GLU1catalyzeddepolymerizationofglucanscomposedofβ-1,3-linkedmainchains,andreactionproductanalysisbythin-layerchromatography(TLC)clearlyindicatedthattheenzymehadanendolyticmode.However,theaminoacidsequenceofGLU1showednosignificantsimilaritytoknownglycosidehydrolases.GLU1hassimilaritytoseveralhypotheticalproteinsinfungi,andGLU1andhighlysimilarproteinsshouldbeclassifiedasanovelglycosidehydrolasefamily(GH128).
A(1→3)-β-glucanaseexpressedduringoatendospermdevelopment.
Martin,D.J.&Somers,D.A.(2004).JournalofCerealScience,39(2),265-272.
LinktoArticle
ReadAbstract
Inmaturekernelsofoat(AvenasativaL.)andothercereals,mixed-linked(11→33;11→34)-β-glucansandarABInoxylansaremajorstructuralpolysaccharidesincellwallsoftheendosperm.However,(1→3)-β-glucansaredepositedtransientlyinwallsduringcellularizationofendospermearlyingraindevelopment[Planta202(1997)414–426].Theabsenceof(1→3)-β-glucansinmatureendospermcellwallssuggeststhat(1→3)-β-glucanasesareactiveduringendospermdevelopment.Toinvestigatetheroleofβ-glucanasesduringendospermdevelopment,a(1→3)-β-glucanasecDNA,Oglc13,wasisolatedfromanoat(A.sativaL.)kernelcDNAlibrary.Theenzymaticactivityoftheproteinproduct,OGLC13,expressedfromthecDNAinaninvitroexpressionsystem,exhibitedsubstratespecificityfor(1→3)-β-glucans.Oglc13transcriptsweredetectedintheendospermofportionsofdevelopingkernelswiththehigheststeadystatelevelofmRNAat15daysafteranthesis(DAA)andnotinvegetativetissues.AntibodiesraisedagainstOGLC13immunoprecipitated(1→3)-β-glucanaseactivityfromendospermextractsof10and15DAAkernelsandmilkyendospermextractedfrom15DAAkernels.TheOGLC13antibodiesdidnotprecipitate(1→3)-β-glucanaseactivityfromleafextracts.TheseresultsindicatedthatOglc13isaunique(1→3)-β-glucanaseexpressedearlyinendospermdevelopment.
InductionofdefenceresponsesinrootsandmesocotylsofsorghumseedlingsbyinoculationwithFusariumthapsinumandF.proliferatum,woundingandlight.
Huang,L.D.&Backhouse,D.(2005).JournalofPhytopathology,153(9),522-529.
LinktoArticle
ReadAbstract
Thedefencereactionsofsorghumseedlings7daysafterinoculationwithFusariumthapsinumandF.proliferatum,andinteractionswithwoundingandexposuretolightwerestudiedtodeterminewhetherresponsestothesefungidifferedfromthosetoabioticstresses.Innon-woundedplants,inoculationwithbothfungiincreasedconcentrationsofanthocyaninsandsolublephenolicsandactivitiesofperoxidase(POX),chitinaseandβ-1,3-glucanaseintheroots,andincreasedβ-1,3-glucanaseactivityinthemesocotyls.Therewasnoeffectofinoculationonphenylalanineammonia-lyase(PAL)activity.Woundingbyitselfincreasedanthocyanincontentofmesocotyls.Woundingalsohadavarietyofinteractionswithinoculation.Exposuretolighthadverylittleeffectonanydefenceresponsemeasured.Atimecourseexperimentshowedthatinductionofchitinaseandβ-1,3-glucanaseoccurredinlessthan24hafterinoculation.POXactivityincreased2daysafterinoculation,followedbyatransientincreaseinPALactivity.Thecontentofanthocyaninsandsolublephenolicsinrootsofinoculatedseedlingsincreasedgraduallycomparedwithcontrolsover6days.TheresponsesofsorghumseedlingstoinoculationwithF.thapsinumandF.proliferatumweresimilartothosefoundbyotherworkersfollowingchallengebynecrotrophicpathogensandweredifferentfromthoseinducedbywoundingandexposuretolight.
