N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine, also known as NPB or NPD, has been used intensively in OLEDs and other organic electronic devices such as polymer photovoltaics (OPV) and perovskite solar cells for its outstanding hole transport capability.
NPB is considered as one of the best materials within its competition, and has become the most common-used material in OLEDs" application. This is due to its increased Tg up to 95 °C, which enhances device morphology and is beneficial for device longevity [1].
General Information
| CAS number | 123847-85-8 |
| Chemical formula | C44H32N2 |
| Molecular weight | 588.74 g/mol |
| HOMO/LUMO | HOMO = 5.5 eV, LUMO = 2.4 eV |
| Absorption | λmax 339 nm |
| Fluorescence | λem 450 nm (in THF) |
| Synonyms |
|
| Classification / Family | Triphenylamines, Naphtalene, Hole-transport layer materials, Electron block layer materials, Hole-injection layer materials, Organic light-emitting diodes (OLEDs), OFETs, Organic Photovoltaics, Polymer solar cells, Perovskite solar cells |
Product Details
| Purity | > 99.5% (sublimed) > 98.0% (unsublimed) |
| Melting point | 279-283 °C (lit.) |
| Appearance | Off-White powder |
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
Chemical Structure

Device Structure(s)
Device structure | ITO/NPB (30 nm)/NPB: DCJTB: C545T* (10 nm)/NPB (4 nm)/DNA (8 nm)/(BCP) (9 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (100 nm) [2] |
| Colour | White |
| Max. Luminance | 13,600 cd/m2 |
| Max. Current Efficiency | 12.3 cd/A |
| Max. Power Efficiency | 4.4 lm W−1 |
Device structure | ITO/MoO3 (7nm)/NPB (85 nm)/ (PPQ)2Ir(acac):Ir(ppy)3:FIrpic:mCP/TAZ/LiF/Al [3] |
| Colour | White |
| Max. EQE | 20.1% |
| Max. Power Efficiency | 41.3 lm W−1 |
| Device structure | ITO/PEDOT:PSS/NPB/mCP/FPt*(1.5 nm)/OXD-7/CsF/Al [4] |
| Colour | White |
| Max. EQE | 17.5% |
| Max. Power Efficiency | 45 lm W−1 |
| Device structure | ITO/2-TNATA:33% WO3 (100 nm)/NPB (10 nm)/Alq3 (30 nm)/Bphen (20 nm)/BPhen: 2% Cs (10 nm)/Al (150 nm) [5] |
| Colour | Green |
| Operating Voltage for 100 cd/m2 | 3.1 V |
| Current Efficiency for 20 mA/cm2 | 4.4 cd/A |
| Power Efficiency for 20 mA/cm2 | 3.3 lm W−1 |
| Device structure | ITO/2-TNATA (60 nm)/NPB (15 nm)/TAT* (30 nm)/ Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) [6] |
| Colour | Deep Blue |
| EQE at 10 mA/cm2 | 7.18 |
| Current Efficiency at 10 mA/cm2 | 3.64 cd/A |
| Power Efficiency at 10 mA/cm2 | 1.87 lm W−1 |
| Device structure | ITO/[F4-TCNQ(x nm)/m-MTDATA(y nm)]n/NPB/Alq3/Bphen/Cs2CO3/Al [7] |
| Colour | Green |
| Max. Luminance | 23,500 cd/m2 |
| Max. Current Efficiency | 7.0 cd/A |
| Max. Power Efficiency | 4.46 lm W−1 |
| Device structure | ITO/NPB (30 nm)/CBP:8 wt% (t-bt)2Ir(acac)* (15 nm)/BPhen(35 nm)/LiF (1 nm)/CoPc:C60 (4:1) (5 nm)/MoO3 (5 nm)/NPB(30 nm)/CBP:8 wt% (t-bt)2Ir(acac)* (15 nm)/BPhen (35 nm)/Mg:Ag (100 nm) [8] |
| Colour | Yellow |
| Max. EQE | 16.78% |
| Max. Luminance | 42,236 cd/m2 |
| Max. Current Efficiency | 50.2 cd/A |
| Max. Power Efficiency | 12.9 lm W−1 |
| Device structure | ITO/NPB (60 nm)/BNA:2 wt% perylene and 0.5 wt% DCJTB* (35 nm)/Alq3 (25 nm)/Mg:Ag (200 nm) [9] |
| Colour | White |
| Max. Luminance | 4,100 cd/m2 |
| Max. Current Efficiency | 1.65 cd/A |
| Device structure | ITO (100 nm)/NPB (40 nm)/ADN:C6:DCJTB (30 nm)/Alq (30 nm)/LiF (1 nm)/Al (100 nm) |
| Colour | Red |
| Max. Luminance | 13, 000 cd/m2 [10] |
| Max. Current Efficiency | 4.9 cd/A |
*For chemical structure information please refer to the cited references.
