商品信息
联系客服

郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
Highpuritydyed,solubleAzo-CM-Celluloseforthemeasurementofenzymeactivity,forresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Substrateforthespecificmeasurementofendo-1,4-β-D-glucanase(cellulase).
Newchromogenicsubstratesfortheassayofalpha-amylaseand(1→4)-β-D-glucanase.
McCleary,B.V.(1980).CarbohydrateResearch,86(1),97-104.
LinktoArticle
ReadAbstract
Newchromogenicsubstrateshavebeendevelopedforthequantitativeassayofalpha-amylaseand(1→4)-β-D-glucanase.Thesewerepreparedbychemicallymodifyingamyloseorcellulosebeforedyeing,toincreasesolubility.Afterdyeing,thesubstrateswereeithersolubleorcouldbereADIlydispersedtoformfine,gelatinoussUSPensions.Assaysbasedontheuseofthesesubstratesaresensitiveandhighlyspecificforeitheralpha-amylaseor(1→4)-β-D-glucanase.Themethodofpreparationcanalsobeappliedtoobtainsubstratesforotherendo-hydrolases.
Evaluationofsubstratecompositionforlignocellulolyticenzymesproductionbysolidstatefermentationfromwastesofoliveoilandwineindustries.
Salgado,J.M.,Moreira,C.,Abrunhosa,L.,Venâncio,A.,Domínguez,J.M.&Belo,I.(2012).AmericanprogrammeforScience,TechnologyandDevelopment,95-101.
LinktoArticle
ReadAbstract
Wastesfromoliveoilandwineindustries(asexhaustedgrapemark,vineshoottrimmings,two-phaseolivemillwaste,vinassesandolivemillwastewaterwereevaluatedforlignocellulolyticenzymesproduction(ascellulases,xylanasesandferuloylesterases)bysolidstatefermentationwithAspergillusniger,AspergillusibericusandAspergillusjaponicus.TostudytheeffectofdifferentsubstratesinenzymesproductionaPlackett-Burmanexperimentaldesignwaspresented.Thevariablesthathadahigherpositiveeffectinlignocellulolyticenzymeswereurea,timeandexhaustedgrapemark.Themixtureoftwo-phaseolivemillwastewithexhaustedgrapemarkandvineshoottrimmingshadmaximaactivityofcellulases,xylanasesandferuloylesterases.
CellulolyticpotentialofThermophilicspeciesfromfourfungalorders.
Busk,P.K.&Lange.L.(2013).AMBExpress,3(1),47.
LinktoArticle
ReadAbstract
ElucidationoffungalbiomassdegradationisimportantforunderstandingtheturnoverofBIOLOGicalmaterialsinnatureandhasimportantimplicationsforindustrialbiomassconversion.Inrecentyearstherehasbeenanincreasinginterestinelucidatingthebiologicalroleofthermophilicfungiandincharacterizationoftheirindustriallyusefulenzymes.Inthepresentstudyweinvestigatedthecellulolyticpotentialof16thermophilicfungifromthethreeascomyceteordersSordariales,EurotialesandOnygenalesandfromthezygomyceteorderMucoralesthuscoveringallfungalordersthatincludethermophiles.Thermophilicfungiaretheonlydescribedeukaryotesthatcangrowattemperaturesabove45°C.All16fungiwereabletogrowoncrystallinecellulosebuttheirsecretedenzymesshowedwidelydifferentcellulolyticactivities,pHoptimaandthermostABIlities.Interestingly,incontrasttopreviousreports,wefoundthatsomefungisuchasMelanocarpusalbomycesreadilygrewoncrystallinecelluloseandproducedcellulases.Theseresultsindicatethattherearelargedifferencesinthecellulolyticpotentialofdifferentisolatesofthesamespecies.Furthermore,alltheselectedspecieswereabletodegradecellulosebutthedifferencesincellulolyticpotentialandthermostabilityofthesecretomedidnotcorrelatetothetaxonomicposition.PCRamplificationandsequencingof22cellulasegenesfromthefungishowedthatthelevelofthermostabilityofthecellulose-degradingactivitycouldnotbeinferredfromthephylogeneticrelationshipofthecellulases.
TranscriptionalcomparisonofthefilamentousfungusNeurosporacrassagrowingonthreemajormonosaccharidesD-glucose,D-xyloseandandL-arabinose.
Li,J.,Lin,L.,Li.H.,Tian,C.&Ma,Y.(2014).BiotechnologyforBiofuels,7(1),31.
LinktoArticle
ReadAbstract
Background:D-glucose,D-xyloseandL-arabinosearethethreemajormonosaccharidesinplantcellwalls.Completeutilizationofallthreesugarsisstillabottleneckforsecond-generationcellulolyticbioethanolproduction,especiallyforL-arabinose.However,littleisknownaboutgeneexpressionprofilesduringL-arabinoseutilizationinfungiandacomparisonofthegenome-widefungalresponsetothesethreemajormonosaccharideshasnotyetbeenreported.Results:Usingnext-generationsequencingtechnology,wehaveanalyzedthetranscriptomeofN.crassagrownonL-arabinoseversusD-xylose,withD-glucoseasthereference.WefoundthatthegeneexpressionprofilesonL-arabinoseweredramaticallydifferentfromthoseonD-xylose.ItappearsthatL-arabinosecanrewirethefungalcellmetabolicpathwaywidelyandprovoketheexpressionofmanykindsofsugartransporters,hemicellulasegenesandtranscriptionfactors.Incontrast,manyfewergenes,mainlyrelatedtothepentosemetabolicpathway,wereupregulatedonD-xylose.TherewiredmetabolicresponsetoL-arabinosewassignificantlydifferentandwiderthanthatundernocarbonconditions,althoughthecarbonstarvationresponsewasinitiatedonL-arabinose.Threenovelsugartransporterswereidentifiedandcharacterizedfortheirsubstrateshere,includingoneglucosetransporterGLT-1(NCU01633)andtwonovelpentosetransporters,XAT-1(NCU01132),XYT-1(NCU05627).Onetranscriptionfactorassociatedwiththeregulationofhemicellulasegenes,HCR-1(NCU05064)wasalsocharacterizedinthepresentstudy.Conclusions:WeconductedthefirsttranscriptomeanalysisofNeurosporacrassagrownonL-arabinoseandperformedacomparativeanalysiswithcellsgrownonD-xyloseandD-glucose,whichdeepenstheunderstandingoftheutilizationofL-arabinoseandD-xyloseinfilamentousfungi.ThedatasetgeneratedbythisresearchwillbeusefulforminingtargetgenesforD-xyloseandL-arabinoseutilizationengineeringandthenovelsugartransportesidentifiedaregoodtargetsforpentoseuntilizationandbiofuelsproduction.Moreover,hemicellulaseproductionbyfungicouldbeimprovedbymodifyingthehemicellulaseregulatordiscoveredhere.
