
Adenosine triphosphate (ATP) is the most abundant and primary carrier of the required energy for various functions in cells. Prolonged ischemia, reperfusion, anaerobic metabolism and lactate accumulation can lead to a dramatic decrease of ATP, cell swelling, cell rupture, and finally cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Due to drastic hydrolysis of ATP in vivo by ectoenzymes and poor cellular penetration, the direct delivery of ATP to the ischemic tissues is difficult.
To increase delivery of ATP to the tissues and protect from enzymatic degradation, encapsulation in liposomes has been proposed and demonstrated in various models of ischemia [1,2]. Studies on myocardial [1,3,4], liver [5-8], retina [9] and wound healing [10-12] ischemia have shown the ability of liposomal encapsulated ATP to prevent cell death and tissue dysfunction following ischemic events.
The encapsulation of ATP in liposomes markedly promotes its effectiveness by preventing the hydrolysis by extracellular enzymes, increasing ATP circulation time and enhancing its intracellular penetration. Depending on the type of the cell line and the target organ various types of liposomes with different surface charges such as anionic, cationic and neutral has been studied by various groups. Moreover, ATP encapsulated liposomes has been demonstrated to improve energy state and function of the cold-stored liver [6,7,13].
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
将来可能会出现基于免疫方法的试剂盒,不过因为H7N9是个新病毒,爆发至今不足一月,这么快时间还来不及生产抗体,所以目前的检测试剂盒只能是PCR检测试剂盒。
查到了:
4月7日,上海之江生物科技有限公司官方微博称,该公司成功研制禽流感H7N9(2013)核酸测定试剂盒(荧光PCR法),是针对国内此次H7N9病毒最早研制成功的产品,也是国内目前唯一供应的成品化试剂盒。