
Product Details
- Target Species
- Bovine
- Species Cross-Reactivity
Target Species Cross Reactivity Dog Pig Sheep Mustelid Goat Dolphin Mink Fin Whale Horse - N.B. Antibody reactivity and working conditions may vary between species.
- Product Form
- Purified IgG conjugated to Fluorescein Isothiocyanate Isomer 1 (FITC) - liquid
- Product Form
- Purified IgG - liquid
- Product Form
- Purified IgG conjugated to R. Phycoerythrin (RPE) - lyophilized
- Reconstitution
- Reconstitute with 1 ml distilled water
- Preparation
- Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
- Preparation
- Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
- Preparation
- Purified IgG prepared by affinity chromatography on Protein G from tissue culture supernatant
- Buffer Solution
- Phosphate buffered saline
- Buffer Solution
- Phosphate buffered saline
- Buffer Solution
- Phosphate buffered saline
- Preservative Stabilisers
- 0.09% Sodium Azide (NaN3) 1% Bovine Serum Albumin
- Preservative Stabilisers
0.09% Sodium Azide - Preservative Stabilisers
0.09% Sodium Azide 1% Bovine Serum Albumin 5% Sucrose - Carrier Free
- Yes
- Approx. Protein Concentrations
- IgG concentration 0.1mg/ml
- Approx. Protein Concentrations
- IgG concentration 1.0mg/ml
- Fusion Partners
- Spleen cells from immunized BALB/c mice were fused with cells of the mouse SP2/0 myeloma cell line.
Storage Information
- Storage
- Store at +4oC or at -20oC if preferred.This product should be stored undiluted.Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
- Storage
- Store at +4oC or at -20oC if preferred.This product should be stored undiluted.Storage in frost free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
- Storage
- Store at +4oC. DO NOT FREEZEThis product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use.
- Guarantee
- 12 months from date of despatch
- Guarantee
- 12 months from date of despatch
- Guarantee
- 12 months from date of despatch
More Information
- UniProt
- P30367
- Entrez Gene
- IL4
- GO Terms
- GO:0005125cytokine activity
- GO:0005136interleukin-4 receptor binding
- GO:0005615extracellular space
- GO:0006955immune response
- GO:0008083growth factor activity
- GO:0030890positive regulation of B cell proliferation
- GO:0042113B cell activation
- GO:0043066negative regulation of apoptosis
- GO:0045348positive regulation of MHC class II biosynthetic process
- GO:0045671negative regulation of osteoclast differentiation
- GO:0045944positive regulation of transcription from RNA polymerase II promoter
- GO:0048295positive regulation of isotype switching to IgE isotypes
- GO:0048304positive regulation of isotype switching to IgG isotypes
- Regulatory
- For research purposes only
Applications of IL-4 antibody
Application Name | Verified | Min Dilution | Max Dilution |
---|---|---|---|
Flow Cytometry 1 | |||
ELISA | |||
Flow Cytometry 1 | 1/50 | 1/100 | |
Western Blotting | |||
Flow Cytometry 1 | Neat | 1/5 |
- 1Membrane permeabilization is required for this application. Bio-Rad recommend the use of Leucoperm™ (Product Code BUF09) for this purpose.
- 1Membrane permeabilization is required for this application. Bio-Rad recommend the use of Leucoperm™ (Product Code BUF09) for this purpose.
- 1Membrane permeabilization is required for this application. Bio-Rad recommend the use of Leucoperm™ (Product Code BUF09) for this purpose.
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 1x106 cells in 100ul.
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 1x106 cells in 100ul.
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 1x106 cells in 100ul.
