
Ossila have produced a range of masks for vacuum deposition of materials onto our standardised 8-pixel substrate design. These include masks that are used to deposit electrodes and busbars and masks to deposit semiconducting materials to define an active area for thin film electronic devices - all to obtain the highest device performances possible. All our deposition masks are made from stainless steel, with the option of an additional spacer layer. More information on the specifications can be found below. Ossila provide the following masks that are suitable for use with our S211 substrate design:
- Busbar mask - Allows for the deposition of high conductivity metals on non-critical parts of the ITO to reduce resistive losses within devices
- Active material masks - Defines an area for the deposition of the materials you wish to study
- Multi electrode masks - Defines a pattern for the deposition of 8 electrodes producing 8 complete devices upon a single substrate, each device has an active area of 4mm2
- Single electrode masks - Defines a single large electrode across the center of the substrate producing a device with an active area of 48mm2
- Multi electrode/busbar masks - A combination of the multi electrode and the busbar mask, allowing for the deposition of 8 individual electrodes and the coating of non-critical parts of the ITO.
Spacer Layers
Each mask has the option of the addition of a 200 µm spacer layer that can be placed between the mask and the substrate. This spacer layer reduces the direct contact between the surface of the substrate and the mask by over 98%. This is recommended for samples that are easily scratched or for porous samples that experience a large amount of out-gassing. For sputtering or other non-directional deposition techniques, the spacer layer is not recommended as the presence of a spacer layer will reduce the precision of your deposited edge.
Deposition Mask Specifications and Designs
General Specifications
Material | Stainless Steel |
Outer Dimensions | 75mm x 75mm |
Substrate Recesses | 12 |
Recess Dimensions | 20.15mm x 15.15mm |
Thickness | 1.9mm without spacer, 2.1mm with spacer |
Busbar Mask
Ossila's busbar mask has been designed to eliminate resistance losses that occur when using transparent conductive layers. By allowing for the deposition of high conductivity metals across non-critical parts of the transparent conductor the overall resistive losses that occur within thin film electronic devices can be reduced. The busbar mask should be used before any other layers are deposited onto your S211 substrate. The deposition pattern overlaid onto our S211 substrate is shown to the right.
The schematic drawing of our busbar mask can be seen below.
Active Material Mask
Ossila's active material mask is specifically designed to coat the areas where your electrodes will be overlapping. The range of materials and techniques that can be used is nearly endless; whether it is vacuum deposited small molecules, chemical vapor deposition of ceramics, or sputtering of metallic alloys, the active material mask will allow you to accurately define your deposition area. The deposition pattern overlaid onto our S211 substrate is shown to the right.
The schematic drawing of our active material mask can be seen below.
Multi-Electrode Mask
Ossila's multi-electrode mask has been designed to obtain the most amount of pixels from a single substrate. Using our multi-electrode mask, it is possible to define 8 x 4mm2 devices. In addition, by placing the electrodes in the middle of the substrate edge defects from solution processing of films can be eliminated improving the reliability of devices across a substrate. By using a multi-electrode structure, device statistics are significantly improved -- allowing you to feel confident in the results you are obtaining from thin film device fabrications. The deposition pattern overlaid onto our S211 substrate is shown to the right.The schematic drawing of our multi electrode mask can be seen below:
Single-Electrode Mask
Ossila's single electrode mask has been designed to give the largest area for a device using out S211 substrate. Using our single-electrode mask, it is possible to define a 48mm2 device. By looking at large single-electrode devices, it is possible to study the changes in performance of thin film devices when transitioning from small scale lab devices to large scale industrial processes. The deposition pattern overlaid onto our S211 substrate is shown to the right.
The schematic drawing of our single electrode mask can be seen below:
Multi-Electrode/Busbar Mask
Ossila's multi-electrode busbar mask has been designed to obtain the highest performance whilst maintaining a minimum amount of deposition steps. Using a combination of our multi-electrode mask and busbar mask, 8 electrodes can be defined whilst allowing for the deposition of extra material to reduce resistive losses. By using our multi-electrode/busbar mask, the best device performance can be achieved whilst maintaining the same amount of fabrication steps as our regular multi-electrode mask. The deposition pattern overlaid onto our S211 substrate is shown to the right.
The schematic drawing of our multi electrode/busbar mask can be seen below:
To the best of our knowledge, the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
有机的是有机化合物的简称,它指的是含碳化合物.
但是,有四大类常见物质一般不作为有机物处理:
1、碳的氧化物,如CO和CO2.
2、碳酸及其盐,如CaCO3.
3、金属碳化物,如CaC2.
4、拟卤素及其化合物,如(CN)2与KSCN.
水的化学式为H2O,它不含有碳元素,故不是有机物.
但若所描述的水不是化学意义的水,而是自然界存在的天然水,那么,水中会溶有一定量的有机物.
如题,之前没做过药代,老师给了一个600+Da的五肽,想测下药代动参数,看文献推荐上述两种方法,但是不知道选哪种更好,lcms前处理会不会影响小肽。
求助各位前辈,我最近在合成的化合物水溶性很好,非常好,以至于可以随便溶解在水里,它的六氟磷酸盐也可以随意溶解在水里(大于50uM),细胞成像实验显示它根本进不去细胞,求问有没有啥方法包裹一下让它进去?我搜了一下文献,感觉多数是把脂溶性特别好的东西包裹一下弄进去的,也许是搜索姿势不对没找到我需要的答案,**点拨啊!!!

