Like most of the transition metal dichalcogenides and graphite, molybdenum diselenide (MoSe2) has a two-dimensional layered structure - with the individual layers stacked together by weak van der Waals interactions. Due to the larger size and better conductivity of selenium over sulphur, MoSe2 is one of the best TMDCs of metallic nature. This also provides a great opportunity for hosting counterions in electrochemical energy storage systems (such as lithium-ion and sodium-ion batteries).
Like MoS2, MoSe2 undergoes changes from indirect to direct band-gap transitions when bulk material (such as the bulk crystal) is reduced to monolayer film. However, unlike MoS2, few-layer MoSe2 flakes possess a nearly degenerate indirect and direct band-gap. An increase in temperature/pressure can effectively push the system toward the quasi-2D limit by reducing the coupling between the layers. MoS2, on the other hand, has indirect and direct band-gaps that are well-separated in energy - and hence, far from degenerate.
Compared to MoS2, MoSe2 exhibits higher electrical conductivity.
General Information
| CAS number | 12058-18-3 |
| Chemical formula | MoSe2 |
| Molecular weight | 253.86 g/mol |
| Bandgap | 1.41 - 1.58 eV [1] |
| Synonyms | Molybdenum (IV) selenideMolybdenum selenide |
| Classification / Family | Transition metal dichalcogenides (TMDCs), 2D semiconductor Materials, Nano-electronics, Nano-photonics, Electrochemical energy storage system, Materials science |
Product Details
| Form | Single Crystal |
| Acquire method | Synthetic - Chemical Vapour Transport (CVT) |
| Purity | ≥ 99.995% |
| Structure | Hexagonal |
| Electronic properties | 2D semiconductor |
| Melting point | >1,300 °C |
| Colour | Black/Dark brown |
Chemical Structure

Applications
In contrast to graphene, exfoliated monolayer or few-layer 2D MoSe2 has a direct band-gap. It has applications in transistors, photo-detectors, and photovoltaics. Due to its layered structure and the unique nature of selenium, MoSe2 has been widely used in lubricants and energy storage devices.
Synthesis
Molybdenum diselenide MoSe2 is manufactured via the process of chemical vapour transport (CVT) crystallisation, with purities of over 99.999% achieved.
Usage
Molybdenum diselenide MoSe2 single crystals are a great source for obtaining monolayer and few-layer MoSe2 via mechanical or liquid exfoliation. Single crystals can also be used directly in optical and scanning-probe microscopy (such as AFM and TEM studies).
Viscoelastic transfer using PDMS
Pricing
| Size | Product code | Size description* | Quantity (EA) | Price |
| Small | M2108A10 | >10 mm2 | 1 | £357.00 |
| Medium | M2108A25 | >25 mm2 | 1 | £578.00 |
| Large** | M2108A00 | >100 mm2 | 1 | £1350.00 |
*typical representative size, areas/dimensions may vary
**item with a lead time of 2-3 weeks, please contact for more information
Literature and Reviews
- Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2, Y. Zhang et al., Nat. Nanotech., 9, 111–115 (2014); DOI: 10.1038/NNANO.2013.277.
- Large-Area Synthesis of Monolayer and Few-Layer MoSe2 Films on SiO2 Substrates, X. Lu et al., Nano Lett., 14 (5), 2419–2425 (2014); DOI: 10.1021/nl5000906.
- High-Mobility Transistors Based on Large-Area and Highly Crystalline CVD-Grown MoSe 2 Films on Insulating Substrates, J-S. Rhyee et al., Adv. Mater., 28, 2316–2321 (2016); DOI: 10.1002/adma.201504789.
- Large-Area Single-Layer MoSe2 and Its van der Waals Heterostructures, G. Shim et al., CS Nano, 8 (7), 6655–6662 92014);DOI: 10.1021/nn405685j.
- Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2, S. Tongay et al., Nano Lett., 12, 5576−5580 (2012); DOI: 10.1021/nl302584w.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
>
就是蛋白质分子的小片断
是氨基酸形成的
求助各位前辈,我最近在合成的化合物水溶性很好,非常好,以至于可以随便溶解在水里,它的六氟磷酸盐也可以随意溶解在水里(大于50uM),细胞成像实验显示它根本进不去细胞,求问有没有啥方法包裹一下让它进去?我搜了一下文献,感觉多数是把脂溶性特别好的东西包裹一下弄进去的,也许是搜索姿势不对没找到我需要的答案,**点拨啊!!!
如题,之前没做过药代,老师给了一个600+Da的五肽,想测下药代动参数,看文献推荐上述两种方法,但是不知道选哪种更好,lcms前处理会不会影响小肽。
有机的是有机化合物的简称,它指的是含碳化合物.
但是,有四大类常见物质一般不作为有机物处理:
1、碳的氧化物,如CO和CO2.
2、碳酸及其盐,如CaCO3.
3、金属碳化物,如CaC2.
4、拟卤素及其化合物,如(CN)2与KSCN.
水的化学式为H2O,它不含有碳元素,故不是有机物.
但若所描述的水不是化学意义的水,而是自然界存在的天然水,那么,水中会溶有一定量的有机物.