Relevanceofthelightsignalingmachineryforcellulaseexpressionintrichodermareesei(hypocreajecorina).
Gyalai-Korpos,M.,Nagy,G.,Mareczky,Z.,Schuster,A.,Réczey,K.&Schmoll,M.(2010).BMCResearchNotes,3,330.
LinktoArticle
ReadAbstract
Background:Innature,lightisoneofthemostimportantenvironmentalcuesthatfungiperceiveandinterpret.Itisknownnotonlytoinfluencegrowthandconidiation,butalsocellulasegeneexpression.WethereforestudiedtherelevanceofthemaincomponentsofthelightperceptionmachineryofTrichodermareesei(Hypocreajecorina),ENV1,BLR1andBLR2,forproductionofplantcellwalldegradingenzymesinfermentationsaimedatefficientbiosynthesisofenzymemixturesforbiofuelproduction.Findings:Ourresultsindicatethatdespitecultivationinmostlydarkconditions,allthreecomponentsshowaninfluenceoncellulaseexpression.Whilewefoundtheperformanceoftheenzymemixturesecretedbyadeletionmutantinenv1tobeenhanced,thehighercellulolyticactivityobservedforΔblr2ismainlyduetoanincreasedsecretioncapacityofthisstrain.Δblr1showedenhancedbiomassaccumulation,butduetoitsobviouslylowersecretioncapacitystillwastheleastefficientstraininthisstudy.Conclusions:Weconcludethatwithrespecttoregulationofplantcellwalldegradingenzymes,thebluelightregulatorproteinsareunlikelytoactasacomplex.Theirregulatoryinfluenceoncellulasebiosynthesisinvolvesanalterationofproteinsecretion,whichmaybeduetoadjustmentoftranscriptionorposttranscriptionalregulationofupstreamfactors.Incontrast,theregulatoryfunctionofENV1seemstoinvolveadjustmentofenzymeproportionstoenvironmentalconditions.
DehydrogenaseGRD1RepresentsaNovelComponentoftheCellulaseReguloninTrichodermareesei(Hypocreajecorina).
Schuster,A.,Kubicek,C.P.&Schmoll,M.(2011).AppliedandEnvironmentalMicrobiology,77(13),4553-4563.
LinktoArticle
ReadAbstract
Trichodermareesei(Hypocreajecorina)isnowadaysthemostimportantindustrialproducerofcellulaseandhemicellulaseenzymes,whichareusedforpretreatmentofcellulosicbiomassforbiofuelproduction.Inthisstudy,weintroduceanovelcomponent,GRD1(glucose-ribitoldehydrogenase1),whichshowsenzymaticactivityoncellobioseandpositivelyinfluencescellulasegenetranscription,expression,andextracellularendo-1,4-β-D-glucanaseactivity.grd1isdifferentiallytranscribedupongrowthoncelluloseandtheinductionofcellulasegeneexpressionbysophorose.Thetranscriptionofgrd1iscoregulatedwiththatofcel7a(cbh1)underinducingconditions.GRD1isfurtherinvolvedincarbonsourceutilizationonseveralcarbonsources,suchasthoseinvolvedinlactoseandD-galactosecatabolism,inseveralcasesinalight-dependentmanner.WeconcludethatGRD1representsanovelenhancerofcellulasegeneexpression,whichbycoregulationwiththemajorcellulasemayactviaoptimizationofinducingmechanisms.
Influenceofthecarbonsourceonproductionofcellulases,hemicellulasesandpectinasesbyTrichodermareeseiRutC-30.
Olsson,L.,Christensen,T.M.I.E.,Hansen,K.P.&Palmqvist,E.A.(2003).EnzymeandMicrobialTechnology,33(5),612-619.
LinktoArticle
ReadAbstract
ThegrowthandenzymeproductionbyTrichodermareeseiRutC-30usingdifferentlignocellulosicmaterialsascarbonsourcewereinvestigated.Cellulose,sugarbeetpulpandalkalineextractedsugarbeetpulp(resultinginpartialremovalofhemicellulose,ligninandpectin)ormixturesthereofwereusedascarbonsources.Itwasfoundthatendoglucanaseandendoxylanseactivitieswereproducedthroughoutthecultivations,whereasα-arabinosidasewasinducedlateduringthecultivation.Thehighestamountsofendoglucanse,couldbemeasuredwhenT.reeseiRutC-30wasgrownoncelluloseorcellulosecontainingmixtures.Endoxylanasewasproducedonallsubstrates,butthepresenceofcellulosewasfavourablefortheproduction.Polygalacturonaseactivitycouldbemeasuredathighvaryinglevelsthroughoutthecultivations,exceptduringgrowthoncellulose.Thevaryinglevelsmightoriginatefromtheproductionofdifferentisoenzymesofpolygalacturonase.
Jeongeupianaejangsanensisgen.nov.,sp.nov.,acellulose-degradingbacteriumisolatedfromforestsoilfromNaejangMountaininKorea.
Yoon,J.H.,Choi,J.H.,Kang,S.J.,Choi,N.S.,Lee,J.S.&Song,J.J.(2010).InternationalJournalofSystematicandEvolutionaryMicrobiology,60(3),615-619.
LinktoArticle
ReadAbstract
AGram-stain-negative,motile,rod-shaped,cellulose-degradingbacterialstrain,BIO-TAS4-2T,whichbelongstotheBetaproteobacteria,wasisolatedfromforestsoilfromNaejangMountain,Korea,anditstaxonomicpositionwasinvestigatedbyusingapolyphasicstudy.StrainBIO-TAS4-2TgrewoptimallyatpH7.0–8.0,at30°Candinthepresenceof0–1.0 %(w/v)NaCl.Phylogenetictreesbasedon16SrRNAgenesequencesshowedthatstrainBIO-TAS4-2TclusteredwithmembersofthegeneraAndreprevotia,SilvimonasandDeefgeaofthefamilyNeisseriaceae,withwhichitexhibited16SrRNAgenesequencesimilaritiesof93.5–94.2 %.StrainBIO-TAS4-2TcontainedQ-8asthepredominantubiquinoneandsummedfeature3(C16:1ϖ7cand/oriso-C15:02-OH)andC16:0asthemajorfattyacids.TheDNAG+Ccontentwas63.8mol%.StrainBIO-TAS4-2Tcouldbedifferentiatedfrommembersofphylogeneticallyrelatedgenerabydifferencesinfattyacidcomposition,DNAG+Ccontentandsomephenotypicproperties.Onthebasisofphenotypic,chemotaxonomicandphylogeneticdata,strainBIO-TAS4-2Tisconsideredtorepresentanovelspeciesinanewgenus,forwhichthenameJeongeupianaejangsanensisgen.nov.,sp.nov.isproposed,withBIO-TAS4-2T(=KCTC22633T=CCUG57610T)asthetypestrain.