BioProspectinginpotatofieldsintheCentralAndeanHighlands:screeningofrhizobacteriaforplantgrowth-promotingproperties.
Ghyselinck,J.,Velivelli,S.L.S.,Heylen,K.,O’Herlihy,E.,Franco,J.,Rojas,M.,deVos,P.&Prestwich,B.D.(2013).SystematicandAppliedMicrobiology,36(2),116-127.
LinktoArticle
ReadAbstract
TheCentralAndeanHighlandsarethecenteroforiginofthepotatoplant(Solanumtuberosum).AgesofmutualismbetweenpotatoplantsandsoilbacteriainthisregionsupportthehypothesisthatAndeansoilsharborinterestingplantgrowth-promoting(PGP)bacteria.Therefore,theaimofthisstudywastoisolaterhizobacteriafromAndeanecosystems,andtoidentifythosewithPGPproperties.Atotalof585bacterialisolateswereobtainedfromeightpotatofieldsintheAndesandtheywerescreenedforsuppressionofPhytophthorainfestansandRhizoctoniasolani.AntagoNISTicmechanismsweredeterminedandantagonisticisolateswerefurthertestedforphosphatesolubilization,1-aminocyclopropane-1-carboxylate(ACC)deaminaseactivity,andproductionofNH3-andindole-3-aceticacid(IAA).PGPwasstudiedinhealthyandR.solanidiseasedplantletsundergrowthroomconditions.PerformancewascomparedtothecommercialstrainB.subtilisFZB24®WG.Isolatesweredereplicatedwithmatrix-assistedlaserdesorption/ionizationtimeofflightmassspectrometry(MALDI-TOFMS),andidentifiedwith16SrRNAgenesequencingandmultilocussequenceanalysis(MLSA).Atotalof10%oftheisolateswereeffectiveantagonists,ofwhichmanywereabletosolubilizephosphate,andproduceIAA,ACCdeaminase,NH3andhydrogencyanide(HCN).Duringgrowthroomexperiments,23antagonisticisolateswereassociatedwithplantgrowth-promotionand/ordiseasesuppression.Tenisolateshadastatisticallysignificantimpactontestparameterscomparedtotheuninoculatedcontrol.Threeisolatessignificantlypromotedplantgrowthinhealthyplantletscomparedtothecommercialstrain,andsevenisolatesoutperformedthecommercialstrainininvitroR.solanidiseasedplantlets.
Green-odourcompoundshaveantifungalactivityagainstthericeblastfungusMagnaportheoryzae.
Tajul,M.I.,Motoyama,T.,Hatanaka,A.,Sariah,M.&Osada,H.(2012).EuropeanJournalofPlantPathology,132(1),91-100.
LinktoArticle
ReadAbstract
Fourgreen-odourcompounds—trans-2-hexenal,cis-3-hexenol,n-hexanal,andcis-3-hexenal—wereapplied(0.85µgml-1asvapour)toriceplantsinlaboratoryconditionstoobservetheirbiologicalactivityagainstthephytopathogenicfungusMaganportheoryzae,whichcausesriceblastdiseaseworldwide.Twocompounds,trans-2-hexenalandcis-3-hexenal,showedremarkablediseasesuppressionefficacy(99.7%and100%suppression,respectively),whilen-hexanalhadmoderate(86.5%)andcis-3-hexenolhadweak(20.8%)disease-suppressingeffects.Pre-applicationandpost-applicationoftrans-2-hexenalorcis-3-hexenalhadslighteffectsonblastincidence,suggestingthatthesecompoundshaddirecteffectstosuppressM.oryzaeinfection.Infact,trans-2-hexenalandcis-3-hexenalexhibitedagrowthsuppressioneffectonM.oryzae.Interestingly,thesetwocompoundsinhibitedappressoriumformationatlowerconcentrationsthanthegrowthsuppression.Studiesonthehypersensitiveresponse(HR)-likereactionandplantβ-1,3-glucanaseactivityinriceplantconfirmedthatinducedresistancewasnotthemajorfactorinvolvedinthediseasesuppressionmechanism.Resultsofthisstudyconclusivelyshowedthattrans-2-hexenalandcis-3-hexenalpossesspotentinhibitoryactivitiesagainstthegrowthandtheappressoriumformationofM.oryzaeandcouldbeusedasantifungalagentstosignificantlyreduceM.oryzaeinfectionsinrice.