Characterisation


Pricing
| Grade | Order Code | Quantity | Price |
| Sublimed (>99%) | M361 | 1 g | £139.00 |
| Sublimed (>99%) | M361 | 5 g | £369.00 |
| Unsublimed (>98%) | M362 | 5 g | £160.00 |
MSDS Documentation
NPB MSDS sheet
Literature and Reviews
- Organic electroluminescent devices with improved stability, S. A. Van Slyke et al., Appl. Phys. Lett. 69, 2160 (1996); http://dx.doi.org/10.1063/1.117151.
- High efficiency white organic light-emitting devices by effectively controlling exciton recombination region, F. Guo et al., Semicond. Sci. Technol. 20, 310–313 (2005).
- Manipulating Charges and Excitons within aSingle-Host System to Accomplish Efficiency/CRI/Color-Stability Trade-off for High-PerformanceOWLEDs, Q. Wang et al., Adv. Mater., 21, 2397–2401 (2009).
- Efficient organic light-emitting devices with platinum-complex emissive layer, X. Yang et al., Appl. Phys. Lett., 98, 033302 (2011); doi: 10.1063/1.3541447.
- Highly Power Efficient Organic Light-Emitting Diodes with a p-Doping Layer, C-C. Chang et al., Appl. Phys. Lett., 89, 253504 (2006); doi: 10.1063/1.2405856.
- Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design, S-K. Kim et al., J. Mater. Chem., 18, 3376–3384 (2008). DOI: 10.1039/B805062G.
- Effect of type-II quantumwell of m-MTDATA/a-NPD on the performance of green organic light-emitting diodes, J. Yang et al., Microelectronics J.l40, 63–65 (2009). doi:10.1016/j.mejo.2008.08.004.
- Effect of bulk and planar heterojunctions based charge generation layers on the performance of tandem organic light-emitting diodes, Z. Ma et al., Org. Electronics, 30, 136-142 (2016). doi:10.1016/j.orgel.2015.12.020
- Blue and white organic electroluminescent devices based on 9,10-bis(2′-naphthyl)anthracene, X. H. Zhang et al., Chem. Phys. Lett., 369 (3-4) 478-482 (2003), doi:10.1016/S0009-2614(02)02042-0.
- Highly Efficient and Stable Red Organic Light-Emitting Devices Using 9,10-Di(2-naphthyl)anthracene as the Host Material, H. Tang et al., Jpn. J. Appl. Phys. 46 1722 (2007), http://iopscience.iop.org/1347-4065/46/4R/1722.
- C60/N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine:MoO3 as the interconnection layer for high efficient tandem blue fluorescent organic light-emitting diodes, X. Wu et al., Appl. Phys. Lett. 102, 243302 (2013); http://dx.doi.org/10.1063/1.4811551.
- High-Performance Hybrid White Organic Light-Emitting Devices without Interlayer between Fluorescent and Phosphorescent Emissive Regions, N. Sun et al., Adv. Mater., 26, 1617–1621 (2014)
- Single-Doped White Organic Light-Emitting Device with an External Quantum Efficiency Over 20%, T. Fleetham et al., Adv. Mater., 25, 2573–2576 (2013).
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
>
就是蛋白质分子的小片断
是氨基酸形成的
求助各位前辈,我最近在合成的化合物水溶性很好,非常好,以至于可以随便溶解在水里,它的六氟磷酸盐也可以随意溶解在水里(大于50uM),细胞成像实验显示它根本进不去细胞,求问有没有啥方法包裹一下让它进去?我搜了一下文献,感觉多数是把脂溶性特别好的东西包裹一下弄进去的,也许是搜索姿势不对没找到我需要的答案,**点拨啊!!!
如题,之前没做过药代,老师给了一个600+Da的五肽,想测下药代动参数,看文献推荐上述两种方法,但是不知道选哪种更好,lcms前处理会不会影响小肽。
有机的是有机化合物的简称,它指的是含碳化合物.
但是,有四大类常见物质一般不作为有机物处理:
1、碳的氧化物,如CO和CO2.
2、碳酸及其盐,如CaCO3.
3、金属碳化物,如CaC2.
4、拟卤素及其化合物,如(CN)2与KSCN.
水的化学式为H2O,它不含有碳元素,故不是有机物.
但若所描述的水不是化学意义的水,而是自然界存在的天然水,那么,水中会溶有一定量的有机物.

