
Recombinant Human His6-SUMO2 Protein, CF Summary
Product Datasheets
Carrier Free
CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins.Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration.The carrier free version does not contain BSA.
In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard.In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.
UL-753
Formulation | X mg/ml (X µM) in 50 mM HEPES pH 8.0, 250 mM NaCl, 1mM DTT, 1mM EDTA. Actual concentration varies with lot number. |
Shipping | The product is shipped with dry ice or equivalent. Upon receipt, store it immediately at the temperature recommended below. |
Stability & Storage: | Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
|
Reconstitution Calculator
Background: SUMO2
Human Small Ubiquitin-like Modifier 2 (SUMO2), also known as Sentrin2 and SMT3B is synthesized as a 95 amino acid (aa), propeptide with a predicted 11 kDa. SUMO2 contains a two aa C-terminal prosegment and an 18 aa N-terminal protein interacting region between aa 33-50. Human SUMO2 shares 100% aa sequence identity with mouse SUMO2. SUMO2 also has very high aa sequence identity with SUMO3 and SUMO4, 86% and 85%, respectively. SUMO2 shares only 44% aa sequence identity with SUMO1. SUMOs are a family of small, related proteins that can be enzymatically attached to a target protein by a post-translational modification process termed SUMOylation (1-3). All SUMO proteins share a conserved Ubiquitin domain and a C-terminal diglycine cleavage/attachment site. Following prosegment cleavage, the C-terminal glycine residue of SUMO2 is enzymatically attached to a lysine residue on a target protein. In humans, SUMO2 is conjugated to a variety of molecules in the presence of the SAE1/UBA2 SUMO-activating (E1) enzyme and the UBE2I/Ubc9 SUMO-conjugating (E2) enzyme (4,5). In yeast, the SUMO-activating (E1) enzyme is Aos1/Uba2p (6). Because of the high level of aa sequence identity most studies report effects of SUMO2/3. For example, post-translational addition of SUMO2/3 was shown to modulate the function of ARHGAP21, a RhoGAP protein known to be involved in cell migration (7). Other reports indicate that the SUMOylation with SUMO2/3, but not SUMO1, may represent an important mechanism to protect neurons during episodes of cerebral ischemia (8,9). However, studies suggest that SUMO2/3 expression is regulated in an isoform-specific manner since oxidative stress downregulated the transcription of SUMO3 but not SUMO2 (10).
The ubiquitin-like SUMO-2 is conjugated to a variety of proteins in the presence of UbcH9 and the SAE1/SAE2 (human) or Aos1/Uba2 (yeast) activating enzyme. SUMO-2 is derived from the precursor pro-SUMO-2 (Accession # NM_006937). Human SUMO-2 shares 44% and 86% identity with SUMO-1 and SUMO-3 respectively. SUMOylation can occur without the requirement of a specific E3 ligase activity, where SUMO is transferred directly from UbcH9 to specific substrates. SUMOylated substrates are primarily localized to the nucleus (RanGAP-1, RANBP2, PML, p53, Sp100, HIPK2), but there are also cytosolic substrates (I kappa B alpha, GLUT1, GLUT4). SUMO modification has been implicated in functions such as nuclear transport, chromosome segregation, transcriptional regulation, apoptosis, and protein stability.
- Desterro, J.M. et al. (1997) FEBS. Lett. 417:297.
- Bettermann, K. et al. (2012) Cancer Lett. 316:113.
- Praefcke, G.J. et al. (2012) Trends Biochem. Sci. 37:23.
- Okuma, T. et al. (1999) Biochem. Biophys. Res. Commun. 254:693.
- Tatham, M.H. et al. (2001) J. Biol. Chem. 276:35368.
- Johnson, E.S. et al. (1997) EMBO J. 16:5509.
- Bigarella, C.L. et al. (2012) FEBS Lett. 586:3522.