Secondary Antibodies Available
Description | Product Code | Applications | Pack Size | List Price | Quantity |
---|---|---|---|---|---|
Goat anti Mouse IgG (H/L):Alk. Phos. (Multi Species Adsorbed) | STAR117A | E WB | 0.5 mg | ![]() | |
Goat anti Mouse IgG (H/L):FITC (Multi Species Adsorbed) | STAR117F | F | 0.5 mg | ![]() | |
Goat anti Mouse IgG (H/L):HRP (Multi Species Adsorbed) | STAR117P | E WB | 0.5 mg | ![]() | |
Goat anti Mouse IgG (Fc):FITC | STAR120F | C F | 1 mg | ![]() | |
Goat anti Mouse IgG (Fc):HRP | STAR120P | E WB | 1 mg | ![]() | |
Goat anti Mouse IgG:FITC (Rat Adsorbed) | STAR70 | F | 0.5 mg | ![]() | |
Goat anti Mouse IgG:HRP (Rat Adsorbed) | STAR77 | C E P | 0.5 mg | ![]() | |
Goat anti Mouse IgG/A/M:Alk. Phos. | STAR87A | C E WB | 1 mg | ![]() | |
Goat anti Mouse IgG/A/M:HRP (Human Adsorbed) | STAR87P | E | 1 mg | ![]() | |
Rabbit F(ab')2 anti Mouse IgG:Dylight®800 | STAR8D800GA | F IF WB | 0.1 mg | ![]() | |
Rabbit F(ab')2 anti Mouse IgG:FITC | STAR9B | F | 1 mg | ![]() | |
Human anti Mouse IgG2a:FITC | HCA037F | F | 0.1 mg | ![]() | |
Human anti Mouse IgG2a:HRP | HCA037P | E | 0.1 mg | ![]() | |
Rabbit F(ab')2 anti Mouse IgG:HRP (Human Adsorbed) | STAR13B | C E P RE WB | 1 mg | ![]() | |
Goat anti Mouse IgG (H/L):DyLight®800 (Multi Species Adsorbed) | STAR117D800GA | F IF WB | 0.1 mg | ![]() | |
Goat anti Mouse IgG (H/L):DyLight®488 (Multi Species Adsorbed) | STAR117D488GA | F IF | 0.1 mg | ![]() | |
Goat anti Mouse IgG (H/L):DyLight®680 (Multi Species Adsorbed) | STAR117D680GA | F WB | 0.1 mg | ![]() | |
Rabbit F(ab')2 anti Mouse IgG:RPE | STAR12A | F | 1 ml | ![]() | |
Goat anti Mouse IgG:RPE (Rat Adsorbed) | STAR76 | F | 1 ml | ![]() |
Negative Isotype Controls Available
Description | Product Code | Applications | Pack Size | List Price | Quantity |
---|---|---|---|---|---|
Mouse IgG2a Negative Control:FITC | MCA929F | F | 100 Tests | ![]() | |
Mouse IgG2a Negative Control | MCA929 | F | 100 Tests | ![]() | |
Mouse IgG2a Negative Control:RPE | MCA929PE | F | 100 Tests | ![]() |
Application Based External Images
Flow Cytometry
Product Specific References
References for IL-4 antibody
- Pedersen, L.G. et al. (2002) Identification of monoclonal antibodies that cross-react with cytokines from different animal species.Vet Immunol Immunopathol. 88 (3-4): 111-22.
- Aasted, B. et al. (2002) Cytokine profiles in peripheral blood mononuclear cells and lymph node cells from piglets infected in utero with porcine reproductive and respiratory syndrome virus.Clin Diagn Lab Immunol. 9 (6): 1229-34.
- Nielsen, L. et al. (2009) Lymphotropism and host responses during acute wild-type canine distemper virus infections in a highly susceptible natural host.J Gen Virol. 90: 2157-65.
- Jaber, J.R. et al. (2010) Cross-reactivity of anti-human, anti-porcine and anti-bovine cytokine antibodies with cetacean tissues.J Comp Pathol. 143: 45-51.
- Martel, C.J. & Aasted, B. (2009) Characterization of antibodies against ferret immunoglobulins, cytokines and CD markers.Vet Immunol Immunopathol. 132:109-15.
- Fellman, C.L. et al. (2011) Cyclosporine A affects the in vitro expression of T cell activation-related molecules and cytokines in dogs.Vet Immunol Immunopathol. 140: 175-80.