Regulationofendo-actingglycosylhydrolasesinthehyperthermophilicbacteriumThermotogamaritimagrownonglucan-andmannan-basedpolysaccharides.
Chhabra,S.R.,Shockley,K.R.,Ward,D.E.&Kelly,R.M.(2002).AppliedandEnvironmentalMicrobiology,68(2),545-554.
LinktoArticle
ReadAbstract
ThegenomesequenceofthehyperthermophilicbacteriumThermotogamaritimaencodesanumberofglycosylhydrolases.Manyoftheseenzymeshavebeenshowninvitrotodegradespecificglycosidesthatpresumablyserveascarbonandenergysourcesfortheorganism.However,becauseofthebroadsubstratespecificityofmanyglycosylhydrolases,itisdifficulttodeterminethephysiologicalsubstratepreferencesforspecificenzymesfrombiochemicalinformation.Inthisstudy,T.maritimawasgrownonarangeofpolysaccharides,includingbarleyβ-glucan,carboxymethylcellulose,carobgalactomannan,konjacglucomannan,andpotatostarch.Inallcases,significantgrowthwasobserved,andcelldensitiesreached109cells/ml.Northernblotanalysesrevealeddifferentsubstrate-dependentexpressionpatternsforgenesencodingthevariousendo-actingβ-glycosidases;thesepatternsrangedfromstrongexpressiontonoexpressionundertheconditionstested.Forexample,cel74(TM0305),ageneencodingaputativeβ-specificendoglucananse,wasstronglyexpressedonallsubstratestested,includingstarch,whilenoevidenceofexpressionwasobservedonanysubstrateforlam16(TM0024),xyl10A(TM0061),xyl10B(TM0070),andcel12A(TM1524),whicharegenesthatencodealaminarinase,twoxylanases,andanendoglucanase,respectively.Thecel12B(TM1525)gene,whichencodesanendoglucanase,wasexpressedonlyoncarboxymethylcellulose.Anextracellularmannanaseencodedbyman5(TM1227)wasexpressedoncarobgalactomannanandkonjacglucomannanandtoalesserextentoncarboxymethylcellulose.Anunexpectedresultwasthefindingthatthecel5A(TM1751)andcel5B(TM1752)genes,whichencodeputativeintracellular,β-specificendoglucanases,wereinducedonlywhenT.maritimawasgrownonkonjacglucomannan.Toinvestigatethebiochemicalbasisofthisfinding,therecombinantformsofMan5(Mr,76,900)andCel5A(Mr,37,400)wereexpressedinEscherichiacoliandcharacterized.Man5,aT.maritimaextracellularenzyme,hadameltingtemperatureof99°Candanoptimuntemperatureof90°C,comparedto90and80°C,respectively,fortheintracellularenzymeCel5A.WhileMan5hydrolyzedbothgalactomannanandglucomannan,noactivitywasdetectedonglucansorxylans.Cel5A,however,notonlyhydrolyzedbarleyβ-glucan,carboxymethylcellulose,xyloglucan,andlicheninbutalsohadactivitycomparabletothatofMan5ongalactomannanandhigheractivitythanMan5onglucomannan.ThebiochemicalcharacteristicsofCel5A,thefactthatCel5AwasinducedonlywhenT.maritimawasgrownonglucomannan,andtheintracellularlocalizationofCel5Asuggestthatthephysiologicalroleofthisenzymeincludeshydrolysisofglucomannanoligosaccharidesthataretransportedfollowinginitialhydrolysisbyextracellularglycosidases,suchasMan5.
CellulosedegradationbySulfolobussolfataricusrequiresacell-anchoredendo-β-1-4-glucanase.
Girfoglio,M.,Rossi,M.&Cannio,R.(2012).JournalofBacteriology,194(18),5091–5100.
LinktoArticle
ReadAbstract
Asequenceencodingaputativeextracellularendoglucanase(sso1354)wasidentifiedinthecompletegenomesequenceofSulfolobussolfataricus.Theencodedproteinsharessignaturemotifswithmembersofglycosidehydrolasesfamily12.Afteranunsuccessfulfirstattemptatcloningthefull-lengthcodingsequencesinEscherichiacoli,anactivebutunstablerecombinantenzymelackinga27-residueN-terminalsequencewasgenerated.This27-amino-acidsequenceshowssignificantsimilaritywithcorrespondingregionsinthesugarbindingproteinsAraS,GlcS,andTreSofS.solfataricusthatareresponsIBLeforanchoringthemtotheplasmamembrane.Astrategybasedonaneffectivevector/hostgeneticsystemforSulfolobusandonexpressioncontrolbythepromoteroftheS.solfataricusgenewhichencodestheglucosebindingproteinallowedproductionoftheenzymeinsufficientquantitiesforstudy.Infact,theenzymeexpressedinS.solfataricuswasstableandhighlythermoresistantandshowedoptimalactivityatlowpHandhightemperature.Theproteinwasdetectedmainlyintheplasmamembranefraction,confirmingthestructuralsimilaritytothesugarbindingproteins.TheresultsoftheproteinexpressioninthetwodifferenthostsshowedthattheSSO1354enzymeisendowedwithanendo-β-1-4-glucanaseactivityandspecificallyhydrolyzescellulose.Moreover,italsoshowssignificantbutdistinguishablespecificitytowardseveralothersugarpolymers,suchaslichenan,xylan,debranchedarabinan,pachyman,andcurdlan.
Unravellingthemolecularbasisforlightmodulatedcellulasegeneexpression-theroleofphotoreceptorsinNeurosporacrassa.
Schmoll,M.,Tian,C.,Sun,J.,Tisch,D.&Glass,N.L.(2012).BMCgenomics,13(1),127.