- Datwyler, A.L. et al. (2012) J. Cereb. Blood Flow Metab. 31:2152.
- Wang, Z. et al. (2012) Protein Expr. Purif. 82:174.
- Sang, J. et al. (2012) Biochem. J. 435:489.
FAQs
No product specific FAQs exist for this product, however you may
View all Proteins and Enzyme FAQsAffinity Matrices
Recombinant Human HR23A Tandem UBA (TUBE1) Agarose, CF
Recombinant Enzymes
Recombinant Human His6-UBE2N (Ubc13)/Uev1a Complex, CF
Recombinant Human SUMO E1 (SAE1/UBA2) Protein, CF
Recombinant Human UBE2I/Ubc9 Protein, CF
Recombinant Proteins
Recombinant Human SUMO3 AMC Protein, CF
Recombinant Human SUMO1 AMC Protein, CF
Recombinant Human Ubiquitin Protein, CF
Reviews for Recombinant Human His6-SUMO2 Protein, CF
There are currently no reviews for this product. Be the first toreview Recombinant Human His6-SUMO2 Protein, CF and earn rewards!
Have you used Recombinant Human His6-SUMO2 Protein, CF?
Submit a review and receive an Amazon gift card.
$25/€18/£15/$25CAN/¥75 Yuan/¥1250 Yen for a review with an image
$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
QianWang,JessamyTiffen,CharlesG.Bailey,MelanieL.Lehman,WilliamRitchie,LadanFazli,CynthiaMetierre,Yue(Julie)Feng,EstelleLi,MartinGleave,GrantBuchanan,ColleenC.Nelson,JohnE.J.Rasko,JeffHolst
Correspondenceto:JeffHolst,PhD,OriginsofCancerLaboratory,LockedBag6,Newtown,NSW2042Australia.(e-mail:j.holst@centenary.org.au).
BackgroundL-typeaminoacidtransporters(LATs)uptakeneutralaminoacidsincludingL-leucineintocells,stimulatingmammaliantargetofrapamycincomplex1signalingandproteinsynthesis.LAT1andLAT3areoverexpressedatdifferentstagesofprostatecancer,andtheyareresponsIBLeforincreasingnutrientsandstimulatingcellgrowth.
MethodsWeexaminedLAT3proteinexpressioninhumanprostatecancertissuemicroarrays.LATfunctionwasinhibitedusingaleucineanalog(BCH)inandrogen-dependentand-independentenvironments,withgeneexpressionanalyzedbymicroarray.APC-3xenograftmousemodelwasusedtostudytheeffectsofinhibitingLAT1andLAT3expression.ResultswereanalyzedwiththeMann-WhitneyUorFisherexacttests.Allstatisticaltestsweretwo-sided.
ResultsLAT3proteinwasexpressedatallstagesofprostatecancer,withastatisticallysignificantdecreaseinexpressionafter4–7monthsofneoadjuvanthormonetherapy(4–7monthmean=1.571;95%confidenceinterval=1.155to1.987vs0month=2.098;95%confidenceinterval=1.962to2.235;P=.0187).InhibitionofLATfunctionledtoactivatingtranscriptionfactor4–mediatedupregulationofaminoacidtransportersincludingASCT1,ASCT2,and4F2hc,allofwhichwerealsoregulatedviatheandrogenreceptor.LATinhibitionsuppressedM-phasecellcyclegenesregulatedbyE2Ffamilytranscriptionfactorsincludingcriticalcastration-resistantprostatecancerregulatorygenesUBE2C,CDC20,andCDK1.InsilicoanalysisofBCH-downregulatedgenesshowedthat90.9%arestatisticallysignificantlyupregulatedinmetastaticcastration-resistantprostatecancer.Finally,LAT1orLAT3knockdowninxenograftsinhibitedtumorgrowth,cellcycleprogression,andspontaneousmetastasisinvivo.