- Araújo, M.S. et al. (2011) Immunological changes in canine peripheral blood leukocytes triggered by immunization with first or second generation vaccines against canine visceral leishmaniasis. Vet Immunol Immunopathol. 141: 64-75.
- Jensen, P.V. et al. (2003) Cytokine profiles in adult mink infected with Aleutian mink disease parvovirus.J Virol. 77: 7444-51.
- Papadogiannakis, E.I. et al. (2009) Determination of intracellular cytokines IFN-gamma and IL-4 in canine T lymphocytes by flow cytometry following whole-blood culture.Can J Vet Res. 73: 137-43.
- Rutigliano, J.A. et al. (2008) Screening monoclonal antibodies for cross-reactivity in the ferret model of influenza infection.J Immunol Methods. 336: 71-7.
- Taubert A et al. (2008) Antigen-induced cytokine production in lymphocytes of Eimeria bovis primary and challenge infected calves.Vet Immunol Immunopathol. 126 (3-4): 309-20.
- Hamza, E. et al. (2007) Modulation of allergy incidence in icelandic horses is associated with a change in IL-4-producing T cells.Int Arch Allergy Immunol. 144: 325-37.
- Costa-Pereira, C. et al. (2015) One-year timeline kinetics of cytokine-mediated cellular immunity in dogs vaccinated against visceral leishmaniasis.BMC Vet Res. 11 (1): 92.
- Dean, G.S. et al. (2005) Minimum infective dose of Mycobacterium bovis in cattle.Infect Immun. 73 (10): 6467-71.
- Araújo, M.S. et al. (2009) T-cell-derived cytokines, nitric oxide production by peripheral blood monocytes and seric anti-Leishmania (Leishmania) chagasi IgG subclass patterns following immunization against canine visceral leishmaniasis using Leishvaccine and Leishmune.Vaccine. 27 (7): 1008-17.
- Yang, J. et al. (2012) Comparison of worm development and host immune responses in natural hosts of Schistosoma japonicum, yellow cattle and water buffalo.BMC Vet Res. 8: 25.
- Moreira, M.L. et al. (2016) Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes.Vet Parasitol. 220: 33-45.
- Geherin, S.A. et al. (2013) Ovine skin-recirculating γδ T cells express IFN-γ and IL-17 and exit tissue independently of CCR7.Vet Immunol Immunopathol. 155 (1-2): 87-97.
- Aguiar-Soares, R.D.O. et al. (2020) Phase I and II Clinical Trial Comparing the LBSap, Leishmune®, and Leish-Tec® Vaccines against Canine Visceral Leishmaniasis.Vaccines (Basel). 8 (4)Nov 17 [Epub ahead of print].
Fluorescent Spectraviewer
Watch the Tool Tutorial Video ▸
How to Use the Spectraviewer?
Watch the Tool Tutorial Video ▸
- Start by selecting the application you are interested in, with the option to select an instrument from the drop down menu or create a customized instrument
- Select the fluorophores or fluorescent proteins you want to include in your panel to check compatibility
- Select the lasers and filters you wish to include
- Select combined or multi-laser view to visualize the spectra
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
1.基因丢失:体细胞分化过程必须将某些基因永久性的关闭,最简单有效的方式就是将其丢失.2.基因扩增:发育分化、环境条件的改变,对某些产物的需要量急剧增加--增加该基因的拷贝数.3、基因重排:某些基因片段改变原来的书顺序重新排列.4、甲基化修饰,脊椎动物,DNA上特定的CpG序列的C处可发生甲基化修饰.5、染色质结构的修饰.