AnovelantifungalPseudomonasfluorescensisolatedfrompotatosoilsinGreenland.
Michelsen,C.F.&Stougaard,P.(2011).CurrentMicrobiology,62(4),1185-1192.
LinktoArticle
ReadAbstract
ArhizobacteriumwithhighantifungalactivitywasisolatedfromapotatofieldatInneruulalik,SouthGreenland.PhylogeneticanalysisbasedonmultilocussequencetypingshowedthatthebacteriumwasaffiliatedwithstrainsofPseudomonasfluorescens.Thebacterium,denotedasPseudomonasfluorescensIn5,inhibitedinvitroabroadrangeofphytopathogenicfungi,andtheantifungalactivityincreasedwithdecreasingtemperature.MicrocosmexperimentsdemonstratedthatP.fluorescensIn5protectedtomatoseedlingsfromRhizoctoniasolani.TransposonmutagenesisshowedthatthemajorcausefortheantifungalactivityofP.fluorescensIn5wasanovelnon-ribosomalpeptidesynthase(NRPS)gene.Inaddition,transposonmutagenesisshowedthatP.fluorescensIn5alsocontainedaputativequinoproteinglucosedehydrogenasegene,whichwasinvolvedingrowthinhibitionofphytopathogenicfungi.AlthoughP.fluorescensIn5containedthecapacitytosynthesizehydrogencyanide,β-1,3-glucanase,protease,andchitinase,thesedidnotseemtoplayaroleintheinvitroandmicrocosmantifungalassays.
Phosphite-inducedsuppressionofPseudomonasbleedingcanker(Pseudomonassyringaepv.aesculi)ofhorsechestnut(AesculushippocastanumL.).
Percival,G.C.&Banks,J.M.(2015).ArboriculturalJournal:TheInternationalJournalofUrbanForestry,37(1),7-20.
LinktoArticle
ReadAbstract
Fieldtrialswereconductedusing4-year-oldhorsechestnut(AesculushippocastanumL.)toassesstheefficacyofpotassiumandsiliconphosphiteasplantprotectionagentsagainstthebacterialpathogenPseudomonassyringaepv.aesculi(Pae)thecausalagentofPseudomonasbleedingcankerofhorsechestnut.Phosphiteswereappliedpreventatively,i.e.beforePaeinoculationoftrees,andcuratively,i.e.afterPaeinoculationoftrees,and,asbothafoliarspray(FS)androotdrench(RD).Applicationofbothphosphiteformsinducedpositiveeffectsonplantvitality(increasedleafchlorophyllcontent,leafchlorophyllfluorescence(Fv/Fm),enhanceddefensiveenzymeactivity(β-1,3-glucanase,peroxidase)andreducedPaelesionsize,themainproxyofPaesuccessoraggressiveness.PreventativeratherthancurativephosphiteapplicationresultedingreaterreductionsinPaeseverity.Littlesignificanceofmodeofapplication(FS,RD)andphosphiteanion(potassium,silicon)wasdemonstratedindicatingbothphosphitescanbefoliarappliedorrootdrenchedwithsimilardegreesofresultingPaecontrol.SignificantreductionsinPaeseverityrecordedinthisstudygavecredencetothepotentialofphosphitesasanalternativeorcomplimenttoconventionalbactericidesforPaecontrol.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegradingenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
Diversityofmicrobialcarbohydrate-activeenzymesinDanishanaerobicdigestersfedwithwastewatertreatmentsludge.