ConclusionInhibitionofLATtransportersmayprovideanoveltherapeutictargetinmetastaticcastration-resistantprostatecancer,viasuppressionofmammaliantargetofrapamycincomplex1activityandM-phasecellcyclegenes.
L-typeaminoacidtransporters(LATs)supplycellswithlargeneutralaminoacids,whicharenotonlyrequiredforproteinsynthesisbutalsocontributetovarioussignalingpathways.Intracellularleucinelevelsaresensedbytheleucyl-transferRNAsynthetase,previouslyknowntocatalyzetheadenosinetriphosphate–dependentligationofL-leucinetotransferRNAduringproteinsynthesis(1,2).Leucyl-transferRNAsynthetaseactivatestheRagguanosinetriphosphatasecomplexandbindstoRaptortoactivatemammaliantargetofrapamycincomplex1(mTORC1)signalingonthesurfaceoflysosomes(1–3).Inthiswayleucineisnotonlyanessentialaminoacidbutactsasarate-limitingsignalingmoleculeinthemTORC1pathway.
Incellsdeprivedofaminoacids,thereisanaccumulationofunchargedtransferRNA,whichbindstoandactivatesthegeneralcontrolnonrepressed2(GCN2)kinase.Inturn,GCN2phosphorylatesthetranslationinitiationfactor2α(eIF2α)onserine51,triggeringtranslationalupregulationofactivatingtranscriptionfactor(ATF)4(4).ATF4itselfupregulatestheexpressionofaminoacidtransportersasameansofrestoringintracellularaminoacidlevels(5).Therefore,understandinghowaminoacidtransportersregulateintracellularleucinelevels,andgeneratingnovelinhibitorsofthesetransporters,mayleadtopotentsuppressorsofmTORC1signaling.
ThetwodistinctfamiliesofLATsare1)solutecarrier7(SLC7)members(LAT1/SLC7A5andLAT2/SLC7A8),whichmediateNa+-independentneutralaminoacidexchangeasheterodimerswiththe4F2cell-surfaceantigenheavychain(4F2hc/SLC3A2/CD98)glycoprotein(6,7);and2)SLC43proteins(LAT3/SLC43A1andLAT4/SLC43A2)thatmediateNa+-independentuniportofneutralaminoacids(8,9).AlthoughtheexpressionofeachLATmembervariesdramaticallyindifferenttissues,thesetransportersarecommonlyupregulatedincancer.IncreasedLAT1expressionhasbeendetectedinlungcancer,coloncancer,breastcancer,headandneckcancer,genitalcancers,andsofttissuesarcomas(10–12).WeandothershaveshownthatLAT1andLAT3areoverexpressedinprostatecancer(11–14),withLAT1expressionincreasedinmetastasiscomparedwithprimarycancer(10,12).
WehypothesizedthatinhibitionofLAT1andLAT3mayofferaneffectivetherapeuticapproachforprostatecancer.
感觉这样的提问是没有意义的
还是自己找下资料吧
微生物吸收营养和排出废弃物都需要通过细胞膜。而细胞膜是磷脂双分子层结构,无论是亲水物质还是疏水物质都无法通过细胞膜。
细胞膜上镶嵌有蛋白质,叫转运蛋白。蛋白质既有疏水基团,又有亲水基团,正是靠蛋白质的这种特殊结构,能够与两类物质结合,并通过蛋白质结构的细微变化,把这两类物质运送到细胞膜的另一侧。
所以,微生物吸收营养物质必须用镶嵌在细胞膜上的转运蛋白来实现。
另外在八版生理248页第二段,近端小管后半段氯离子通过氯离子碳酸氢根交换体被重吸收,此时小管液中氯离子浓度大于周围组织液氯离子浓度,所以也有细胞旁途径顺浓度被动重吸收,然而资料上的总结和题目里都是说氯离子在近端小管的重吸收为被动重吸收,感觉有些糊涂。希望来个大神指点一二。