LinktoArticle
ReadAbstract
Background:Lightrepresentsanimportantenvironmentalcue,whichexertsconsiderableinfluenceonthemetabolismoffungi.StudieswiththebiotechnologicalfungalworkhorseTrichodermareesei(Hypocreajecorina)haverevealedaninterconnectionbetweentranscriptionalregulationofcellulolyticenzymesandthelightresponse.Neurosporacrassahasbeenusedasamodelorganismtostudylightandcircadianrhythmbiology.WethereforeinvestigatedwhetherlightalsoregulatestranscriptionalregulationofcellulolyticenzymesinN.crassa.Results:WeshowthattheN.crassaphotoreceptorgeneswc-1,wc-2andvvdareinvolvedinregulationofcellulasegeneexpression,indicatingthatthisphenomenonisconservedamongfilamentousfungi.ThenegativeeffectofVVDonproductionofcellulolyticenzymesistherebyaccomplishedbyitsroleinphotoadaptationandhenceitsfunctioninWhitecollarcomplex(WCC)formation.Incontrast,theinductionofvvdexpressionbytheWCCdoesnotseemtobecrucialinthisprocess.Additionally,wefoundthatWC-1andWC-2notonlyactasacomplex,butalsohaveindividualfunctionsupongrowthoncellulose.Conclusions:Genomewidetranscriptomeanalysisofphotoreceptormutantsandevaluationofresultsbyanalysisofmutantstrainsidentifiedseveralcandidategeneslikelytoplayaroleinlightmodulatedcellulasegeneexpression.Geneswithfunctionsinaminoacidmetabolism,glycogenmetabolism,energysupplyandproteinfoldingareenrichedamonggeneswithdecreasedexpressionlevelsinthewc-1andwc-2mutants.Theabilitytoproperlyrespondtoaminoacidstarvation,i.e.up-regulationofthecrosspathwaycontrolproteincpc-1,wasfoundtobebeneficialforcellulasegeneexpression.OurresultsfurthersuggestacontributionofoxidativedepolymerizationofcellulosetoplantcellwalldegradationinN.crassa.
Characterisationofcellulaseactivityinthedigestivesystemoftheredclawcrayfish(Cheraxquadricarinatus).
Xue,X.M.,Anderson,A.J.,Richardson,N.A.,Anderson,A.J.,Xue,G.P.&Mather,P.B.(1999).Aquaculture,180(3),373-386.
LinktoArticle
ReadAbstract
Endogenouscellulaseactivitywasidentifiedinthegastricfluidanddigestiveglandoftheredclawcrayfish.CellulaseshowedmaximalactivityfrompH4to5andwasstableforupto2hat40°C.Cellulaseactivityinthedigestiveglandwasunaffectedbyantibiotictreatment.Takentogetherthesefindingssuggestasignificantendogenouscomponentforredclawcellulaseactivity.Partialpurificationofcellulaseactivitywasperformedusinganionexchangeandgelfiltrationchromatography.OnemajorandoneminorbandofactivitywereidentifiedsubsequentlybySDS-PAGEandzymography.Themolecularweightofthemajorbandwasestimatedat40kDawhiletheminorbandwasestimatedat30kDa.Redclawcellulaseenzymesdemonstratedbroadsubstratespecificity,hydrolysingpolysaccharidescontainingβ-1,4andmixedβ-1,4andβ-1,3glycosidicbondsbutshowedapreferenceforsolublesubstrates.Hydrolysisproductsofcellodextrinsofvariouslengthsalsoshowedthattheenzymesliberatedfreeglucose.Exposureofredclawtoantibioticsresultedinadramaticdeclineinbacterialpopulationsinthegastriccontents(>90%)butonlya40%declineincellulaseactivity.
Identificationofthermostableβ-xylosidaseactivitiesproducedbyAspergillusbrasiliensisandAspergillusniger.
Pedersen,M.,Lauritzen,H.K.,Frisvad,J.C.&Meyer,A.S.(2007).BiotechnologyLetters,29(5),743-748.
LinktoArticle
ReadAbstract
TwentyAspergillusstrainswereevaluatedforproductionofextracellularcellulolyticandxylanolyticactivities.Aspergillusbrasiliensis,A.nigerandA.japonicasproducedthehighestxylanaseactivitieswiththeA.brasiliensisandA.nigerstrainsproducingthermostableβ-xylosidases.Theβ-xylosidaseactivitiesoftheA.brasiliensisandA.nigerstrainshadsimilartemperatureandpHoptimaat75°CandpH5andretained62%and99%,respectively,oftheseactivitiesover1hat60°C.At75°C,thesevalueswere38and44%,respectively.WhereasA.nigerisawellknownenzymeproducer,thisisthefirstreportofxylanaseandthermostableβ-xylosidaseproductionfromthenewlyidentified,non-ochratoxin-producingspeciesA.brasiliensis.
TheeffectofPleurotusostreatusarabinofuranosidaseanditsevolvedvariantinlignocellulosicbiomassesconversion.
Marcolongo,L.,Ionata,E.,Cara,F.L.,Amore,A.,Giacobbe,S.,Pepe,O.&Faraco,V.(2014).FungalGeneticsandBiology,72,162-167.
LinktoArticle
ReadAbstract
ThefungalarabinofuranosidasefromPleurotusostreatusPoAbfrecombinantlyexpressedinPichiapastorisrPoAbfanditsevolvedvariantrPoAbfF435Y/Y446Fweretestedfortheireffectivenesstoenhancetheenzymaticsaccharificationofthreelignocellulosicbiomasses,namelyArundodonax,corncobsandbrewer’sspentgrains(BSG),afterchemicalorchemical–physicalpretreatment.AlltherawmaterialsweresubjectedtoanalkalinepretreatmentbysoakinginaqueousammoniasolutionwhilstthebiomassfromA.donaxwasalsopretreatedbysteamexplosion.Thecapabilityofthewild-typeandmutantrPoAbftoincreasethefermentablesugarsrecoverywasassessedbyusingtheseenzymesincombinationwithdifferent(hemi)cellulolyticactivities.TheseenzymaticmixtureswereeitherentirelyofcommercialoriginorcontainedthecellulasefromStreptomycessp.G12CelStreprecombinantlyexpressedinEscherichiacoliinsubstitutiontothecommercialcounterparts.TheadditionofthearabinofuranosidasesfromP.ostreatusimprovedthehydrolyticefficiencyofthecommercialenzymaticcocktailsonallthepretreatedbiomasses.ThebestresultswereobtainedusingtherPoAbfevolvedvariantandarerepresentedbyincreasesofthexyloserecoveryupto56.4%.Thesedataclearlyhighlighttheimportantroleoftheaccessoryhemicellulolyticactivitiestooptimizethexylanbioconversionyields.
GrowthandEnzymeProductioninBlueCrabs(Callinectessapidus)FedCelluloseandChitinSupplementedDiets.
Allman,A.L.,Williams,E.P.&Place,A.R.(2017).JournalofShellfishResearch,36(1),283-291.