检测目的基因是否转录通常采用分子杂交的方法。 基因表达分为转录及翻译两阶段,转录是以DNA(基因)为模板生成mRNA的过程,翻译是以mRNA为模板生成蛋白质的过程,检测外源基因的表达就是检测特异mRNA及特异蛋白质的生成。
这个词表示“将思想文字化”或是“用本国语言将外语抄写、誊录”
最近导师要求做一个关于PARP家族蛋白在肝癌和癌旁组织中转录以及表达情况的初步研究,以确定目前的课题是否有很大价值。我之前一直在做湿实验,没有生信背景,所以对这个工作比较头疼。我不会编程,所以直接上网查找有没有可以在网上直接进行分析的网站。我一开始是上cbioportal上对肝癌的mRNA转录谱进行分析,但网站里面提供的对照是一个所谓的标准正常人。我没查到这个所谓的标准正常人是什么,而且导师说肝癌可能存在个体差异,所以要求用肝癌及其对应的癌旁组织的转录谱和表达谱进行分析。我上GEO搜索癌旁组织(paracanceroustissue),根本什么想要的结果都没有。我现在完全是一头雾水,无从下手,希望有做相关领域工作的前辈们或是做与之类似的工作的前辈们提供指导,非常感谢!
表达谱差异分析(differential expression profiling)主要包括基因表达谱(gene expression profiling) 和蛋白质表达谱(protein expression profiling) 。大规模表达谱分析已经成为认识疾病分子机制的有利方法,在癌症研究等方面取得了一定的进展。成功的表达谱分析基于实验及其过程分析的有机结合。实验过程从关注的疾病开始,首先收集大量的疾病相关组织样本,样本数量可从10 多个到数百个,但必须足以对每一组织类型及个体差异进行比较分析,而且许多情况下不能仅简单地分为正常和疾病组织。例如,在对糖尿病的研究中,所收集的样本来自健康人、胰岛素耐受和糖尿病病人的不同试验阶段,如胰岛素治疗前后。样品还应包括其他器官的取材,以便进行基因表达的组织分布研究。为了便于对后来的实验数据进行分析管理,需采集并储存所有的组织样本和临床参数。接下来进行组织样本的处理,利用生物芯片(寡核苷酸芯片、cDNA 芯片或全基因组芯片) 进行表达谱测定,并进行生物信息学分析。
通常,表达谱的分析结果需进一步的实验加以证实。定量RT2PCR 是最灵敏的确证方法,该方法还可以将确证实验的范围扩大到原测组织以外的更广泛的组织和组织类型,揭示基因表达的组织分布情况。
确证实验揭示了疾病相关基因。据此,可以进行进一步研究,探索这些基因的功能,开发新的治疗手段。例如,对于正常和疾病组织中表达有显著性变化的基因,可以进行新治疗靶点的鉴定和确定研究,或利用实验和分析工具研究分析其功能;对于疾病组织中活性升高的酶,可以当作前药活化酶进行鉴定研究。典型的表达谱能够显示疾病过程中有大量的已知基因表达的改变,而许多已知基因的代谢通路、表达产物酶学分类和蛋白质功能业已发表,将两者对照分析,可以鉴定出酶活性,选择其中可能成为前药活化酶的部分进行进一步研究;对于疾病特异的蛋白质,可以进行抗原表型分析,决定疫苗的开发策略。
寻找差异表达基因的方法除芯片技术外,一些新的检测方法如差异显示PCR ( differential display PCR, DD-PCR) 、消减杂交( suppression subreactive hy bridization , SSH) 等也相继得到结合应用。
大家好,本人实验小白一枚,目前在寻找自己的毕业课题,有个实验问题想请教论坛里面的各位大侠。前期的实验证明某个转录因子具有抑癌作用,在正常肝脏组织中高表达,在肝癌组织中低表达,在HepG2,SMMC-7721等肝癌细胞株中缺失表达。我现在想用染色质免疫共沉淀结合高通量测序的方法筛选它的下游基因,由于在肝癌细胞株中缺失表达,我可以构建一个过表达转录因子的质粒到肝癌细胞株中做染色质免疫共沉淀吗?或者还有更好的方法筛选下游基因吗?谢谢!