Wilkens,C.,Busk,P.K.,Pilgaard,B.,Zhang,W.J.,Nielsen,K.L.,Nielsen,P.H.&Lange,L.(2017).BiotechnologyforBiofuels,10(1),158.
LinktoArticle
ReadAbstract
Background:Improvedcarbohydrate-activeenzymes(CAZymes)areneededtofulfillthegoalofproducingfood,feed,fuel,chemicals,andmaterialsfrombiomass.Littleisknownabouthowthediversemicrobialcommunitiesinanaerobicdigesters(ADs)metabolizecarbohydratesorwhichCAZymesthatarepresent,makingtheADsauniquenichetolookforCAZymesthatcanpotentiatetheenzymeblendscurrentlyusedinindustry.Results:EnzymaticassaysshowedthatfunctionalCAZymesweresecretedintotheADenvironmentsinfourfull-scalemesophilicDanishADsfedwithprimaryandsurplussludgefrommunicipalwastewatertreatmentplants.MetagenomesfromtheADswereminedforCAZymeswithHomologytoPeptidePatterns(HotPep).19,335CAZymeswereidentifiedofwhich30%showed50%orloweridentitytoknownproteinsdemonstratingthatADsmakeupapromisingpoolfordiscoveryofnovelCAZymes.Afunctionwasassignedto54%ofallCAZymesidentifiedbyHotPep.Manydifferentα-glucan-actingCAZymeswereidentifiedinthefourmetagenomes,andthemostabundantfamilywasglycosidehydrolasefamily13,whichcontainsα-glucan-actingCAZymes.CellulyticandxylanolyticCAZymeswerealsoabundantinthefourmetagenomes.Thecellulyticenzymeswerelimitedalmosttoendoglucanasesandβ-glucosidases,whichreflectthelargeamountofpartlydegradedcelluloseinthesludge.NodockerindomainswereidentifiedsuggestingthatthecellulyticenzymesintheADsstudiedoperateindependently.OfxylanolyticCAZymes,especiallyxylanasesandβ-xylosidase,butalsoabatteryofaccessoryenzymes,werepresentinthefourADs.Conclusions:OurfindingssuggestthattheADsareagoodplacetolookfornovelplantbiomassdegradingandmodifyingenzymesthatcanpotentiatebiologicalprocessesandprovidebasisforproductionofarangeofadded-valueproductsfrombiorefineries.
蚂蚁淘电商平台
ebiomall.com
ebiomall.com

公司简介

蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台,
该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁
淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、
运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯
蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。

及时交付: 限时必达 畅选无忧
蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。

轻松采购: 在线下单 简单省事
蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。

售后申请: 耐心讲解 优质服务
蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。

2021-08-01
上海妍琦生物科技有限公司在发布的荧光素酶底物供应信息,浏览与荧光素酶底物相关的产品或在搜索更多与荧光素酶底物相关的内容。 查看更多
>
2021-09-21
近岸蛋白质科技有限公司在发布的AP显色底物 4-MUP供应信息,浏览与AP显色底物 4-MUP相关的产品或在搜索更多与AP显色底物 4-MUP相关的内容。 查看更多
>
2018-11-20
建立了贸易往来的品牌有Qiagen,Roche,Miltenyi,Omega,lifespan,Novus,Biomiga,chromotek,chondrex, Sigma, Invitrogen, Abcam, Santa cruz,ebioscienc... 查看更多
>
2018-11-08
西宝生物提供多种淀粉酶底物(麦芽七糖苷和麦芽三糖苷),适用于不同方法的诊断试剂盒,用于检测血清和尿液中的淀粉酶。品种齐全,稳定性好,并经过多家诊断试剂盒生产厂家的认证,详情致电400-021-8158!检测用底物及测定原理Alpha淀粉酶底物可分为两类1)麦芽七糖苷,水解产物为对**苯酚(PNP),代表产品有:4,6-亚乙基-对**苯-α-D-麦芽七糖苷4,6-苄基-对**苯-α-D-麦芽七糖苷在alpha淀粉酶... 查看更多
>
2018-06-06
上海远慕生物详细介绍磷酸化胰岛素受体底物-1抗体功能,鉴定方法及其他咨讯,本司所出售的抗体系列有很多种,包含有:FC段γ受体3/免疫球蛋白GFc段受体III抗体,整合素α4β7抗体,抑制素结合蛋白抗体,免疫球蛋白超家族成员6抗体,锌指蛋白IKAROS抗体,白介素3抗体(人),磷酸化KB抑制蛋白激酶γ抗体,干扰素epsilon1蛋白抗体,核蛋白9抗体(Ran结合蛋白M)及其他系列,更多抗体系列... 查看更多
>
2018-07-17
人胰岛素受体底物2试剂盒,进口试剂盒http://www.aatbio.com.cn/人胰岛素受体底物2试剂盒用于盛放检测化学成分、药物残留、病毒种类等化学试剂的盒子。一般医院、制药企业使用。核酸提取纯化类、蛋白检测类、RNA。abcamhttp://www.aatbio.com.cn/goodsid/fenleiyi/3200090_abcam/1.htmlabihttp://www.aatbio.com.cn/goodsid/fen 查看更多
>
2021-09-18
底物为参与生化反应的物质,可为化学元素、分子或化合物,作用可形成产物。一个生化反应的底物往往同时也是另一个化学反应的产物。... 查看更多
>
2018-07-16
amresco NP-40底物【1218】,amresco现货。Amresco公司来自美国,成立于 1976 年,为高质量生化试剂 / 试剂盒的生产商及供应商,产品服务于生物科研领域。用于体外诊断及医药中间体的美国 FDA 注册。amresco NP-40底物【1218】021-61806666 33779006品牌:AMRESCO数量:大量保存条件:4℃供应商:AMRESCO保质期:1年amresco NP-40底物【1218】Cod 查看更多
>
货号:EL00001 查看更多
>
2018-07-08
酶E为人体消化道中的某种酶,现用固化蛋白质作底物来研究酶E的催化实验:在5支试管内分别加入含有等量酶E但pH值各不相同的缓冲液,每支试管加1块1.5cm3的... 查看更多
>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑;
Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员,
或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
2016年高考生物二轮复习 热点专练 酶与atp(含解析)123
love123tyj2021-07-24
不算,因为酶和ATP反应前后总量不变。当然,蛋白酶和RNA酶不算(大部份酶由蛋白质构成,少部分由RNA构成)
酶怎样识别反应底物原理123
峻意2021-08-17
酶是不参加反应的,首先要认识这一点。酶的作用是降低反应的活化能,即与底物结合后,能使底物更容易反应。那么酶是如何行成中间底物的呢?我们知道酶是有专一性的,可以比喻酶是开门的钥匙,锁是底物,拿钥匙去开门这一结合就产生了中间产物。
【讨论】ELISA反应的显色剂TMB显色后放置多久会褪色 临床检验 ...123
shangmu09232021-07-22
ELISA实验,操作的时候,加入底物,溶液变成蓝色,孵育一段时间后,加入终止液,变成黄色,测吸光值。然后,当天忘记扔板子了,第二天想到去扔的时候,所有孔都变成无色透明的了!!!为什么会褪色???是试剂有问题?还是因为室温太高环境影响?如果是试剂问题那我之前做的结果还能信么?