LinktoArticle
ReadAbstract
Thebluecrab[Callinectessapidus(Rathbun,1896)]isabenthicdecapodwithavarieddiet.Thedietincludesinvertebratesanddetritalmaterialthatcanhaverelativelylargeamountsofchitinandcellulose,bothofwhichcanbedifficulttodigestformanyorganismsandoftenrequiretheaidofspecificbacteriainthegutmicrobiome.Inthisstudy,juvenilebluecrabswerefedanoptimizeddefinedpelleteddietwitha20%replacementofwheatflourfillerwitheitherchitin,cellulose,ora14%/6%mixofboth,followedbyadietswitchtotheopposingingredient.Crabshadincreasinggrowthperformancewithincreasingamountsofcelluloseinthedietversuschitinandhadanadditionalmoltinmostcases.Thisoccurredduringtheinitialphaseandfollowingtheswitch,indicatingthatperformancecanberecovered.Subsequently,celluloseandchitindigestionassayswereusedtoshowthattheforegut,midgut,andhindgutwereallabletosignificantlydigestmorecellulosethanchitinwiththemajorityofactivityintheforegutandmidgut.Implicationsforrearinganddietformulationsaswellastheroleofcelluloseandchitindigestioninthenaturaldietarediscussed.
Conferringcellulose-degradingabilitytoYarrowialipolyticatofacilitateaconsolidatedbioprocessingapproach.
Guo,Z.P.,Duquesne,S.,Bozonnet,S.,Cioci,G.,Nicaud,J.M.,Marty,A.&O’Donohue,M.J.(2017).BiotechnologyforBiofuels,10(1),132.
LinktoArticle
ReadAbstract
Background:Yarrowialipolytica,oneofthemostwidelystudied“nonconventional”oleaginousyeastspecies,isunabletogrowoncellulose.Recently,weidentifiedandoverexpressedtwoendogenousβ-glucosidasesinY.lipolytica,thusenablingthisyeasttousecello-oligosaccharidesasacarbonsourceforgrowth.Usingthisengineeredyeastplatform,wehavenowgonefurthertowardbuildingafullycellulolyticY.lipolyticaforuseinconsolidatedbioprocessingofcellulose.Results:Initially,differentessentialenzymecomponentsofacellulasecocktail(i.e,.cellobiohydrolasesandendoglucanases)wereindividuallyexpressedinY.lipolyticainordertoascertaintheviabilityofthestrategy.Accordingly,theTrichodermareeseiendoglucanaseI(TrEGI)andII(TrEGII)weresecretedasactiveproteinsin Y.lipolytica,withthesecretionyieldofEGIIbeingtwicethatofEGI.CharacterizationofthepurifiedHis-taggedrecombinantEGproteins(rhTrEGs)revealedthatrhTrEGIdisplayedhigherspecificactivitythanrhTrEGIIonbothcellotrioseandinsolublecellulosicsubstrates,suchasAvicel,β-1,3glucan,β-1,4glucan,andPASC.Similarly,cellobiohydrolases,suchasT.reeseiCBHIandII(TrCBHIandII),andtheCBHIfromNeurosporacrassa(NcCBHI)weresuccessfullyexpressedinY.lipolytica. However,theyieldoftheexpressed TrCBHIwaslow,soworkonthiswasnotpursued.Contrastingly,rhNcCBHIwasnotonlywellexpressed,butalsohighlyactiveonPASCandmoreactiveonAvicel(0.11 U/mg)thanwild-type TrCBHI(0.065 U/mg).Therefore,workwaspursuedusingacombinationof NcCBHIand TrCBHII.ThequantificationofenzymelevelsinculturesupernatantsrevealedthattheuseofahybridpromoterinsteadoftheprimarilyusedTEFpromoterprocuredfourandeighttimesmore NcCBHIand TrCBHIIexpressions,respectively.Finally,thecoexpressionofthepreviouslydescribed Y.lipolyticaβ-glucosidases,theCBHII,andEGIandIIfromT.reesei,andtheN.crassaCBHIprocuredanengineered Y.lipolyticastrainthatwasabletogrowbothonmodelcellulosesubstrates,suchashighlycrystallineAvicel,andonindustrialcellulosepulp,suchasthatobtainedusinganorganosolvprocess.Conclusions:A Y.lipolyticastraincoexpressingsixcellulolyticenzymecomponentshasbeensuccessfullydeveloped.Inaddition,theresultspresentedshowhowtherecombinantstraincanbeoptimized,forexample,usingartificialpromoterstotailorexpressionlevels.Mostsignificantly,thisstudyhasprovidedademonstrationofhowthestraincangrowonasampleofindustrialcelluloseassolecarbonsource,thusrevealingthefeasibilityofYarrowia-basedconsolidatedbioprocessfortheproductionoffuelandchemicalprecursors.Further,enzymeandstrainoptimization,coupledtoappropriateprocessdesign,willundoubtedlyleadtomuchbetterperformancesinthefuture.
Immobilizationoftwoendoglucanasesfromdifferentsources.
Sarcina,R.,Giosafatto,C.V.L.,Faraco,V.,Lama,L.,Esposito,M.&Mariniello,L.(2017).InternationalJournalofEnvironment,AgricultureandBiotechnology,2(4),1809-1813.
LinktoArticle
ReadAbstract
Cellulasesareaimportantfamilyofhydrolyticenzymeswhichcatalyzethebondofcelluloseandotherrelatedcello-oligosaccharidederivates.Industrialapplicationsrequireenzymeshighlystableandeconomicallyviableintermsofreusability.Thesecostscanbereducedbyimmobilizingthecellulases,offeringapotentialsolutionthroughenzymerecyclingandeasyrecovery.Thecovalentimmobilizationofenzymesisreportedhere:oneiscommercialcellulasefromAspergillusnigerandotheroneisrecombinantenzyme,namedCelStrepitbecausewasisolatedfromanewcellulolyticstrain,Streptomycessp.G12,.TheoptimalpHforbindingis4.6forbothcellulasesandtheoptimalenzymeconcentrationsare1mg/mLand5mg/mLrespectively.Thesupportforimmobilizationisapoliacrylicmatrix.Experimentscarriedoutinthisworkshowpositiveresultsofenzymeimmobilizationintermsofefficiencyandstabilityandconfirmtheeconomicandbiotechnicaladvantagesofenzymeimmobilizationforawiderangeofindustrialapplications.
ChemicalcharacterizationandimmunomodulatoryactivityofacetylatedpolysaccharidesfromDendrobiumdevonianum.
Deng,Y.,Li,M.,Chen,L.X.,Chen,X.Q.,Lu,J.H.,Zhao,J.&Li,S.P.(2017).CarbohydratePolymers,180,238-245.