转录是遗传信息由DNA转换到RNA的过程。作为蛋白质生物合成的第一步,转录是mRNA以及非编码RNA(tRNA、rRNA等)的合成步骤。是遗传信息从DNA流向RNA的过程。即以双链DNA中的确定的一条链(模板链用于转录,编码链不用于转录)为模板,以ATP、CTP、GTP、UTP四种核苷三磷酸为原料,在RNA聚合酶催化下合成RNA的过程。
应用高通量技术进行转录组测序是一种快捷可靠的获取转录组信息的方法。mRNA的转录本表达分析,通过获得研究对象基因组转录区域的信息,鉴定转录发生位点,可变剪切等,其精确的计数方法更可对基因进行精确的定量分析。
当面对某个基因表达调控研究时,第一个想到的研究对象是什么?没错,就是基因的启动子。通过启动子区域对基因表达进行调控是最直接有效的手段,所以也是研究基因表达调控的重点。现在的基因数据库信息丰富,拿到基因及其启动子序列非常简单。那么问题又来了,拿到启动子序列以后,下一步怎么找相关的调控蛋白/转录因子呢?生物信息学方法预测?你会得到很多可能的目标调控蛋白/转录因子,还要做实验一个一个验证。凝胶迁移(EMSA),染色质免疫共沉淀(ChIP)?只能针对已知能与启动子结合的调控蛋白/转录因子,而且还需要相应探针/抗体,对于大量筛选无能为力。
美国Signosis的转录因子(结合启动子)微孔板芯片检测试剂可以方便、高效地解决这一问题。该方法专门用于筛查与特定DNA序列(通常是含有转录因子结合位点的启动子序列)相互作用的调控蛋白/转录因子,获得目的基因的启动子序列后,使用该方法可以筛查48/96种常见的调控蛋白/转录因子与启动子序列结合情况。该方法利用转录因子与特定DNA序列结合的特点,针对每一种转录因子设计相应的生物素标记探针;当混合探针与核蛋白样本共同孵育时,探针与相应的转录因子结合形成转录因子/探针复合物;除去游离的探针,收集转录因子/探针复合物;分离复合物中的DNA探针,探针的量与探针的量与转录因子含量呈正相关。在探针混合物中同时加入启动子片段,如果DNA序列中含有转录因子结合位点,就会与生物素标记的探针竞争性结合转录因子,转录因子与相应探针形成的复合物减少。通过比较有无目的基因启动子片段中转录因子探针检测差异,可以分析出与无目的基因启动子片段相互作用的转录因子种类。
这种方法可以简单、快速地在48/96种常见转录因子筛选出与目的启动子片段相互作用的调控蛋白/转录因子,从而进一步探索目的基因的表达调控。待筛选的调控蛋白/转录因子都是在生命活动中起重要通的调控蛋白/转录因子,大大方便了后续的基因表调控、信号通路及其它方面的研究。
http://www.biomart.cn/infosupply/17197307.htm
转录因子(启动子结合)微孔板阵列检测试剂I(FA-2001_Promoter-binding_TF_profiling_assay_I).pdf(91.72k)
基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。即表达=转录+翻译
转录量和拷贝数是相等的(产生的RNA),但和表达量(蛋白质,最终产物)不同意思,只是表达的第一步,只有转录的也都同样顺利翻译成蛋白质才有同时满足的可能。
转录增加 不等于 表达增加表达增加 也不等于 转录增加成功转录 不代表 成功表达成功表达 说明 成功转录
最近导师要求做一个关于PARP家族蛋白在肝癌和癌旁组织中转录以及表达情况的初步研究,以确定目前的课题是否有很大价值。我之前一直在做湿实验,没有生信背景,所以对这个工作比较头疼。我不会编程(只有很浅薄的R基础),而且没有统计学基础,所以直接上网查找有没有可以在网上直接进行分析的网站。我一开始是上cbioportal上对肝癌的mRNA转录谱进行分析(我只会看网站上红得蓝的表达上调下调的标记,不会看zscore什么的。。。),但网站里面提供的对照是一个所谓的标准正常人。我没查到这个所谓的标准正常人是什么,而且导师说肝癌可能存在个体差异,所以要求用肝癌及其对应的癌旁组织的转录谱和表达谱进行分析。我上GEO搜索癌旁组织(paracanceroustissue),根本什么想要的结果都没有。我现在完全是一头雾水,无从下手,希望有做相关领域工作的前辈们或是做与之类似的工作的前辈们提供指导,非常感谢!