酶与底物形成中间产物有什么意义_123
TMLiYing2021-07-26
酶是不参加反应的,首先要认识这一点。酶的作用是降低反应的活化能,即与底物结合后,能使底物更容易反应。那么酶是如何行成中间底物的呢?我们知道酶是有专一性的,可以比喻酶是开门的钥匙,锁是底物,拿钥匙去开门这一结合就产生了中间产物。(我已多一年多不学生物,科学需要严谨,请多多参考课本)
不同酶的km_何谓km值?有何意义?一个酶有多种底物时,如何判断其...123
2018-03-29
Km值等于酶促反应速度达到最大反应速度一半时所对应的底物浓度,是酶的特征常数之一。
不同的酶Km值不同,同一种酶与不同底物反应Km值也不同,Km值可近似的反应酶与底物的亲和力大小:Km值大,表明亲和力小;Km值小,表明亲合力大。
Km最小的那个底物,就是酶的最适底物。
不同的酶Km值不同,同一种酶与不同底物反应Km值也不同,Km值可近似的反应酶与底物的亲和力大小:Km值大,表明亲和力小;Km值小,表明亲合力大。
Km最小的那个底物,就是酶的最适底物。
反应物和底物是不是一个概念? 123
2021-07-27
不是
请问,酶只能与一种底物反应对否,一种底物有时也可催化多种酶,是否...123
2021-08-15
一类
下列关于酶的Km值的叙述,正确的是 A.是反应速度达到最...123
_啪啪啪丶2021-07-20
Vmax是酶完全被底物饱和时的反应速度,与酶浓度成正比,Km是酶促反应速度为最大速度一半时的底物浓度,那为什么又说Km与酶浓度无关??!!
【求助】逆转录成cDNA后的产量问题 经验共享 分析测试百科 123
青柠君君2017-12-12
【求助】wb实验中为什么要用到二抗,一抗反应完了直接后面的步骤不行...123
fenglianzhang052021-08-12
(资料)ELISA技术帖子整理 免疫学讨论版论坛123
shewlyn2021-08-18
[求助]:如何提高转化反应中的底物浓度!!!急急 微生物学和寄生虫学...123
lvtengfei822021-08-10
大家好:
我是新手,来到丁香园看到有这么多的热心人,感到很高兴!!我也有很多问题需要大家的帮助!!实验已经作了一年了可是毫无进展,心里很是着急!!
我的课题是以外消旋的苯基乙二醇为底物,用假丝酵母催化生成手性纯的S-型苯基乙二醇,由于是老课题,所以目标是提高转化反应的底物浓度和菌体的使用批次(目前菌体使用一批后便不能再使用)。
我曾试过很多种方法,但均效果不大!我试着在转化过程中添加醛类,酮类,醇类作为辅助底物,增加菌体的使用批次。可效果不好,特别是添加了醇类后还有的起了反作用,因为我的这个转化过程中涉及到NAD和NADPH的再生。(其转化过程是酵母先催化将外消旋的苯基乙二醇变为酮,再将酮还原为醇,经过这一过程就将外消旋的苯基乙二醇变为手性纯的S-型了)
我还试过用固定化的方法,海藻酸钙包埋法,可是这样底物浓度就更低了!!
我现在不知道下一步该如何做了,很着急,请大家帮帮忙。谢谢了!!谢谢
我是新手,来到丁香园看到有这么多的热心人,感到很高兴!!我也有很多问题需要大家的帮助!!实验已经作了一年了可是毫无进展,心里很是着急!!
我的课题是以外消旋的苯基乙二醇为底物,用假丝酵母催化生成手性纯的S-型苯基乙二醇,由于是老课题,所以目标是提高转化反应的底物浓度和菌体的使用批次(目前菌体使用一批后便不能再使用)。
我曾试过很多种方法,但均效果不大!我试着在转化过程中添加醛类,酮类,醇类作为辅助底物,增加菌体的使用批次。可效果不好,特别是添加了醇类后还有的起了反作用,因为我的这个转化过程中涉及到NAD和NADPH的再生。(其转化过程是酵母先催化将外消旋的苯基乙二醇变为酮,再将酮还原为醇,经过这一过程就将外消旋的苯基乙二醇变为手性纯的S-型了)
我还试过用固定化的方法,海藻酸钙包埋法,可是这样底物浓度就更低了!!
我现在不知道下一步该如何做了,很着急,请大家帮帮忙。谢谢了!!谢谢
▍
品牌问答