LinktoArticle
ReadAbstract
Thechainconformation,chemicalcharactersandimmunomodulatoryactivityofpolysaccharidefromDendrobiumdevonianum(DDP)wereinvestigated.Resultsshowedthatmolecularweights,polydispersityindex,radiusofgyrationsofDDPwere3.99×105 Da,1.27,74.1nm,respectively.Byapplyingthepolymersolutiontheory,theexponent(v)valuesof<>2>z1/2=kMwvwascalculatedas0.38,whichrevealedthatDDPexistedasaglobularshapeinaqueoussolution,andfurtherconfirmedbyAFManalysis.Furthermore,themainmonosaccharidecompositionswereManandGlcwiththeratioof29.61:1.00.Indeed,themainglycosidiclinkageswereβ-1,4-Manp,andsubstitutedwithacetylgroupsatO-2andO-3position.Notably,DDPcouldpromotetheimmunefunctionsofmacrophagesincludingNOreleaseandphagocytosis.Thus,DDPcouldbeexploredasanaturalimmune-stimulatingagentinthehealthandfunctionalfoodareaaswellaspharmaceuticalindustries.
蚂蚁淘电商平台
ebiomall.com
ebiomall.com

公司简介

蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台,
该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁
淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、
运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯
蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。

及时交付: 限时必达 畅选无忧
蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。

轻松采购: 在线下单 简单省事
蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。

售后申请: 耐心讲解 优质服务
蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。

2017-11-29
米氏方程(Michaelis-Menten equation)表示一个酶促反应的起始速度与底物浓度关系的速度方程。在酶促反应中,在低浓度底物情况下,反应相对于底物是一级反应(first order reaction);而当底物浓度处于中间范围时,反应(相对于底物)是混合级反应(mixed order reaction)。当底物浓度增加时,反应由一级反... 查看更多
>
2018-11-27
上海优予生物科技有限公司在发布的增强型HRP-DAB底物显色试剂盒供应信息,浏览与增强型HRP-DAB底物显色试剂盒相关的产品或在搜索更多与增强型HRP-DAB底物显色试剂盒相关的内容。 查看更多
>
2021-09-20
底物为参与生化反应的物质,可为化学元素、分子或化合物,作用可形成产物。一个生化反应的底物往往同时也是另一个化学反应的产物。... 查看更多
>
2021-08-02
IHC,ICC,底物沉积信号放大系统是由上海文渊阁生物科技有限公司代理或销售的willget品牌的仪器,产品来源于shanghaichina。上海文渊阁生物科技有限公司是中国最权威的IHC,ICC,底物沉积信号放大系统销售服务商之一,在上海等地方销售IHC,ICC,底物沉积信号放大系统已经多年。同时,生物在线为您提供众多企业IHC,ICC,底物沉积信号放大系统仪器产品及图片,以便挑选到性价比高,合适的IHC,ICC,底物沉积信号放大系统产品 查看更多
>
2018-07-16
amresco NP-40底物【1218】,amresco现货。Amresco公司来自美国,成立于 1976 年,为高质量生化试剂 / 试剂盒的生产商及供应商,产品服务于生物科研领域。用于体外诊断及医药中间体的美国 FDA 注册。amresco NP-40底物【1218】021-61806666 33779006品牌:AMRESCO数量:大量保存条件:4℃供应商:AMRESCO保质期:1年amresco NP-40底物【1218】Cod 查看更多
>
2018-02-18
建立了贸易往来的品牌有Qiagen,Roche,Miltenyi,Omega,lifespan,Novus,Biomiga,chromotek,chondrex, Sigma, Invitrogen, Abcam, Santa cruz,ebioscienc... 查看更多
>
2021-08-25
上海研生实业有限公司所提供的胰岛素受体底物-2抗体质量可靠、规格齐全,上海研生实业有限公司不仅具有精湛的技术水平,更有良好的售后服务和优质的解决方案,欢迎您来电咨询此产品具体参数及价格等详细信息! 查看更多
>
2021-08-10
上海冠东生物科技有限公司在发布的 ACTICHROME® Heparin (anti-FXa), activity assay(肝素抗Xa活性发色底物法试剂盒)供应信息,浏览与 ACTICHROME® Heparin (anti-FXa), activity assay(肝素抗Xa活性发色底物法试剂盒)相关的产品或在搜索更多与 ACTICHROME® Heparin (anti-FXa), activity assay(肝素抗Xa活性发色底物法试剂盒)相关的内容。 查看更多
>
2021-09-14
货号:SFQ003 查看更多
>
2021-08-13
北京君诺德生物技术有限公司在发布的UltraECL超敏底物化学发光试剂盒供应信息,浏览与UltraECL超敏底物化学发光试剂盒相关的产品或在搜索更多与UltraECL超敏底物化学发光试剂盒相关的内容。 查看更多
>
2021-06-03
专营生物仪器,移液器系列,离心机系列,化学类试剂,细胞培养等生物方面产品 查看更多
>
2021-07-22
蚂蚁淘生物科技有限公司作为一家专业性的生物科技公司,主要业务是为科研院所、高等院校、环境保护部门的相关实验室和制药、食品、化工等企业的实验室提供服务。代理经营产品主要包括国内外仪器设备、试剂和消耗品等。自公司成立以来,蚂蚁淘一贯以“正品极速”得到广大新老客户的肯定和支持,我们还将不断提升自身的专业技术水平和服务质量,为您提供更好的 查看更多
>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑;
Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员,
或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
(资料)ELISA技术帖子整理 免疫学讨论版论坛123
shewlyn2021-08-18
【研究进展】徐彦辉等《自然》揭示TET蛋白底物偏好性机制_问答详...123
科研无止尽2021-08-07
科学网10月29日上海讯(记者黄辛)今天,国际顶级学术期刊《自然》(Nature)在线发表了复旦大学生物医学研究院徐彦辉教授课题组的论文。该项研究成果揭示了TET蛋白底物偏好性机制,对研究多种疾病的发病机制,尤其对血液肿瘤(如髓系白血病)治疗性药物开发有重大意义。
这篇题为“晶体结构揭示TET蛋白介导的氧化反应底物偏好性机制”的研究论文,首次报道了TET蛋白对三种DNA甲基化衍生物不同催化活性的分子机制,为基因组中5-羟甲基胞嘧啶相对稳定存在提供了分子水平的解释。该论文是徐彦辉课题组在DNA甲基化领域作出的又一突破性成果。组长徐彦辉为复旦大学生物医学研究院研究员,复旦大学附属肿瘤医院兼职教授。该课题组曾于2013年在《细胞》杂志报道TET蛋白的三维结构,于2015年初在《自然》杂志报道DNA甲基化建立的机制研究(参考徐彦辉课题组网站,http://xtal.fudan.edu.cn/index-ch.html)。
据悉,人体基因组DNA是生命遗传信息的基本载体,生命延续和繁衍需要DNA上的一种“甲基化修饰”。“甲基化修饰”具有调控人体内特定基因的表达和决定细胞命运的作用,可使细胞发生程序化的改变。哺乳动物基因组的胞嘧啶上会产生甲基化修饰,称为5-甲基胞嘧啶(5mC,即第5种碱基)。而TET蛋白是哺乳动物细胞中的一种氧化酶,可以执行DNA去甲基化功能。近期研究发现,TET蛋白在去甲基化过程中,将5mC氧化为5hmC(5-羟甲基胞嘧啶,第6种碱基)后,可继续催化5-hmC转化为5-fC(5-醛基胞嘧啶,第7种碱基)和5-caC(5-羧基胞嘧啶,第8种碱基)。其中,5hmC在细胞内相对稳定存在,且其含量远远高于5fC和5caC。但这一现象一直没有合理的生物学解释。徐彦辉课题组综合利用结构生物学,生物化学和计算生物学等研究方法,揭开了这一谜底。
徐彦辉课题组的生化实验表明,TET蛋白对5mC具备很高活性(产生5hmC),而对5hmC(产生5fC)和5fC(产生5caC)的活性很低。TET蛋白就如同连续的三个扶梯,在转化不同碱基的情况下,其转化速度明显不同,导致产生较多的5hmC和少量的5fC及5caC。结构研究发现,5mC在TET蛋白催化口袋中的取向使得它很容易被催化活性中心俘获并被氧化为5hmC。5hmC和5fC由于已经有氧的存在,其在催化口袋中被限制住,不容易发生进一步的氧化反应,导致TET蛋白对这两种碱基活性降低。在这样的催化能力差异下,TET会很顺利将5mC产生5hmC,一旦5hmC产生,TET将不容易使其进一步氧化为5fC和5caC,导致细胞内5hmC相对稳定,并且其含量远远高于5fC和5caC。在特定的基因中区域,TET蛋白可能被特定的调控因子激活,会跨越能垒阻碍产生高活性的TET,连续氧化为5fC和5caC。这使得5mC在TET蛋白催化下更容易被氧化为5hmC。这一发现解决了困扰表观遗传学领域的一个难题,也为揭示其他蛋白质逐步催化反应的分子机制提供了新思路和新方法。
据悉,该项工作是由复旦大学徐彦辉课题组与中国科学院上海药物所罗成课题组合作完成的,徐彦辉课题组的胡璐璐博士和程净东博士,以及罗成课题组的卢俊彦博士是该项工作的主要完成人。该项研究的结构数据是在中科院上海光源BL-17U,国家蛋白质科学中心BL-19U等线站上采集。
这篇题为“晶体结构揭示TET蛋白介导的氧化反应底物偏好性机制”的研究论文,首次报道了TET蛋白对三种DNA甲基化衍生物不同催化活性的分子机制,为基因组中5-羟甲基胞嘧啶相对稳定存在提供了分子水平的解释。该论文是徐彦辉课题组在DNA甲基化领域作出的又一突破性成果。组长徐彦辉为复旦大学生物医学研究院研究员,复旦大学附属肿瘤医院兼职教授。该课题组曾于2013年在《细胞》杂志报道TET蛋白的三维结构,于2015年初在《自然》杂志报道DNA甲基化建立的机制研究(参考徐彦辉课题组网站,http://xtal.fudan.edu.cn/index-ch.html)。
据悉,人体基因组DNA是生命遗传信息的基本载体,生命延续和繁衍需要DNA上的一种“甲基化修饰”。“甲基化修饰”具有调控人体内特定基因的表达和决定细胞命运的作用,可使细胞发生程序化的改变。哺乳动物基因组的胞嘧啶上会产生甲基化修饰,称为5-甲基胞嘧啶(5mC,即第5种碱基)。而TET蛋白是哺乳动物细胞中的一种氧化酶,可以执行DNA去甲基化功能。近期研究发现,TET蛋白在去甲基化过程中,将5mC氧化为5hmC(5-羟甲基胞嘧啶,第6种碱基)后,可继续催化5-hmC转化为5-fC(5-醛基胞嘧啶,第7种碱基)和5-caC(5-羧基胞嘧啶,第8种碱基)。其中,5hmC在细胞内相对稳定存在,且其含量远远高于5fC和5caC。但这一现象一直没有合理的生物学解释。徐彦辉课题组综合利用结构生物学,生物化学和计算生物学等研究方法,揭开了这一谜底。
徐彦辉课题组的生化实验表明,TET蛋白对5mC具备很高活性(产生5hmC),而对5hmC(产生5fC)和5fC(产生5caC)的活性很低。TET蛋白就如同连续的三个扶梯,在转化不同碱基的情况下,其转化速度明显不同,导致产生较多的5hmC和少量的5fC及5caC。结构研究发现,5mC在TET蛋白催化口袋中的取向使得它很容易被催化活性中心俘获并被氧化为5hmC。5hmC和5fC由于已经有氧的存在,其在催化口袋中被限制住,不容易发生进一步的氧化反应,导致TET蛋白对这两种碱基活性降低。在这样的催化能力差异下,TET会很顺利将5mC产生5hmC,一旦5hmC产生,TET将不容易使其进一步氧化为5fC和5caC,导致细胞内5hmC相对稳定,并且其含量远远高于5fC和5caC。在特定的基因中区域,TET蛋白可能被特定的调控因子激活,会跨越能垒阻碍产生高活性的TET,连续氧化为5fC和5caC。这使得5mC在TET蛋白催化下更容易被氧化为5hmC。这一发现解决了困扰表观遗传学领域的一个难题,也为揭示其他蛋白质逐步催化反应的分子机制提供了新思路和新方法。
据悉,该项工作是由复旦大学徐彦辉课题组与中国科学院上海药物所罗成课题组合作完成的,徐彦辉课题组的胡璐璐博士和程净东博士,以及罗成课题组的卢俊彦博士是该项工作的主要完成人。该项研究的结构数据是在中科院上海光源BL-17U,国家蛋白质科学中心BL-19U等线站上采集。
gabriel合成法研究与应用进展newest1modified1.doc全文可读123
TD哥哥40332021-07-23
水解过程如下几种方法
向左转|向右转向左转|向右转向左转|向右转向左转|向右转
向左转|向右转向左转|向右转向左转|向右转向左转|向右转
[求助]:如何提高转化反应中的底物浓度!!!急急 微生物学和寄生虫学...123
lvtengfei822021-08-10
大家好:
我是新手,来到丁香园看到有这么多的热心人,感到很高兴!!我也有很多问题需要大家的帮助!!实验已经作了一年了可是毫无进展,心里很是着急!!
我的课题是以外消旋的苯基乙二醇为底物,用假丝酵母催化生成手性纯的S-型苯基乙二醇,由于是老课题,所以目标是提高转化反应的底物浓度和菌体的使用批次(目前菌体使用一批后便不能再使用)。
我曾试过很多种方法,但均效果不大!我试着在转化过程中添加醛类,酮类,醇类作为辅助底物,增加菌体的使用批次。可效果不好,特别是添加了醇类后还有的起了反作用,因为我的这个转化过程中涉及到NAD和NADPH的再生。(其转化过程是酵母先催化将外消旋的苯基乙二醇变为酮,再将酮还原为醇,经过这一过程就将外消旋的苯基乙二醇变为手性纯的S-型了)
我还试过用固定化的方法,海藻酸钙包埋法,可是这样底物浓度就更低了!!
我现在不知道下一步该如何做了,很着急,请大家帮帮忙。谢谢了!!谢谢
我是新手,来到丁香园看到有这么多的热心人,感到很高兴!!我也有很多问题需要大家的帮助!!实验已经作了一年了可是毫无进展,心里很是着急!!
我的课题是以外消旋的苯基乙二醇为底物,用假丝酵母催化生成手性纯的S-型苯基乙二醇,由于是老课题,所以目标是提高转化反应的底物浓度和菌体的使用批次(目前菌体使用一批后便不能再使用)。
我曾试过很多种方法,但均效果不大!我试着在转化过程中添加醛类,酮类,醇类作为辅助底物,增加菌体的使用批次。可效果不好,特别是添加了醇类后还有的起了反作用,因为我的这个转化过程中涉及到NAD和NADPH的再生。(其转化过程是酵母先催化将外消旋的苯基乙二醇变为酮,再将酮还原为醇,经过这一过程就将外消旋的苯基乙二醇变为手性纯的S-型了)
我还试过用固定化的方法,海藻酸钙包埋法,可是这样底物浓度就更低了!!
我现在不知道下一步该如何做了,很着急,请大家帮帮忙。谢谢了!!谢谢
酶怎样识别反应底物原理123
峻意2021-08-17
酶是不参加反应的,首先要认识这一点。酶的作用是降低反应的活化能,即与底物结合后,能使底物更容易反应。那么酶是如何行成中间底物的呢?我们知道酶是有专一性的,可以比喻酶是开门的钥匙,锁是底物,拿钥匙去开门这一结合就产生了中间产物。
不同酶的km_何谓km值?有何意义?一个酶有多种底物时,如何判断其...123
2018-03-29
Km值等于酶促反应速度达到最大反应速度一半时所对应的底物浓度,是酶的特征常数之一。
不同的酶Km值不同,同一种酶与不同底物反应Km值也不同,Km值可近似的反应酶与底物的亲和力大小:Km值大,表明亲和力小;Km值小,表明亲合力大。
Km最小的那个底物,就是酶的最适底物。
不同的酶Km值不同,同一种酶与不同底物反应Km值也不同,Km值可近似的反应酶与底物的亲和力大小:Km值大,表明亲和力小;Km值小,表明亲合力大。
Km最小的那个底物,就是酶的最适底物。
DNA没有被限制性内切酶切开或者切割不完全怎么办? 123
txstbbm2021-08-11
可以考虑以下几种情况:
1,底物DNA上没有该限制酶的识别、切断位点。特别是一些经过重组等处理的DNA,碱基易发生缺失、变化等。
2,限制酶识别位点上的A或C被甲基化。部分限制酶对识别位点中的碱基是否被甲基化比较敏感,从而无法切断该位点。
3,底物不纯。如果底物DNA中有限制酶阻害物质,回影响限制酶的酶切作用。在此种情况下,底物DNA须重新进行精制。
4,限制酶的识别、切断位点在底物DNA的高级构造中所处的位置,对酶切反应也有一定的影响,例如,限制酶NaeI在切断pBR322DNA时,就有着非常难以切断的部位。
5,限制性内切酶本身无活性或低活性
1,底物DNA上没有该限制酶的识别、切断位点。特别是一些经过重组等处理的DNA,碱基易发生缺失、变化等。
2,限制酶识别位点上的A或C被甲基化。部分限制酶对识别位点中的碱基是否被甲基化比较敏感,从而无法切断该位点。
3,底物不纯。如果底物DNA中有限制酶阻害物质,回影响限制酶的酶切作用。在此种情况下,底物DNA须重新进行精制。
4,限制酶的识别、切断位点在底物DNA的高级构造中所处的位置,对酶切反应也有一定的影响,例如,限制酶NaeI在切断pBR322DNA时,就有着非常难以切断的部位。
5,限制性内切酶本身无活性或低活性
为什么对同一底物[S] 相同,Km 越大,V越大? 临床试验及药理讨论版...123
箐筝66ZP2021-08-06
决定酶促反应最大速度Vm的因素是什么?是同一底物,尽管加不同种酶,其Vmax都相同吗?可以画曲线图解释一下吗?可是根据米曼氏方程来看又有点矛盾,Km变大,Vmax也需变大,才可使v变大。所以题目所述到底应该怎么理解呢
酶与底物形成中间产物有什么意义_123
TMLiYing2021-07-26
酶是不参加反应的,首先要认识这一点。酶的作用是降低反应的活化能,即与底物结合后,能使底物更容易反应。那么酶是如何行成中间底物的呢?我们知道酶是有专一性的,可以比喻酶是开门的钥匙,锁是底物,拿钥匙去开门这一结合就产生了中间产物。(我已多一年多不学生物,科学需要严谨,请多多参考课本)
下列关于酶的Km值的叙述,正确的是 A.是反应速度达到最...123
_啪啪啪丶2021-07-20
Vmax是酶完全被底物饱和时的反应速度,与酶浓度成正比,Km是酶促反应速度为最大速度一半时的底物浓度,那为什么又说Km与酶浓度无关??!!
无氧呼吸的反应底物和反应产物是什么?有氧呼吸的反应底... 123
2021-07-30
无氧呼吸:
反应底物——葡萄糖
反应产物——ATP、乙醇、CO2或ATP、乳酸
有氧呼吸:
反应底物——葡萄糖
反应产物——ATP、CO2、H2O
反应底物——葡萄糖
反应产物——ATP、乙醇、CO2或ATP、乳酸
有氧呼吸:
反应底物——葡萄糖
反应产物——ATP、CO2、H2O
北京百灵克生物科技有限责任公司 首页123
2018-03-31
葡萄糖
▍
品牌问答